Nuciferine Inhibits Proinflammatory Cytokines via the PPARs in LPS-Induced RAW264.7 Cells

Chao Zhang, Jianjun Deng, Dan Liu, Xingxia Tuo, Yan Yu, Haixia Yang, Nanping Wang, Chao Zhang, Jianjun Deng, Dan Liu, Xingxia Tuo, Yan Yu, Haixia Yang, Nanping Wang

Abstract

Inflammation is important and has been found to be an underlying cause in many acute and chronic human diseases. Nuciferine, a natural alkaloid containing an aromatic ring, is found in the nelumbo nucifera leaves. It has been shown to have potential anti-inflammatory activities, but the molecular mechanism has remained unclear. In this study, we found that nuciferine (10 μM) significantly inhibited the lipopolysaccharide (LPS)-induced inflammatory cytokine IL-6 and TNF-α production in RAW 264.7 cells. In addition, the luciferase reporter assay results of different subtypes of the peroxisome proliferator-activated receptor (PPAR) showed that nuciferine dose-dependently activated all the PPAR activities. Specific inhibitors of PPARα and PPARγ significantly abolished the production of inflammatory cytokines as well as IκBα degradation. However, PPARδ inhibitor did not show this effect. Our results suggested a potential molecular mechanism of the anti-inflammatory effects of nuciferine in LPS-induced inflammation, at least in part, by activating PPARα and PPARγ in RAW 264.7 cells.

Keywords: IL-6; PPARs; TNF-α; inflammation; nuciferine.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Cytotoxicity of Nuciferine on macrophage RAW264.7 cells. Cell viabilities of RAW264.7 cells treated with Nuciferine (0, 1, 3, 10 or 50 μM), for 24 h, were measured by MTT assay.
Figure 2
Figure 2
Nuciferine inhibits the LPS-induced TNFα and IL-6 production in RAW264.7 cells. RAW 264.7 cells were pretreated with nuciferine (0, 1, 10 or 50 μM for 24 h) and then stimulated with the LPS (500 ng/mL for 12 h), with a nuciferine withdrawal. (A,B) TNFα and IL-6 releases and (C,D) mRNA level of TNFα and IL-6, respectively. * p < 0.05 ** p < 0.01 vs. control, #p < 0. 05 ##p < 0.01 vs. LPS treatment.
Figure 3
Figure 3
Effect of Nuciferine on PPARs transcription activities. (AC) Luciferase reporter assay in RAW264.7 cells. (D) The relative mRNA expression of PPARs target genes. * p < 0.05 ** p < 0.01 vs. control.
Figure 4
Figure 4
Antagonist of PPARα and PPARγ abolished the effects of nuciferine on the LPS-induced TNFα and IL-6 production. RAW264.7 cells were pretreated with GW6417/GSK0660/GW9662, for 12 h, followed by the nuciferine incubation, for 24 h, and then stimulated with LPS for 12 h. (A,B) production of the IL-6 and the TNFα in a cell medium supernatant. (C,D) mRNA expression of IL-6 and TNFα. * p < 0.05 ** p < 0.01 vs. control. #p < 0.05, ##p < 0.01 vs. LPS treatment. $p < 0.05 vs. antagonist pretreatment followed by the LPS stimulation.
Figure 5
Figure 5
Anti-inflammatory effects of nuciferine on the LPS-induced inflammatory response, are PPARs dependent. RAW264.7 cells were pretreated with GW6417/GSK0660/GW9662, for 12 h, followed by the Nuciferine incubation and then stimulated by the LPS with a nuciferine withdrawal. Levels of the expression of IκBα were detected by Western blotting. * p < 0.05 vs. control group; #p < 0.05 vs. LPS group.

References

    1. Boteanu R.M., Suica V.I., Uyy E., Ivan L., Dima S.O., Popescu I., Simionescu M., Antohe F. Alarmins in chronic noncommunicable diseases: Atherosclerosis, diabetes and cancer. J. Proteomics. 2017;153:21–29. doi: 10.1016/j.jprot.2016.11.006.
    1. Laskin D.L., Pendino K.J. Macrophages and inflammatory mediators in tissue injury. Annu. Rev. Pharmacol. Toxicol. 1995;35:655–677. doi: 10.1146/annurev.pa.35.040195.003255.
    1. Moraes L.A., Piqueras L., Bishop-Bailey D. Peroxisome proliferator-activated receptors and inflammation. Pharmacol. Ther. 2006;110:371–385. doi: 10.1016/j.pharmthera.2005.08.007.
    1. Fan W., Evans R. PPARs and ERRs: Molecular mediators of mitochondrial metabolism. Curr. Opin. Cell Biol. 2015;33:49–54. doi: 10.1016/j.ceb.2014.11.002.
    1. Daynes R.A., Jones D.C. Emerging roles of PPARs in inflammation and immunity. Nat. Rev. Immunol. 2002;2:748–759. doi: 10.1038/nri912.
    1. He X., Liu W., Shi M., Yang Z., Zhang X., Gong P. Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARgamma/NF-κB pathways in primary bovine mammary epithelial cells. Res. Vet. Sci. 2017;112:7–12. doi: 10.1016/j.rvsc.2016.12.011.
    1. Flores-Bastías O., Karahanian E. Neuroinflammation produced by heavy alcohol intake is due to loops of interactions between Toll-like 4 and TNF receptors, peroxisome proliferator-activated receptors and the central melanocortin system: A novel hypothesis and new therapeutic avenues. Neuropharmacology. 2018;128:401–407. doi: 10.1016/j.neuropharm.2017.11.003.
    1. Sharma B.R., Gautam L.N., Adhikari D., Karki R. A Comprehensive Review on Chemical Profiling of Nelumbo Nucifera: Potential for Drug Development. Phytother. Res. 2017;31:3–26. doi: 10.1002/ptr.5732.
    1. Li Z., Liu J., Zhang D., Du X., Han L., Lv C., Li Y., Wang R., Wang B., Huang Y. Nuciferine and paeoniflorin can be quality markers of Tangzhiqing tablet, a Chinese traditional patent medicine, based on the qualitative, quantitative and dose-exposure-response analysis. Phytomedicine. 2018;44:155–163. doi: 10.1016/j.phymed.2018.02.006.
    1. Ma C., Li G., He Y., Xu B., Mi X., Wang H., Wang Z. Pronuciferine and nuciferine inhibit lipogenesis in 3T3-L1 adipocytes by activating the AMPK signaling pathway. Life Sci. 2015;136:120–125. doi: 10.1016/j.lfs.2015.07.001.
    1. Nguyen K.H., Ta T.N., Pham T.H., Nguyen Q.T., Pham H.D., Mishra S., Nyomba B.L. Nuciferine stimulates insulin secretion from beta cells-an in vitro comparison with glibenclamide. J. Ethnopharmacol. 2012;142:488–495. doi: 10.1016/j.jep.2012.05.024.
    1. Wang M.X., Liu Y.L., Yang Y., Zhang D.M., Kong L.D. Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Eur. J. Pharmacol. 2015;747:59–70. doi: 10.1016/j.ejphar.2014.11.035.
    1. Wang M.X., Zhao X.J., Chen T.Y., Liu Y.L., Jiao R.Q., Zhang J.H., Ma C., Liu J.H., Pan Y., Kong L.D. Nuciferine Alleviates Renal Injury by Inhibiting Inflammatory Responses in Fructose-Fed Rats. J. Agric. Food Chem. 2016 doi: 10.1021/acs.jafc.6b03031.
    1. Ohashi K., Munetsuna E., Yamada H., Ando Y., Yamazaki M., Taromaru N., Nagura A., Ishikawa H., Suzuki K., Teradaira R., et al. High fructose consumption induces DNA methylation at PPARalpha and CPT1A promoter regions in the rat liver. Biochem. Biophys. Res. Commun. 2015;468:185–189. doi: 10.1016/j.bbrc.2015.10.134.
    1. Zhao S., Kanno Y., Li W., Wakatabi H., Sasaki T., Koike K., Nemoto K., Li H. Picrasidine N Is a Subtype-Selective PPARβ/δ Agonist. J. Nat. Prod. 2016;79:879–885. doi: 10.1021/acs.jnatprod.5b00909.
    1. Zhong Q., Zhao S., Yu B., Wang X., Matyal R., Li Y., Jiang Z. High-density lipoprotein increases the uptake of oxidized low density lipoprotein via PPARgamma/CD36 pathway in inflammatory adipocytes. Int. J. Biol. Sci. 2015;11:256–265. doi: 10.7150/ijbs.10258.
    1. Bao W., Luo Y., Wang D., Li J., Wu X., Mei W. Sodium salicylate modulates inflammatory responses through AMP-activated protein kinase activation in LPS-stimulated THP-1 cells. J. Cell. Biochem. 2018;119:850–860. doi: 10.1002/jcb.26249.
    1. Wu Y., Xie G., Xu Y., Ma L., Tong C., Fan D., Du F., Yu H. PEP-1-MsrA ameliorates inflammation and reduces atherosclerosis in apolipoprotein E deficient mice. J. Transl. Med. 2015;13:316. doi: 10.1186/s12967-015-0677-8.
    1. Zhu F., Du B., Xu B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2018;58:1260–1270. doi: 10.1080/10408398.2016.1251390.
    1. Wu H., Yang Y., Guo S., Yang J., Jiang K., Zhao G., Qiu C., Deng G. Nuciferine Ameliorates Inflammatory Responses by Inhibiting the TLR4-Mediated Pathway in Lipopolysaccharide-Induced Acute Lung Injury. Front. Pharmacol. 2017;8:939. doi: 10.3389/fphar.2017.00939.
    1. Zhang D.D., Zhang J.G., Wu X., Liu Y., Gu S.Y., Zhu G.H., Wang Y.Z., Liu G.L., Li X.Y. Nuciferine downregulates Per-Arnt-Sim kinase expression during its alleviation of lipogenesis and inflammation on oleic acid-induced hepatic steatosis in HepG2 cells. Front. Pharmacol. 2015;6:238. doi: 10.3389/fphar.2015.00238.
    1. Liu W., Yi D.D., Guo J.L., Xiang Z.X., Deng L.F., He L. Nuciferine, extracted from Nelumbo nucifera Gaertn, inhibits tumor-promoting effect of nicotine involving Wnt/β-catenin signaling in non-small cell lung cancer. J. Ethnopharmacol. 2015;165:83–93. doi: 10.1016/j.jep.2015.02.015.
    1. Ma C., Wang J., Chu H., Zhang X., Wang Z., Wang H. Purification and characterization of aporphine alkaloids from leaves of Nelumbo nucifera Gaertn and their effects on glucose consumption in 3T3-L1 adipocytes. Int. J. Mol. Sci. 2014;15:3481–3494. doi: 10.3390/ijms15033481.
    1. Zhang C., Deng J., Liu D., Tuo X., Xiao L., Lai B., Yao Q., Liu J., Yang H., Wang N. Nuciferine ameliorates hepatic steatosis in high-fat diet/streptozocin-induced diabetic mice through a PPARalpha/PPARgamma coactivator-1alpha pathway. Br. J. Pharmacol. 2018 doi: 10.1111/bph.14482.
    1. Adhikary T., Wortmann A., Schumann T., Finkernagel F., Lieber S., Roth K., Toth P.M., Diederich W.E., Nist A., Stiewe T., et al. The transcriptional PPARβ/δ network in human macrophages defines a unique agonist-induced activation state. Nucleic Acids Res. 2015;43:5033–5051. doi: 10.1093/nar/gkv331.
    1. Yang W., Rachez C., Freedman L.P. Discrete roles for peroxisome proliferator-activated receptor gamma and retinoid X receptor in recruiting nuclear receptor coactivators. Mol. Cell. Biol. 2000;20:8008–8017. doi: 10.1128/MCB.20.21.8008-8017.2000.
    1. Bougarne N., Paumelle R., Caron S., Hennuyer N., Mansouri R., Gervois P., Staels B., Haegeman G., De Bosscher K. PPARα blocks glucocorticoid receptor α-mediated transactivation but cooperates with the activated glucocorticoid receptor α for transrepression on NF-κB. Proc. Natl. Acad. Sci. USA. 2009;106:7397–7402. doi: 10.1073/pnas.0806742106.
    1. Azuma Y.T., Nishiyama K., Matsuo Y., Kuwamura M., Morioka A., Nakajima H., Takeuchi T. PPARalpha contributes to colonic protection in mice with DSS-induced colitis. Int. Immunopharmacol. 2010;10:1261–1267. doi: 10.1016/j.intimp.2010.07.007.
    1. Barish G.D., Atkins A.R., Downes M., Olson P., Chong L.W., Nelson M., Zou Y., Hwang H., Kang H., Curtiss L., et al. PPARδ regulates multiple proinflammatory pathways to suppress atherosclerosis. Proc. Natl. Acad. Sci. USA. 2008;105:4271–4276. doi: 10.1073/pnas.0711875105.
    1. Yang H., Xiao L., Wang N. Peroxisome proliferator-activated receptor α ligands and modulators from dietary compounds: Types, screening methods and functions. J. Diabetes. 2017;9:341–352. doi: 10.1111/1753-0407.12506.
    1. Tak P.P., Firestein G.S. NF-κB: A key role in inflammatory diseases. J. Clin. Investig. 2001;107:7–11. doi: 10.1172/JCI11830.
    1. Hernandez-Rodas M.C., Valenzuela R., Echeverria F., Rincon-Cervera M.A., Espinosa A., Illesca P., Munoz P., Corbari A., Romero N., Gonzalez-Manan D., et al. Supplementation with Docosahexaenoic Acid and Extra Virgin Olive Oil Prevents Liver Steatosis Induced by a High-Fat Diet in Mice through PPAR-alpha and Nrf2 Upregulation with Concomitant SREBP-1c and NF-kB Downregulation. Mol. Nutr. Food Res. 2017;61 doi: 10.1002/mnfr.201700479.
    1. Silva-Veiga F.M., Rachid T.L., de Oliveira L., Graus-Nunes F., Mandarim-de-Lacerda C.A., Souza-Mello V. GW0742 (PPAR-β agonist) attenuates hepatic endoplasmic reticulum stress by improving hepatic energy metabolism in high-fat diet fed mice. Mol. Cell. Endocrinol. 2018;474:227–237. doi: 10.1016/j.mce.2018.03.013.
    1. Sharma S., Sharma P., Kulurkar P., Singh D., Kumar D., Patial V. Iridoid glycosides fraction from Picrorhiza kurroa attenuates cyclophosphamide-induced renal toxicity and peripheral neuropathy via PPAR-gamma mediated inhibition of inflammation and apoptosis. Phytomedicine. 2017;36:108–117. doi: 10.1016/j.phymed.2017.09.018.
    1. Imanifooladi A.A., Yazdani S., Nourani M.R. The role of nuclear factor-κB in inflammatory lung disease. Inflamm. Allergy-Drug Targets. 2010;9:197–205. doi: 10.2174/187152810792231904.
    1. Delerive P., Gervois P., Fruchart J.C., Staels B. Induction of IkappaBalpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators. J. Biol. Chem. 2000;275:36703–36707. doi: 10.1074/jbc.M004045200.
    1. Tolosa L., Donato M.T., Gomez-Lechon M.J. General Cytotoxicity Assessment by Means of the MTT Assay. Methods Mol. Biol. 2015;1250:333–348. doi: 10.1007/978-1-4939-2074-7_26.
    1. Cheung S.T., Shakibakho S., So E.Y., Mui A.L.F. Transfecting RAW264.7 Cells with a Luciferase Reporter Gene. J. Visualized Exp. 2015;100 doi: 10.3791/52807.
    1. Yang H., Xiao L., Yuan Y., Luo X., Jiang M., Ni J., Wang N. Procyanidin B2 inhibits NLRP3 inflammasome activation in human vascular endothelial cells. Biochem. Pharmacol. 2014;92:599–606. doi: 10.1016/j.bcp.2014.10.001.
    1. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262.

Source: PubMed

3
Subscribe