Endotoxemia-induced inflammation and the effect on the human brain

Mark van den Boogaard, Bart P Ramakers, Nens van Alfen, Sieberen P van der Werf, Wilhelmina F Fick, Cornelia W Hoedemaekers, Marcel M Verbeek, Lisette Schoonhoven, Johannes G van der Hoeven, Peter Pickkers, Mark van den Boogaard, Bart P Ramakers, Nens van Alfen, Sieberen P van der Werf, Wilhelmina F Fick, Cornelia W Hoedemaekers, Marcel M Verbeek, Lisette Schoonhoven, Johannes G van der Hoeven, Peter Pickkers

Abstract

Introduction: Effects of systemic inflammation on cerebral function are not clear, as both inflammation-induced encephalopathy as well as stress-hormone mediated alertness have been described.

Methods: Experimental endotoxemia (2 ng/kg Escherichia coli lipopolysaccharide [LPS]) was induced in 15 subjects, whereas 10 served as controls. Cytokines (TNF-alpha, IL-6, IL1-RA and IL-10), cortisol, brain specific proteins (BSP), electroencephalography (EEG) and cognitive function tests (CFTs) were determined.

Results: Following LPS infusion, circulating pro- and anti-inflammatory cytokines, and cortisol increased (P < 0.0001). BSP changes stayed within the normal range, in which neuron specific enolase (NSE) and S100-beta changed significantly. Except in one subject with a mild encephalopathic episode, without cognitive dysfunction, endotoxemia induced no clinically relevant EEG changes. Quantitative EEG analysis showed a higher state of alertness detected by changes in the central region, and peak frequency in the occipital region. Improved CFTs during endotoxemia was found to be due to a practice effect as CFTs improved to the same extent in the reference group. Cortisol significantly correlated with a higher state of alertness detected on the EEG. Increased IL-10 and the decreased NSE both correlated with improvement of working memory and with psychomotor speed capacity. No other significant correlations between cytokines, cortisol, EEG, CFT and BSP were found.

Conclusions: Short-term systemic inflammation does not provoke or explain the occurrence of septic encephalopathy, but primarily results in an inflammation-mediated increase in cortisol and alertness.

Trial registration: NCT00513110.

Figures

Figure 1
Figure 1
LPS-induced changes in cytokine plasma concentrations, cortisol and brain specific proteins. Time -0- reflects baseline concentrations. Administration of lipopolysaccharide (LPS) resulted in a marked increase in TNF-α, IL-6, IL-10, IL-1Ra and cortisol concentrations. All changes in cytokine and the cortisol concentrations were significant (P < 0.001). Concentrations of neuron specific enolase (NSE) decreased after administration of LPS (P < 0.001) and S100-β showed a significant biphasic change (P = 0.038). All data are expressed as mean ± standard error of the mean (n = 15). GFAP, glial fibrillary acidic protein; S100β, S100 Calcium Binding Protein B. * P < 0.05. ** P < 0.001.
Figure 2
Figure 2
Increase of the EEG occipital peak frequencies, relative alpha band power and absolute alpha and beta band power two to three hours after LPS infusion. Data of peak frequency are absolute numbers, data of absolute and relative band power are expressed as percentage changes. Time -0- reflects baseline measurements. (standard error of the means were omitted for reasons of clarity). * P < 0.05. ** P < 0.001. (a) Peak frequency in occipital region. Friedman analysis of variance revealed changes in P4O2 and P3O1 (both P < 0.001). (b) Percentage change compared to baseline in absolute band power (ABP) of alpha activity in occipital and central region. Friedman analysis of variance revealed changes for alpha activity in P4O, P3O1 and F4C4, F3C3 all P < 0.001. (c) Percentage change compared with baseline in absolute band power (ABP) and relative band power (RBP) of beta activity in occipital region. Friedman analysis of variance revealed changes of RBP for beta activity in P4O2 (P = 0.017), P3O1 (P = 0.575) and ABP for beta activity in P4O and P3O1 (both P < 0.001).

References

    1. Wilson JX, Young GB. Progress in clinical neurosciences: sepsis-associated encephalopathy: evolving concepts. Can J Neurol Sci. 2003;30:98–105.
    1. Ebersoldt M, Sharshar T, Annane D. Sepsis-associated delirium. Intensive Care Med. 2007;33:941–950. doi: 10.1007/s00134-007-0622-2.
    1. Nguyen DN, Spapen H, Su F, Schiettecatte J, Shi L, Hachimi-Idrissi S, Huyghens L. Elevated serum levels of S-100beta protein and neuron-specific enolase are associated with brain injury in patients with severe sepsis and septic shock. Crit Care Med. 2006;34:1967–1974. doi: 10.1097/01.CCM.0000217218.51381.49.
    1. Piazza O, Russo E, Cotena S, Esposito G, Tufano R. Elevated S100B levels do not correlate with the severity of encephalopathy during sepsis. Br J Anaesth. 2007;99:518–521. doi: 10.1093/bja/aem201.
    1. Pollmacher T, Haack M, Schuld A, Reichenberg A, Yirmiya R. Low levels of circulating inflammatory cytokines--do they affect human brain functions? Brain Behav Immun. 2002;16:525–532. doi: 10.1016/S0889-1591(02)00004-1.
    1. Meyer NJ, Hall JB. Brain dysfunction in critically ill patients--the intensive care unit and beyond. Crit Care. 2006;10:223. doi: 10.1186/cc4980.
    1. Czura CJ, Friedman SG, Tracey KJ. Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. J Endotoxin Res. 2003;9:409–413.
    1. Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol. 2005;75:207–246. doi: 10.1016/j.pneurobio.2005.02.004.
    1. Pleiner J, Mittermayer F, Schaller G, Marsik C, MacAllister RJ, Wolzt M. Inflammation-induced vasoconstrictor hyporeactivity is caused by oxidative stress. J Am Coll Cardiol. 2003;42:1656–1662. doi: 10.1016/j.jacc.2003.06.002.
    1. Trompet S, de Craen AJ, Slagboom P, Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Ford I, Gaw A, Macfarlane PW, Packard CJ, Stott DJ, Jukema JW, Westendorp RG. PROSPER Group. Genetic variation in the interleukin-1 beta-converting enzyme associates with cognitive function. The PROSPER study. Brain. 2008;131:1069–1077. doi: 10.1093/brain/awn023.
    1. Viviani B, Corsini E, Binaglia M, Galli CL, Marinovich M. Reactive oxygen species generated by glia are responsible for neuron death induced by human immunodeficiency virus-glycoprotein 120 in vitro. Neuroscience. 2001;107:51–58. doi: 10.1016/S0306-4522(01)00332-3.
    1. Viviani B, Bartesaghi S, Corsini E, Galli CL, Marinovich M. Cytokines role in neurodegenerative events. Toxicol Lett. 2004;149:85–89. doi: 10.1016/j.toxlet.2003.12.022.
    1. Chapotot F, Gronfier C, Jouny C, Muzet A, Brandenberger G. Cortisol secretion is related to electroencephalographic alertness in human subjects during daytime wakefulness. J Clin Endocrinol Metab. 1998;83:4263–4268. doi: 10.1210/jc.83.12.4263.
    1. Buchanan TW, Tranel D, Adolphs R. Impaired memory retrieval correlates with individual differences in cortisol response but not autonomic response. Learn Mem. 2006;13:382–387. doi: 10.1101/lm.206306.
    1. Het S, Ramlow G, Wolf OT. A meta-analytic review of the effects of acute cortisol administration on human memory. Psychoneuroendocrinology. 2005;30:771–784. doi: 10.1016/j.psyneuen.2005.03.005.
    1. Leonard BE. Inflammation, depression and dementia: are they connected? Neurochem Res. 2007;32:1749–1756. doi: 10.1007/s11064-007-9385-y.
    1. McAllister-Williams RH, Rugg MD. Effects of repeated cortisol administration on brain potential correlates of episodic memory retrieval. Psychopharmacology (Berl) 2002;160:74–83. doi: 10.1007/s00213-001-0938-5.
    1. Tops M, van Peer JM, Wester AE, Wijers AA, Korf J. State-dependent regulation of cortical activity by cortisol: an EEG study. Neurosci Lett. 2006;404:39–43. doi: 10.1016/j.neulet.2006.05.038.
    1. Wolf OT, Convit A, McHugh PF, Kandil E, Thorn EL, De Santi S, McEwen BS, de Leon MJ. Cortisol differentially affects memory in young and elderly men. Behav Neurosci. 2001;115:1002–1011. doi: 10.1037/0735-7044.115.5.1002.
    1. Pickkers P, Hughes AD, Russel FG, Thien T, Smits P. In vivo evidence for K(Ca) channel opening properties of acetazolamide in the human vasculature. Br J Pharmacol. 2001;132:443–450. doi: 10.1038/sj.bjp.0703825.
    1. Pleiner J, Heere-Ress E, Langenberger H, Sieder AE, Bayerle-Eder M, Mittermayer F, Fuchsjäger-Mayrl G, Böhm J, Jansen B, Wolzt M. Adrenoceptor hyporeactivity is responsible for Escherichia coli endotoxin-induced acute vascular dysfunction in humans. Arterioscler Thromb Vasc Biol. 2002;22:95–100. doi: 10.1161/hq0102.101818.
    1. Cohen O, Reichenberg A, Perry C, Ginzberg D, Pollmacher T, Soreq H, Yirmiya R. Endotoxin-induced changes in human working and declarative memory associate with cleavage of plasma "readthrough" acetylcholinesterase. J Mol Neurosci. 2003;21:199–212. doi: 10.1385/JMN:21:3:199.
    1. Suffredini AF, Hochstein HD, McMahon FG. Dose-related inflammatory effects of intravenous endotoxin in humans: evaluation of a new clinical lot of Escherichia coli O:113 endotoxin. J Infect Dis. 1999;179:1278–1282. doi: 10.1086/314717.
    1. Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med. 1989;321:280–287.
    1. Pleiner J, Schaller G, Mittermayer F, Marsik C, MacAllister RJ, Kapiotis S, Ziegler S, Ferlitsch A, Wolzt M. Intra-arterial vitamin C prevents endothelial dysfunction caused by ischemia-reperfusion. Atherosclerosis. 2008;197:383–391. doi: 10.1016/j.atherosclerosis.2007.06.011.
    1. Branger J, Blink B van den, Weijer S, Gupta A, van Deventer SJ, Hack CE, Peppelenbosch MP, Poll T van der. Inhibition of coagulation, fibrinolysis, and endothelial cell activation by a p38 mitogen-activated protein kinase inhibitor during human endotoxemia. Blood. 2003;101:4446–4448. doi: 10.1182/blood-2002-11-3338.
    1. Levi M, Poll T van der. Two-way interactions between inflammation and coagulation. Trends Cardiovasc Med. 2005;15:254–259. doi: 10.1016/j.tcm.2005.07.004.
    1. Heemskerk S, Pickkers P, Bouw MP, Draisma A, Hoeven JG van der, Peters WH, Smits P, Russel FG, Masereeuw R. Upregulation of renal inducible nitric oxide synthase during human endotoxemia and sepsis is associated with proximal tubule injury. Clin J Am Soc Nephrol. 2006;1:853–862. doi: 10.2215/CJN.00490206.
    1. Alexander JJ, Jacob A, Cunningham P, Hensley L, Quigg RJ. TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochem Int. 2008;52:447–456. doi: 10.1016/j.neuint.2007.08.006.
    1. Krabbe KS, Reichenberg A, Yirmiya R, Smed A, Pedersen BK, Bruunsgaard H. Low-dose endotoxemia and human neuropsychological functions. Brain Behav Immun. 2005;19:453–460. doi: 10.1016/j.bbi.2005.04.010.
    1. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmächer T. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry. 2001;58:445–452. doi: 10.1001/archpsyc.58.5.445.
    1. Dorresteijn MJ, van Eijk LT, Netea MG, Smits P, Hoeven JG van der, Pickkers P. Iso-osmolar prehydration shifts the cytokine response towards a more anti-inflammatory balance in human endotoxemia. J Endotoxin Res. 2005;11:287–293.
    1. Young GB, Bolton CF, Archibald YM, Austin TW, Wells GA. The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol. 1992;9:145–152. doi: 10.1097/00004691-199201000-00016.
    1. Spiegelberger CD, Gorsuch RL, Lushene RE. STAI manual for the state-trait anxiety inventory: self evaluation questionnaire. Palo Alto (CA): Consulting Psychologist Press; 1970.
    1. Matthews CG, Klove H. Instruction manual for the Adult Neuropsychology Test Battery. University of Wisonsin Medical School: Madison, WI; 1964.
    1. Uterwijk JMr. Wechsler Adult Intelligence Scale III - Nederlandstalige Bewerking (WAIS-III NL/V) Lisse: Swets Test Publishers; 2000.
    1. Gronwall DM. Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills. 1977;44:367–373.
    1. Golden CJ. Stroop colour and word test. Stoelting Co. Wood Dale (IL): Stoelting Co; 1978.
    1. Pickkers P, Sprong T, Eijk L, Hoeven H, Smits P, Deuren M. Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability. Shock. 2005;24:508–512. doi: 10.1097/01.shk.0000190827.36406.6e.
    1. Krabbe KS, Bruunsgaard H, Hansen CM, Moller K, Fonsmark L, Qvist J, Madsen PL, Kronborg G, Andersen HO, Skinhøj P, Pedersen BK. Ageing is associated with a prolonged fever response in human endotoxemia. Clin Diagn Lab Immunol. 2001;8:333–338.
    1. Ofek K, Krabbe KS, Evron T, Debecco M, Nielsen AR, Brunnsgaad H, Yirmiya R, Soreq H, Pedersen BK. Cholinergic status modulations in human volunteers under acute inflammation. J Mol Med. 2007;85:1239–1251. doi: 10.1007/s00109-007-0226-x.
    1. Dunser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24:293–316. doi: 10.1177/0885066609340519.
    1. Bourdeau I, Bard C, Forget H, Boulanger Y, Cohen H, Lacroix A. Cognitive function and cerebral assessment in patients who have Cushing's syndrome. Endocrinol Metab Clin North Am. 2005;34:357–369. doi: 10.1016/j.ecl.2005.01.016.
    1. Cavaillon JM, dib-Conquy M, Fitting C, Adrie C, Payen D. Cytokine cascade in sepsis. Scand J Infect Dis. 2003;35:535–544. doi: 10.1080/00365540310015935.
    1. van Eijk LT, Pickkers P, Smits P, van den BW, Bouw MP, Hoeven JG van der. Microvascular permeability during experimental human endotoxemia: an open intervention study. Crit Care. 2005;9:R157–R164. doi: 10.1186/cc3050.
    1. Ramlawi B, Rudolph JL, Mieno S, Khabbaz K, Sodha NR, Boodhwani M, Levkoff SE, Marcantonio ER, Sellke FW. Serologic markers of brain injury and cognitive function after cardiopulmonary bypass. Ann Surg. 2006;244:593–601.

Source: PubMed

3
Subscribe