Analysis of tumour-infiltrating lymphocytes reveals two new biologically different subgroups of breast ductal carcinoma in situ

Marie Beguinot, Marie-Melanie Dauplat, Fabrice Kwiatkowski, Guillaume Lebouedec, Lucie Tixier, Christophe Pomel, Frederique Penault-Llorca, Nina Radosevic-Robin, Marie Beguinot, Marie-Melanie Dauplat, Fabrice Kwiatkowski, Guillaume Lebouedec, Lucie Tixier, Christophe Pomel, Frederique Penault-Llorca, Nina Radosevic-Robin

Abstract

Background: Tumour-infiltrating lymphocytes (TILs) have been demonstrated to significantly influence prognosis and response to therapy of invasive breast cancer (IBC). Thus, it has been suggested that TIL density or/and immunophenotype could serve as biomarkers for selection of IBC patients for immunotherapy. However, much less is known about significance of TILs in breast ductal carcinoma in situ (DCIS).

Methods: We retrospectively investigated TIL density and immunophenotype in 96 pure DCIS and 35 microinvasive carcinomas (miCa). TIL density was assessed on H&E-stained breast biopsy sections as the percentage of tumour stromal area occupied by TILs, and classified into 4 grades: 0 (0%-9%), 1 (10-29%), 2 (30-49%) and 3 (50%-100%). TIL immunophenotype was assessed by immunohistochemistry for CD8, CD4, FoxP3, CD38 or CD20.

Results: Compared to pure DCIS, miCa contained significantly more cases with TIL density grade 3 (p = 0.028). Concordantly, CD8+, CD4+ and CD38+ cells were more numerous in miCa than in pure DCIS. In the pure DCIS subgroup with TIL density grades 2 and 3, all TIL subpopulations were more numerous than in the pure DCIS with TIL density grades 0 and 1, however the ratio between T-lymphocytes (CD8+ and CD4+) and B-lymphocytes (CD20+) was significantly lower (p = 0.029). On the other side, this ratio was significantly higher in miCa, in comparison with pure DCIS having TIL density grades 2 and 3 (p = 0.017). By cluster analysis of tumour cell pathobiological features we demonstrated similarity between miCa and the pure DCIS with TIL density grades 2 and 3. The only significant difference between those two categories was in the ratio of T- to B-TILs, higher in miCa.

Conclusion: Results indicate that TIL density level can distinguish 2 biologically different DCIS subgroups, one of which (DCIS with ≥30% TILs, the TIL-rich DCIS) is like miCa. Similarity of TIL-rich pure DCIS and miCa as well as the role of B-lymphocytes in DCIS invasiveness are worth further investigating with regards to the potential development of immunotherapy-based prevention of DCIS progression.

Keywords: breast; cancer; ductal; in situ; lymphocytes; microinvasive.

Conflict of interest statement

Ethics approval and consent to participate

All patients whose tissue and clinical data were used for this study have signed, already at admission to the Jean Perrin Cancer Centre, that they agree with the use of their tissues and clinical data for research purposes. The study presented in this article was approved by Comité d’Ethique des Centres d’Investigation Clinique de l’inter-région Rhône-Alpes-Auvergne. Approval reference: 00005921/CE-CIC-GREN-17-14.

Consent for publication

Not applicable.

Competing interests

The authors declare having no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Examples of TIL density grades. a) a case representing TIL density grade 0 (TILs are estimated to occupy 2% of the stromal area). H&E, original magnification 4×, scale bar 250 μm; b) a case representing TIL density grade 1 (TILs are estimated to occupy 20% of the stromal area). H&E, original magnification 5×, scale bar 200 μm; c) a case representing TIL density grade 2 (TILs are estimated to occupy 40% of the stromal area). H&E, original magnification 5×, scale bar 200 μm; d) a case representing TIL density grade 3 (TILs are estimated to occupy 60% of the stromal area). H&E, original magnification 5×, scale bar 200 μm. The circles show the areas sampled for tissue microarray construction
Fig. 2
Fig. 2
Cluster analysis of distribution of TIL-based subcategories according to the tumour cell pathobiological characteristics. Red colour represents higher values/presence of a parameter; green colour represents lower values/absence of a parameter. For molecular subtypes: green = luminal, brown = HER2+, red = triple negative. The numbers in blue, green and orange are IDs of the cases analysed

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30. doi: 10.3322/caac.21332.
    1. Hoffman AW, Ibarra-Drendall C, Espina V, Liotta L, Seewaldt V. Ductal carcinoma in situ: challenges, opportunities, and uncharted waters. Am Soc Clin Oncol Educ Book. 2012:40–4.
    1. Morrow M, Schnitt SJ, Norton L. Current management of lesions associated with an increased risk of breast cancer. Nat Rev Clin Oncol. 2015;12(4):227–238. doi: 10.1038/nrclinonc.2015.8.
    1. Pang JM, Gorringe KL, Fox SB. Ductal carcinoma in situ - update on risk assessment and management. Histopathology. 2016;68(1):96–109. doi: 10.1111/his.12796.
    1. Spira A, Disis ML, Schiller JT, Vilar E, Rebbeck TR, Bejar R, Ideker T, Arts J, Yurgelun MB, Mesirov JP, et al. Leveraging premalignant biology for immune-based cancer prevention. Proc Natl Acad Sci U S A. 2016;113(39):10750–10758. doi: 10.1073/pnas.1608077113.
    1. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, Loi S. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol. 2016;13(4):228–241. doi: 10.1038/nrclinonc.2015.215.
    1. Pusztai L, Karn T, Safonov A, Abu-Khalaf MM, Bianchini G. New strategies in breast cancer: immunotherapy. Clin Cancer Res. 2016;22(9):2105–2110. doi: 10.1158/1078-0432.CCR-15-1315.
    1. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH. In: WHO classification of Tumours of the breast. 4. Van de Vijver MJ, editor. Lyon: IARC Press; 2012.
    1. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014. Ann Oncol. 2015;26(2):259–271. doi: 10.1093/annonc/mdu450.
    1. Allred DC, Harvey JM, Berardo M, Clark GM. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11(2):155–168.
    1. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138(2):241–256. doi: 10.5858/arpa.2013-0953-SA.
    1. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ, Panel M. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer. Ann Oncol 2011. 2011;22(8):1736–1747.
    1. Kwiatkowski F, Girard M, Hacene K, Berlie J. Sem: a suitable statistical software adaptated for research in oncology. Bull Cancer. 2000;87(10):715–721.
    1. Lee AH, Happerfield LC, Bobrow LG, Millis RR. Angiogenesis and inflammation in ductal carcinoma in situ of the breast. J Pathol. 1997;181(2):200–206. doi: 10.1002/(SICI)1096-9896(199702)181:2<200::AID-PATH726>;2-K.
    1. Hussein MR, Hassan HI. Analysis of the mononuclear inflammatory cell infiltrate in the normal breast, benign proliferative breast disease, in situ and infiltrating ductal breast carcinomas: preliminary observations. J Clin Pathol. 2006;59(9):972–977. doi: 10.1136/jcp.2005.031252.
    1. Lal A, Chan L, Devries S, Chin K, Scott GK, Benz CC, Chen YY, Waldman FM, Hwang ES. FOXP3-positive regulatory T lymphocytes and epithelial FOXP3 expression in synchronous normal, ductal carcinoma in situ, and invasive cancer of the breast. Breast Cancer Res Treat. 2013;139(2):381–390. doi: 10.1007/s10549-013-2556-4.
    1. Thompson E, Taube JM, Elwood H, Sharma R, Meeker A, Warzecha HN, Argani P, Cimino-Mathews A, Emens LA. The immune microenvironment of breast ductal carcinoma in situ. Mod Pathol. 2016;29(3):249–258. doi: 10.1038/modpathol.2015.158.
    1. Campbell MJ, Baehner F, O'Meara T, Ojukwu E, Han B, Mukhtar R, Tandon V, Endicott M, Zhu Z, Wong J, et al. Characterizing the immune microenvironment in high-risk ductal carcinoma in situ of the breast. Breast Cancer Res Treat. 2016;
    1. Black MM, Zachrau RE, Hankey BF, Feuer EJ. Prognostic significance of in situ carcinoma associated with invasive breast carcinoma. A natural experiment in cancer immunology? Cancer. 1996;78(4):778–788. doi: 10.1002/(SICI)1097-0142(19960815)78:4<778::AID-CNCR14>;2-S.
    1. Ben-Hur H, Cohen O, Schneider D, Gurevich P, Halperin R, Bala U, Mozes M, Zusman I. The role of lymphocytes and macrophages in human breast tumorigenesis: an immunohistochemical and morphometric study. Anticancer Res. 2002;22(2B):1231–1238.
    1. Morita M, Yamaguchi R, Tanaka M, Tse GM, Yamaguchi M, Otsuka H, Kanomata N, Minami S, Eguchi S, Yano H. Two progressive pathways of microinvasive carcinoma: low-grade luminal pathway and high-grade HER2 pathway based on high tumour-infiltrating lymphocytes. J Clin Pathol. 2016;
    1. Hartman ZC, Yang XY, Glass O, Lei G, Osada T, Dave SS, Morse MA, Clay TM, Lyerly HK. HER2 overexpression elicits a proinflammatory IL-6 autocrine signaling loop that is critical for tumorigenesis. Cancer Res. 2011;71(13):4380–4391. doi: 10.1158/0008-5472.CAN-11-0308.
    1. Vazquez MI, Catalan-Dibene J, Zlotnik A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine. 2015;74(2):318–326. doi: 10.1016/j.cyto.2015.02.007.
    1. Walter M, Liang S, Ghosh S, Hornsby PJ, Li R. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene. 2009;28(30):2745–2755. doi: 10.1038/onc.2009.130.
    1. Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and inflammation: new insights into breast cancer development and progression. Am Soc Clin Oncol Educ Book. 2013:46–51.
    1. Jiang X, Shapiro DJ. The immune system and inflammation in breast cancer. Mol Cell Endocrinol. 2014;382(1):673–682. doi: 10.1016/j.mce.2013.06.003.
    1. Coronella JA, Telleman P, Kingsbury GA, Truong TD, Hays S, Junghans RP. Evidence for an antigen-driven humoral immune response in medullary ductal breast cancer. Cancer Res. 2001;61(21):7889–7899.
    1. Chen YT, Ross DS, Chiu R, Zhou XK, Chen YY, Lee P, Hoda SA, Simpson AJ, Old LJ, Caballero O, et al. Multiple cancer/testis antigens are preferentially expressed in hormone-receptor negative and high-grade breast cancers. PLoS One. 2011;6(3):e17876. doi: 10.1371/journal.pone.0017876.
    1. Ademuyiwa FO, Bshara W, Attwood K, Morrison C, Edge SB, Karpf AR, James SA, Ambrosone CB, O'Connor TL, Levine EG, et al. NY-ESO-1 cancer testis antigen demonstrates high immunogenicity in triple negative breast cancer. PLoS One. 2012;7(6):e38783. doi: 10.1371/journal.pone.0038783.
    1. Wang H, Sang M, Geng C, Liu F, Gu L, Shan B. MAGE-A is frequently expressed in triple negative breast cancer and associated with epithelial-mesenchymal transition. Neoplasma. 2016;63(1):44–56. doi: 10.4149/neo_2016_006.
    1. Luen S, Virassamy B, Savas P, Salgado R, Loi S. The genomic landscape of breast cancer and its interaction with host immunity. Breast. 2016;29:241–250. doi: 10.1016/j.breast.2016.07.015.
    1. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–336. doi: 10.1038/ni904.
    1. Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 2012;72(9):2162–2171. doi: 10.1158/0008-5472.CAN-11-3687.
    1. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25. doi: 10.1016/j.coi.2014.01.004.
    1. Yang M, Moriya T, Oguma M, De La Cruz C, Endoh M, Ishida T, Hirakawa H, Orita Y, Ohuchi N, Sasano H. Microinvasive ductal carcinoma (T1mic) of the breast. The clinicopathological profile and immunohistochemical features of 28 cases. Pathol Int. 2003;53(7):422–428. doi: 10.1046/j.1440-1827.2003.01498.x.
    1. Mori M, Tsugawa K, Yamauchi H, Yagata H, Suzuki K, Ohde S, Soejima K, Nakamura S. Pathological assessment of microinvasive carcinoma of the breast. Breast Cancer. 2013;20(4):331–335. doi: 10.1007/s12282-012-0339-0.
    1. Silver SA, Tavassoli FA. Mammary ductal carcinoma in situ with microinvasion. Cancer. 1998;82(12):2382–2390. doi: 10.1002/(SICI)1097-0142(19980615)82:12<2382::AID-CNCR12>;2-L.
    1. Margalit DN, Sreedhara M, Chen YH, Catalano PJ, Nguyen PL, Golshan M, Overmoyer BA, Harris JR, Brock JE. Microinvasive breast cancer: ER, PR, and HER-2/neu status and clinical outcomes after breast-conserving therapy or mastectomy. Ann Surg Oncol. 2013;20(3):811–818. doi: 10.1245/s10434-012-2640-8.
    1. Wang L, Zhang W, Lyu S, Liu X, Zhang T, Liu S, Qin Y, Tian X, Niu Y. Clinicopathologic characteristics and molecular subtypes of microinvasive carcinoma of the breast. Tumour Biol. 2015;36(4):2241–2248. doi: 10.1007/s13277-014-2652-z.
    1. Solin LJ, Fowble BL, Yeh IT, Kowalyshyn MJ, Schultz DJ, Weiss MC, Goodman RL. Microinvasive ductal carcinoma of the breast treated with breast-conserving surgery and definitive irradiation. Int J Radiat Oncol Biol Phys. 1992;23(5):961–968. doi: 10.1016/0360-3016(92)90900-3.
    1. de Mascarel I, MacGrogan G, Mathoulin-Pelissier S, Soubeyran I, Picot V, Coindre JM. Breast ductal carcinoma in situ with microinvasion: a definition supported by a long-term study of 1248 serially sectioned ductal carcinomas. Cancer. 2002;94(8):2134–2142. doi: 10.1002/cncr.10451.
    1. Kuhar CG, Matos E. Human epidermal growth factor receptor 2-positive microinvasive breast carcinoma with a highly aggressive course: a case report. BMC Res Notes. 2014;7:325. doi: 10.1186/1756-0500-7-325.

Source: PubMed

3
Subscribe