Effects of fluid overload on heart rate variability in chronic kidney disease patients on hemodialysis

Manuela Ferrario, Ulrich Moissl, Francesco Garzotto, Dinna N Cruz, Anna Clementi, Alessandra Brendolan, Ciro Tetta, Emanuele Gatti, Maria G Signorini, Sergio Cerutti, Claudio Ronco, Manuela Ferrario, Ulrich Moissl, Francesco Garzotto, Dinna N Cruz, Anna Clementi, Alessandra Brendolan, Ciro Tetta, Emanuele Gatti, Maria G Signorini, Sergio Cerutti, Claudio Ronco

Abstract

Background: While fluid overload (FO) and alterations in the autonomic nervous system (ANS) such as hypersympathetic activity, are known risk factors for cardiovascular morbidity and mortality in patients on chronic hemodialysis (HD), their relationship has not been thoroughly studied.

Methods: In this observational study involving 69 patients on chronic HD, FO was assessed by whole body bioimpedance measurements before the midweek HD session and ANS activity reflected by Heart Rate Variability (HRV) was measured using 24-hour Holter electrocardiogram recordings starting before the same HD treatment. In total, 13 different HRV indices were analyzed, comprising a mixture of time domain, frequency domain and complexity parameters. A correlation analysis was performed between the HRV indices and hydration status indices. Successively, patients were retrospectively assigned to a high FO (H, FO > 2.5 L) or low FO (L, FO ≤ 2.5 L) group and these were further compared also after stratification by diabetes mellitus. Finally, a small number of patients without diabetes with significant and persistent FO were followed up for 3 months post-study to investigate how normalization of fluid status affects HRV.

Results: SDANN, VLF, LZC and HF% parameters significantly correlate with FO (correlation coefficients were respectively r = -0.40, r = -0.37, r = -0.28 and r = 0.26, p-value < 0.05). Furthermore, LF% and LF/HF were inversely correlated with hydration status (correlation coefficients were respectively r = -0.31 and r = -0.33, p-value < 0.05). These results indicate an association between FO and reduced HRV, higher parasympathetic activation and reduced sympathetic response to the HD session. Indeed, group H tended to have lower values of SDANN, VLF and LZC, and higher values of HF% than patients in the L group. Finally, there was a trend towards lower LF% measured during the last 30 minutes of HD for the H group versus the L group. Reduction in FO achieved over 3 months by implementation of a strict fluid management plan resulted in an increase of HRV.

Conclusions: Our results suggest that depressed HRV is associated with fluid overload and that normalization of hydration status is accompanied by improved HRV.

Figures

Figure 1
Figure 1
Study flow chart.
Figure 2
Figure 2
HRV indices that significantly correlated with FO/ECW% index during the first 30 minutes of HD treatment. Figures A, B, C and D depict the results of the correlation analysis with the regression lines for all 69 patients for SDANN, VLF, HF% and LZC (3,0.01) indices, and the correlation coefficients were r = –0.39, r = –0.39, r = 0.29 and r = –0.26, respectively. The histograms of HRV parameter distributions are shown on the left of each panel.
Figure 3
Figure 3
Diabetes stratified results for FO/ECW% correlations with HRV indices. Diabetes stratified results for FO/ECW% correlations with SDANN, LF% and LZC (2,0.05) indices estimated during the last 30 min of HD treatment (panel A, B and C respectively). Regression lines are portrayed for diabetic patients (D pts) and non-diabetic patients (non D pts) separately. Statistically significant correlations were only obtained for non-diabetic patients and the correlation coefficients of SDANN, LF% and LZC (2,0.05) indices were r = –0.32, r = –0.43 and r = –0.34, respectively. The histograms of HRV parameter distributions are shown on the left of each panel.

References

    1. National Institutes of Health. USRDS 2008 Annual Data Report. Bethesda, MD: US Renal Data System; 2008.
    1. Seibert E, Müller SG, Fries P, Pattmöller J, Kuss O, Heine GH, Girndt M, Schneider G, Kotanko P, Zhu F, Levin NW, Kuhlmann MK. Calf bioimpedance spectroscopy for determination of dry weight in hemodialysis patients: effects on hypertension and left ventricular hypertrophy. Kidney Blood Press Res. 2013;37(1):58–67. doi: 10.1159/000343400.
    1. Katz AM. In: The Heart and Cardiovascular System. Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, editor. New York: Raven Press; 1992. Heart failure.
    1. Wizemann V, Schilling M. Dilemma of assessing volume state–the use and the limitations of a clinical score. Nephrol Dial Transplant. 1995;10(11):2114–2117.
    1. Wizemann V, Leibinger A, Mueller K, Nilson A. Influence of hydration state on plasma volume changes during ultrafiltration. Artif Organs. 1995;19(5):416–419. doi: 10.1111/j.1525-1594.1995.tb02352.x.
    1. Scribner BH, Buri R, Caner JE, Hegstrom R, Burnell JM. The treatment of chronic uremia by means of intermittent hemodialysis: a preliminary report. J Am Soc Nephrol. 1998;9(4):719–726.
    1. Wizemann V, Wabel P, Chamney P, Zaluska W, Moissl U, Rode C, Malecka-Masalska T, Marcelli D. The mortality risk of overhydration in haemodialysis patients. Nephrol Dial Transplant. 2009;24(5):1574–1579. doi: 10.1093/ndt/gfn707.
    1. Schwartz PJ, Priori SG. In: From Cell to Bedside. Cardiac Electrophysiology. Zipes DP, Jalife J, editor. Philadelphia: W.B. Saunders; 1990. Sympathetic nervous system and cardiac arrhythmias.
    1. Levy MN, Schwartz PJ. Vagal control of the heart: experimental basis and clinical implications. Armonk, NY: Futura Publishing; 1994.
    1. Hildreth CM. Prognostic indicators of cardiovascular risk in renal disease. Front Physiol. 2011;2:121.
    1. Converse RL Jr, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912–1918. doi: 10.1056/NEJM199212313272704.
    1. Agarwal A, Anand IS, Sakhuja V, Chugh KS. Effect of dialysis and renal transplantation on autonomic dysfunction in chronic renal failure. Kidney Int. 1991;40(3):489–495. doi: 10.1038/ki.1991.236.
    1. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59(2):178–193. doi: 10.1161/01.RES.59.2.178.
    1. Cooke WH, Ryan KL, Convertino VA. Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans. J Appl Physiol. 1985;96(4):1249–1261.
    1. Ligtenberg G, Blankestijn PJ, Koomans HA. Hemodynamic response during lower body negative pressure: role of volume status. J Am Soc Nephrol. 1998;9:105–113.
    1. Pawelczyk JA, Raven PB. Reductions in central venous pressure improve carotid baroreflex responses in conscious men. Am J Physiol. 1989;257(5 Pt 2):H1389–H1395.
    1. Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation. 1994;90(4):1826–1831. doi: 10.1161/01.CIR.90.4.1826.
    1. Crandall CG, Engelke KA, Convertino VA, Raven PB. Aortic baroreflex control of heart rate after 15 days of simulated microgravity exposure. J Appl Physiol. 1994;77(5):2134–2139.
    1. Rothe CF, Friedman JJ. In: Physiology. 3. Selkurt EE, editor. Boston: Little, Brown and Company; 1971. Control of the cardiovascular system; p. 372.
    1. Wabel P, Moissl U, Chamney P. Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload. Nephrol Dial Transplant. 2008;23(9):2965–2971. doi: 10.1093/ndt/gfn228.
    1. Wieskotten S, Heinke S, Wabel P, Moissl U, Becker J, Pirlich M, Keymling M, Isermann R. Bioimpedance-based identification of malnutrition using fuzzy logic. Physiol Meas. 2008;29(5):639–654. doi: 10.1088/0967-3334/29/5/009.
    1. Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A, Korth O, Müller MJ, Ellegård L, Malmros V, Kaitwatcharachai C, Kuhlmann MK, Zhu F, Fuller NJ. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas. 2006;27(9):921–933. doi: 10.1088/0967-3334/27/9/012.
    1. Chamney PW, Wabel P, Moissl UM, Müller MJ, Bosy-Westphal A, Korth O, Fuller NJ. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am J Clin Nutr. 2007;85(1):80–89.
    1. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):1043–1065. doi: 10.1161/01.CIR.93.5.1043.
    1. Ferrario M, Signorini MG, Magenes G. Complexity analysis of the fetal heart rate variability: early identification of severe intrauterine growth-restricted fetuses. Med Biol Eng Comput. 2009;47(9):911–919. doi: 10.1007/s11517-009-0502-8.
    1. Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Correlations among time and frequency domain measures of heart period variability two weeks after acute myocardial infarction. Am J Cardiol. 1992;69(9):891–898. doi: 10.1016/0002-9149(92)90788-Z.
    1. Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Schneider WJ, Stein PK. RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation. 1995;91(7):1936–1943. doi: 10.1161/01.CIR.91.7.1936.
    1. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84(2):482–492. doi: 10.1161/01.CIR.84.2.482.
    1. Kamath MV, Fallen EL. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng. 1993;21(3):245–311.
    1. Fantoni C, Raffa S, Regoli F, Giraldi F, La Rovere MT, Prentice J, Pastori F, Fratini S, Salerno-Uriarte JA, Klein HU, Auricchio A. Cardiac resynchronization therapy improves heart rate profile and heart rate variability of patients with moderate to severe heart failure. J Am Coll Cardiol. 2005;46(10):1875–1882. doi: 10.1016/j.jacc.2005.06.081.
    1. Huikuri HV, Perkiömäki JS, Maestri R, Pinna GD. Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philos Transact A Math Phys Eng Sci. 2009;367(1892):1223–1238. doi: 10.1098/rsta.2008.0294.
    1. Maestri R, Pinna GD, Accardo A, Allegrini P, Balocchi R, D’Addio G, Ferrario M, Menicucci D, Porta A, Sassi R, Signorini MG, La Rovere MT, Cerutti S. Nonlinear indices of heart rate variability in chronic heart failure patients: redundancy and comparative clinical value. J Cardiovasc Electrophysiol. 2007;18(4):425–433. doi: 10.1111/j.1540-8167.2007.00728.x.
    1. Chan CT. Heart rate variability in patients with end-stage renal disease: an emerging predictive tool for sudden cardiac death? Nephrol Dial Transplant. 2008;23(10):3061–3062. doi: 10.1093/ndt/gfn280.
    1. Fukuta H, Hayano J, Ishihara S, Sakata S, Ohte N, Takahashi H, Yokoya M, Toriyama T, Kawahara H, Yajima K, Kobayashi K, Kimura G. Prognostic value of heart rate variability in patients with end-stage renal disease on chronic haemodialysis. Nephrol Dial Transplant. 2003;18(2):318–325. doi: 10.1093/ndt/18.2.318.
    1. Cavalcanti S, Severi S, Chiari L, Avanzolini G, Enzmann G, Bianco G, Panzetta G. Autonomic nervous function during haemodialysis assessed by spectral analysis of heart-rate variability. Clin Sci (Lond) 1997;92(4):351–359.
    1. Rubinger D, Revis N, Pollak A, Luria MH, Sapoznikov D. Predictors of haemodynamic instability and heart rate variability during haemodialysis. Nephrol Dial Transplant. 2004;19(8):2053–2060. doi: 10.1093/ndt/gfh306.
    1. Severi S, Ciandrini A, Grandi E, Cavalcanti S, Bini S, Badiali F, Gattiani A, Cagnoli L. Cardiac response to hemodialysis with different cardiovascular tolerance: heart rate variability and QT interval analysis. Hemodial Int. 2006;10(3):287–293. doi: 10.1111/j.1542-4758.2006.00110.x.
    1. Mylonopoulou M, Tentolouris N, Antonopoulos S, Mikros S, Katsaros K, Melidonis A, Sevastos N, Katsilambros N. Heart rate variability in advanced chronic kidney disease with or without diabetes: midterm effects of the initiation of chronic haemodialysis therapy. Nephrol Dial Transplant. 2010;25(11):3749–3754. doi: 10.1093/ndt/gfq226.
    1. Lindberg M, Wikström B, Lindberg P. Subgroups of haemodialysis patients in relation to fluid intake restrictions: a cluster analytical approach. J Clin Nurs. 2010;19(21–22):2997–3005.
    1. Freeman R, Saul JP, Roberts MS, Berger RD, Broadbridge C, Cohen RJ. Spectral analysis of heart rate in diabetic neuropathy. Arch Neurol. 1991;48:185–190. doi: 10.1001/archneur.1991.00530140079020.
    1. Vinik AI, Maser RE, Mitchell BD. et al.Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–1579. doi: 10.2337/diacare.26.5.1553.
    1. Pagani M, Malfatto G, Pierini S, Casati R, Masu AM, Poli M, Guzzetti S, Lombardi F, Cerutti S, Malliani A. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J Auton Nerv Syst. 1988;23(2):143–153. doi: 10.1016/0165-1838(88)90078-1.
    1. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension. 1999;34:724–728. doi: 10.1161/01.HYP.34.4.724.
    1. Signolet IL, Bousquet PP, Monassier LJ. Improvement of cardiac diastolic function by long-term centrally mediated sympathetic inhibition in one-kidney, one-clip hypertensive rabbits. Am J Hypertens. 2008;21(1):54–60. doi: 10.1038/ajh.2007.9.
    1. Hecking M, Karaboyas A, Antlanger M, Saran R, Wizemann V, Chazot C, Rayner H, Hörl WH, Pisoni RL, Robinson BM, Sunder-Plassmann G, Moissl U, Kotanko P, Levin NW, Säemann MD, Kalantar-Zadeh K, Port FK, Wabel P. Significance of Interdialytic weight gain versus chronic volume overload: consensus opinion. Am J Nephrol. 2013;38(1):78–90. doi: 10.1159/000353104.

Source: PubMed

3
Subscribe