Phase I study to assess safety, biodistribution and radiation dosimetry for 89Zr-girentuximab in patients with renal cell carcinoma

Robin I J Merkx, Daphne Lobeek, Mark Konijnenberg, Luis David Jiménez-Franco, Andreas Kluge, Egbert Oosterwijk, Peter F A Mulders, Mark Rijpkema, Robin I J Merkx, Daphne Lobeek, Mark Konijnenberg, Luis David Jiménez-Franco, Andreas Kluge, Egbert Oosterwijk, Peter F A Mulders, Mark Rijpkema

Abstract

Purpose: In this phase I study, we evaluated the safety, biodistribution and dosimetry of [89Zr]Zr-DFO-girentuximab (89Zr-girentuximab) PET/CT imaging in patients with suspicion of clear cell renal cell carcinoma (ccRCC).

Methods: Ten eligible patients received an intravenous administration of 37 MBq (± 10%) of 89Zr-girentuximab at mass doses of 5 mg or 10 mg. Safety was evaluated according to the NCI CTCAE (version 4.03). Biodistribution and normal organ dosimetry was performed based on PET/CT images acquired at 0.5, 4, 24, 72 and 168 h post-administration. Additionally, tumour dosimetry was performed in patients with confirmed ccRCC and visible tumour uptake on PET/CT imaging.

Results: 89Zr-girentuximab was administered in ten patients as per protocol. No treatment-related adverse events ≥ grade 3 were reported. 89Zr-girentuximab imaging allowed successful differentiation between ccRCC and non-ccRCC lesions in all patients, as confirmed with histological data. Dosimetry analysis using OLINDA/EXM 2.1 showed that the organs receiving the highest doses (mean ± SD) were the liver (1.86 ± 0.40 mGy/MBq), the kidneys (1.50 ± 0.22 mGy/MBq) and the heart wall (1.45 ± 0.19 mGy/MBq), with a mean whole body effective dose of 0.57 ± 0.08 mSv/MBq. Tumour dosimetry was performed in the 6 patients with histologically confirmed ccRCC resulting in a median tumour-absorbed dose of 4.03 mGy/MBq (range 1.90-11.6 mGy/MBq).

Conclusions: This study demonstrates that 89Zr-girentuximab is safe and well tolerated for the administered activities and mass doses and allows quantitative assessment of 89Zr-girentuximab PET/CT imaging in patients with suspicion of ccRCC.

Trial registration: NCT03556046-14th of June, 2018.

Keywords: Girentuximab; Organ-based dosimetry; RCC; Zirconium-89.

Conflict of interest statement

Dr. Andreas Kluge is Chief Medical Advisor at Telix Pharmaceuticals.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
MIP of patient #8 (male 63 years. Mass dose of 10 mg girentuximab) demonstrating a ccRCC tumour in left kidney (red arrow) at 0.5 h p.a. with an increased tumour to background ratio over time. MIP, maximum intensity projection
Fig. 2
Fig. 2
a PET imaging (168 h p.a.; upper row). ceCT (middle row) and fused imaging (lower row) of patient #6 (male 57 years. Mass dose 10 mg girentuximab) showing 89Zr-girentuximab uptake in the adrenal gland (red dotted arrow). Left kidney (red arrowhead) and mediastinal lymph node (red arrow) from left to right. b The MIP of patient #6 at 168 h p.a.; p.a., post-administration; MIP, maximum intensity projection

References

    1. Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74–84. doi: 10.1016/j.eururo.2018.08.036.
    1. Keegan KA, Schupp CW, Chamie K, Hellenthal NJ, Evans CP, Koppie TM. Histopathology of surgically treated renal cell carcinoma: survival differences by subtype and stage. J Urol. 2012;188(2):391–397. doi: 10.1016/j.juro.2012.04.006.
    1. Saad AM, Gad MM, Al-Husseini MJ, Ruhban IA, Sonbol MB, Ho TH. Trends in renal-cell carcinoma incidence and mortality in the United States in the last 2 decades: a SEER-based study. Clin Genitourin Cancer. 2019;17(1):46–57.e5. doi: 10.1016/j.clgc.2018.10.002.
    1. Kim JH, Sun HY, Hwang J, Hong SS, Cho YJ, Doo SW, et al. Diagnostic accuracy of contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging of small renal masses in real practice: sensitivity and specificity according to subjective radiologic interpretation. World J Surg Oncol. 2016;14(1):260. doi: 10.1186/s12957-016-1017-z.
    1. Sanchez A, Feldman AS, Hakimi AA. Current management of small renal masses, including patient selection, renal tumor biopsy, active surveillance, and thermal ablation. Journal of Clinical Oncology. 2018;36(36):3591–3600. doi: 10.1200/jco.2018.79.2341.
    1. Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–1320. doi: 10.1126/science.8493574.
    1. Ivanov SV, Kuzmin I, Wei MH, Pack S, Geil L, Johnson BE, et al. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci U S A. 1998;95(21):12596–12601. doi: 10.1073/pnas.95.21.12596.
    1. Grabmaier K, Vissers JL, De Weijert MC, Oosterwijk-Wakka JC, Van Bokhoven A, Brakenhoff RH, et al. Molecular cloning and immunogenicity of renal cell carcinoma-associated antigen G250. Int J Cancer. 2000;85(6):865–870. doi: 10.1002/(sici)1097-0215(20000315)85:6<865::aid-ijc21>;2-q.
    1. Oosterwijk E, Ruiter DJ, Hoedemaeker PJ, Pauwels EK, Jonas U, Zwartendijk J, et al. Monoclonal antibody G 250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer. 1986;38(4):489–494. doi: 10.1002/ijc.2910380406.
    1. Muselaers CH, Boerman OC, Oosterwijk E, Langenhuijsen JF, Oyen WJ, Mulders PF. Indium-111-labeled girentuximab immunoSPECT as a diagnostic tool in clear cell renal cell carcinoma. Eur Urol. 2013;63(6):1101–1106. doi: 10.1016/j.eururo.2013.02.022.
    1. Divgi CR, Uzzo RG, Gatsonis C, Bartz R, Treutner S, Yu JQ, et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. Journal of Clinical Oncology. 2013;31(2):187–194. doi: 10.1200/jco.2011.41.2445.
    1. Hekman MCH, Rijpkema M, Aarntzen EH, Mulder SF, Langenhuijsen JF, Oosterwijk E, et al. Positron emission tomography/computed tomography with (89)Zr-girentuximab can aid in diagnostic dilemmas of clear cell renal cell carcinoma suspicion. Eur Urol. 2018;74(3):257–260. doi: 10.1016/j.eururo.2018.04.026.
    1. Cheal SM, Punzalan B, Doran MG, Evans MJ, Osborne JR, Lewis JS, et al. Pairwise comparison of 89Zr- and 124I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2014;41(5):985–994. doi: 10.1007/s00259-013-2679-1.
    1. Stillebroer AB, Franssen GM, Mulders PF, Oyen WJ, van Dongen GA, Laverman P, et al. ImmunoPET imaging of renal cell carcinoma with (124)I- and (89)Zr-labeled anti-CAIX monoclonal antibody cG250 in mice. Cancer Biother Radiopharm. 2013;28(7):510–515. doi: 10.1089/cbr.2013.1487.
    1. Muselaers CH, Boers-Sonderen MJ, van Oostenbrugge TJ, Boerman OC, Desar IM, Stillebroer AB, et al. Phase 2 study of lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur Urol. 2016;69(5):767–770. doi: 10.1016/j.eururo.2015.11.033.
    1. Stillebroer AB, Boerman OC, Desar IM, Boers-Sonderen MJ, van Herpen CM, Langenhuijsen JF, et al. Phase 1 radioimmunotherapy study with lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur Urol. 2013;64(3):478–485. doi: 10.1016/j.eururo.2012.08.024.
    1. Stillebroer AB, Zegers CM, Boerman OC, Oosterwijk E, Mulders PF, O'Donoghue JA, et al. Dosimetric analysis of 177Lu-cG250 radioimmunotherapy in renal cell carcinoma patients: correlation with myelotoxicity and pretherapeutic absorbed dose predictions based on 111In-cG250 imaging. Journal of Nuclear Medicine. 2012;53(1):82–89. doi: 10.2967/jnumed.111.094896.
    1. Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. Journal of Nuclear Medicine. 2005;46(11):1898–1906.
    1. Verhoeff SR, van Es SC, Boon E, van Helden E, Angus L, Elias SG, et al. Lesion detection by [(89)Zr]Zr-DFO-girentuximab and [(18)F]FDG-PET/CT in patients with newly diagnosed metastatic renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2019;46(9):1931–1939. doi: 10.1007/s00259-019-04358-9.
    1. Hindorf C, Glatting G, Chiesa C, Linden O, Flux G. EANM Dosimetry committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37(6):1238–1250. doi: 10.1007/s00259-010-1422-4.
    1. Stabin MG, Farmer A. OLINDA/EXM 2.0: The new generation dosimetry modeling code. Journal of Nuclear Medicine. 2012;53:585. doi: 10.2967/jnumed.112.106138.
    1. Pandit-Taskar N, O'Donoghue JA, Beylergil V, Lyashchenko S, Ruan S, Solomon SB, et al. (8)(9)Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41(11):2093–2105. doi: 10.1007/s00259-014-2830-7.
    1. Laforest R, Lapi SE, Oyama R, Bose R, Tabchy A, Marquez-Nostra BV, et al. [(89)Zr]Trastuzumab: evaluation of radiation dosimetry, safety, and optimal imaging parameters in women with HER2-positive breast cancer. Molecular Imaging and Biology. 2016;18(6):952–959. doi: 10.1007/s11307-016-0951-z.
    1. Ulaner GA, Lyashchenko SK, Riedl C, Ruan S, Zanzonico PB, Lake D, et al. First-in-human human epidermal growth factor receptor 2-targeted imaging using (89)Zr-pertuzumab PET/CT: dosimetry and clinical application in patients with breast cancer. Journal of Nuclear Medicine. 2018;59(6):900–906. doi: 10.2967/jnumed.117.202010.
    1. Borjesson PK, Jauw YW, de Bree R, Roos JC, Castelijns JA, Leemans CR, et al. Radiation dosimetry of 89Zr-labeled chimeric monoclonal antibody U36 as used for immuno-PET in head and neck cancer patients. Journal of Nuclear Medicine. 2009;50(11):1828–1836. doi: 10.2967/jnumed.109.065862.
    1. Muselaers CH, Oosterwijk E, Bos DL, Oyen WJ, Mulders PF, Boerman OC. Optimizing lutetium 177-anti-carbonic anhydrase IX radioimmunotherapy in an intraperitoneal clear cell renal cell carcinoma xenograft model. Mol Imaging. 2014;13:1–7. doi: 10.2310/7290.2014.00008.
    1. Boyle CC, Paine AJ, Mather SJ. The mechanism of hepatic uptake of a radiolabelled monoclonal antibody. Int J Cancer. 1992;50(6):912–917. doi: 10.1002/ijc.2910500616.
    1. Hekman MC, Rijpkema M, Muselaers CH, Oosterwijk E, Hulsbergen-Van de Kaa CA, Boerman OC, et al. Tumor-targeted dual-modality imaging to improve intraoperative visualization of clear cell renal cell carcinoma: a first in man study. Theranostics. 2018;8(8):2161–2170. doi: 10.7150/thno.23335.
    1. O’Donoghue JA, Lewis JS, Pandit-Taskar N, Fleming SE, Schoder H, Larson SM, et al. Pharmacokinetics, biodistribution, and radiation dosimetry for (89)Zr-trastuzumab in patients with esophagogastric cancer. Journal of Nuclear Medicine. 2018;59(1):161–166. doi: 10.2967/jnumed.117.194555.
    1. Quinn B, Dauer Z, Pandit-Taskar N, Schoder H, Dauer LT. Radiation dosimetry of 18F-FDG PET/CT: incorporating exam-specific parameters in dose estimates. BMC Med Imaging. 2016;16(1):41. doi: 10.1186/s12880-016-0143-y.
    1. Vallabhajosula S, Goldsmith SJ, Kostakoglu L, Milowsky MI, Nanus DM, Bander NH. Radioimmunotherapy of prostate cancer using 90Y- and 177Lu-labeled J591 monoclonal antibodies: effect of multiple treatments on myelotoxicity. Clin Cancer Res. 2005;11(19 Pt 2):7195s–7200s. doi: 10.1158/1078-0432.Ccr-1004-0023.
    1. Verel I, Visser GW, van Dongen GA. The promise of immuno-PET in radioimmunotherapy. Journal of Nuclear Medicine. 2005;46 Suppl 1:164s–171s.

Source: PubMed

3
Subscribe