NOn-invasive Vagus nerve stimulation in acute Ischemic Stroke (NOVIS): a study protocol for a randomized clinical trial

Anne van der Meij, Marianne A A van Walderveen, Nyika D Kruyt, Erik W van Zwet, Eric J Liebler, Michel D Ferrari, Marieke J H Wermer, Anne van der Meij, Marianne A A van Walderveen, Nyika D Kruyt, Erik W van Zwet, Eric J Liebler, Michel D Ferrari, Marieke J H Wermer

Abstract

Background: Secondary damage due to neurochemical and inflammatory changes in the penumbra in the first days after ischemic stroke contributes substantially to poor clinical outcome. In animal models, vagus nerve stimulation (VNS) inhibits these detrimental changes and thereby reduces tissue injury. The aim of this study is to investigate whether non-invasive cervical VNS (nVNS) in addition to the current standard treatment can improve penumbral recovery and limit final infarct volume.

Methods: NOVIS is a single-center prospective randomized clinical trial with blinded outcome assessment. One hundred fifty patients will be randomly allocated (1:1) within 12 h from clinical stroke onset to nVNS for 5 days in addition to standard treatment versus standard treatment alone. The primary endpoint is the final infarct volume on day 5 assessed with MRI.

Discussion: We hypothesize that nVNS will result in smaller final infarct volumes as compared to standard treatment due to improved penumbral recovery. The results of this study will be used to assess the viability and approach to power a larger trial to more definitively assess the clinical efficacy of nVNS after stroke.

Trial registration: ClinicalTrials.gov NCT04050501 . Registered on 8 August 2019.

Keywords: Acute ischemic stroke; Penumbra; Randomized controlled trial; Secondary damage; Spreading depolarizations; Vagus nerve stimulation.

Conflict of interest statement

EL is a full-time employee of electroCore Inc. and receives stock options. MF reports grants and consultancy or industry support from electroCore, Medtronic, Eli Lilly, Amgen, Novartis, and TEVA, and independent support from The Netherlands Organization for Scientific Research (NWO), The Netherlands Organization for Health Research and Development (ZonMW), The Dutch Brain and Heart Foundations, The Dutch Ministry of Health, and The NutsOhra Foundation from the Dutch Insurance Companies. The other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Trial logo

References

    1. Wardlaw JM, Murray V, Berge E, et al. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev. 2014:Cd000213. 10.1002/14651858.CD000213.pub3.
    1. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387:1723–1731. doi: 10.1016/s0140-6736(16)00163-x.
    1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360. doi: 10.1161/cir.0000000000000350.
    1. Rai AT, Seldon AE, Boo S, et al. A population-based incidence of acute large vessel occlusions and thrombectomy eligible patients indicates significant potential for growth of endovascular stroke therapy in the USA. J Neurointerv Surg. 2017;9:722–726. doi: 10.1136/neurintsurg-2016-012515.
    1. Hankey GJ. Stroke. Lancet. 2017;389:641–654. doi: 10.1016/s0140-6736(16)30962-x.
    1. Heiss WD. The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci. 2012;1268, 26:–34. 10.1111/j.1749-6632.2012.06668.x.
    1. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17:439–447. doi: 10.1038/nm.2333.
    1. Nakamura H, Strong AJ, Dohmen C, et al. Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions. Brain. 2010;133:1994–2006. doi: 10.1093/brain/awq117.
    1. Hartings JA, Shuttleworth CW, Kirov SA, et al. The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J Cerebral Blood Flow Metab. 2017;37:1571–1594. doi: 10.1177/0271678x16654495.
    1. Cai PY, Bodhit A, Derequito R, et al. Vagus nerve stimulation in ischemic stroke: old wine in a new bottle. Front Neurol. 2014;5:107. doi: 10.3389/fneur.2014.00107.
    1. Yang Y, Yang LY, Orban L, et al. Non-invasive vagus nerve stimulation reduces blood-brain barrier disruption in a rat model of ischemic stroke. Brain Stimul. 2018. 10.1016/j.brs.2018.01.034.
    1. Chen SP, Ay I, de Morais AL, et al. Vagus nerve stimulation inhibits cortical spreading depression. Pain. 2016;157:797–805. doi: 10.1097/j.pain.0000000000000437.
    1. Ay I, Nasser R, Simon B, et al. Transcutaneous cervical vagus nerve stimulation ameliorates acute ischemic injury in rats. Brain Stimul. 2016;9:166–173. doi: 10.1016/j.brs.2015.11.008.
    1. Sun Z, Baker W, Hiraki T, et al. The effect of right vagus nerve stimulation on focal cerebral ischemia: an experimental study in the rat. Brain Stimul. 2012;5:1–10. doi: 10.1016/j.brs.2011.01.009.
    1. Hiraki T, Baker W, Greenberg JH. Effect of vagus nerve stimulation during transient focal cerebral ischemia on chronic outcome in rats. J Neurosci Res. 2012;90:887–894. doi: 10.1002/jnr.22812.
    1. Banks JL, Marotta CA. Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke. 2007;38:1091–1096. doi: 10.1161/01.STR.0000258355.23810.c6.
    1. van Os HJ, Mulder IA, van der Schaaf IC, et al. Role of atherosclerosis, clot extent, and penumbra volume in headache during ischemic stroke. Neurology. 2016;87:1124–1130. doi: 10.1212/wnl.0000000000003092.
    1. Bjelland I, Dahl AA, Haug TT, et al. The validity of the Hospital Anxiety and Depression Scale. An updated literature review. J Psychosom Res. 2002;52:69–77. doi: 10.1016/S0022-3999(01)00296-3.
    1. Barber M, Stott DJ. Validity of the Telephone Interview for Cognitive Status (TICS) in post-stroke subjects. Int J Geriatric Psychiatry. 2004;19:75–79. doi: 10.1002/gps.1041.
    1. Herdman M, Gudex C, Lloyd A, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L) Qual Life Res. 2011;20:1727–1736. doi: 10.1007/s11136-011-9903-x.
    1. Sarraj A, Hassan AE, Savitz S, et al. Outcomes of endovascular thrombectomy vs medical management alone in patients with large ischemic cores: a secondary analysis of the Optimizing Patient’s Selection for Endovascular Treatment in Acute Ischemic Stroke (SELECT) study. JAMA Neurol. 2019. 10.1001/jamaneurol.2019.2109.
    1. Berkhemer OA, Fransen PS, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:11–20. doi: 10.1056/NEJMoa1411587.
    1. DeGiorgio CM, Schachter SC, Handforth A, et al. Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures. Epilepsia. 2000;41:1195–1200. doi: 10.1111/j.1528-1157.2000.tb00325.x.
    1. Morris GL, 3rd, Gloss D, Buchhalter J, et al. Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2013;81:1453–1459. doi: 10.1212/WNL.0b013e3182a393d1.
    1. Howland RH. Vagus nerve stimulation. Curr Behav Neurosci Rep. 2014;1:64–73. doi: 10.1007/s40473-014-0010-5.
    1. Gaul C, Diener HC, Silver N, et al. Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): a randomised controlled study. Cephalalgia. 2016;36:534–546. doi: 10.1177/0333102415607070.
    1. Goadsby PJ, de Coo IF, Silver N, et al. Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: a randomized, double-blind, sham-controlled ACT2 study. Cephalalgia. 2018;38:959–969. doi: 10.1177/0333102417744362.
    1. Tassorelli C, Grazzi L, de Tommaso M, et al. Noninvasive vagus nerve stimulation as acute therapy for migraine: the randomized PRESTO study. Neurology. 2018;91:e364–e373. doi: 10.1212/wnl.0000000000005857.
    1. Dawson J, Pierce D, Dixit A, et al. Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke. 2016;47:143–150. doi: 10.1161/strokeaha.115.010477.
    1. Capone F, Miccinilli S, Pellegrino G, et al. Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plasticity. 2017;2017:7876507. doi: 10.1155/2017/7876507.
    1. Redgrave JN, Moore L, Oyekunle T, et al. Transcutaneous auricular vagus nerve stimulation with concurrent upper limb repetitive task practice for poststroke motor recovery: a pilot study. J Stroke Cerebrovasc Dis. 2018;27:1998–2005. doi: 10.1016/j.jstrokecerebrovasdis.2018.02.056.
    1. Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708–718. doi: 10.1056/NEJMoa1713973.
    1. Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378:11–21. doi: 10.1056/NEJMoa1706442.
    1. Ma H, Campbell BCV, Parsons MW, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380:1795–1803. doi: 10.1056/NEJMoa1813046.
    1. Albers GW. Use of imaging to select patients for late window endovascular therapy. Stroke. 2018;49:2256–2260. doi: 10.1161/strokeaha.118.021011.
    1. Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magnet Resonance Imaging. 2010;32:1024–1037. doi: 10.1002/jmri.22338.

Source: PubMed

3
Subscribe