Serum choline in extremely preterm infants declines with increasing parenteral nutrition

Anders K Nilsson, Anders Pedersen, Daniel Malmodin, Anna-My Lund, Gunnel Hellgren, Chatarina Löfqvist, Ingrid Hansen Pupp, Ann Hellström, Anders K Nilsson, Anders Pedersen, Daniel Malmodin, Anna-My Lund, Gunnel Hellgren, Chatarina Löfqvist, Ingrid Hansen Pupp, Ann Hellström

Abstract

Purpose: Choline is an essential nutrient for fetal and infant growth and development. Parenteral nutrition used in neonatal care lack free choline but contain small amounts of lipid-bound choline in the form of phosphatidylcholine (PC). Here, we examined the longitudinal development of serum free choline and metabolically related compounds betaine and methionine in extremely preterm infants and how the concentrations were affected by the proportion of parenteral fluids the infants received during the first 28 postnatal days (PNDs).

Methods: This prospective study included 87 infants born at gestational age (GA) < 28 weeks. Infant serum samples were collected PND 1, 7, 14, and 28, and at postmenstrual age (PMA) 32, 36, and 40 weeks. The serum concentrations of free choline, betaine, and methionine were determined by 1H NMR spectroscopy.

Results: The median (25th-75th percentile) serum concentrations of free choline, betaine, and methionine were 33.7 (26.2-41.2), 71.2 (53.2-100.8), and 25.6 (16.4-35.3) µM, respectively, at PND 1. The choline concentration decreased rapidly between PND one and PND seven [18.4 (14.1-26.4) µM], and then increased over the next 90 days, though never reaching PND one levels. There was a negative correlation between a high intake of parenteral fluids and serum-free choline.

Conclusion: Circulating free choline in extremely preterm infants is negatively affected by the proportion of parenteral fluids administered.

Trial registration: ClinicalTrials.gov Identifier NCT02760472, April 29, 2016, retrospectively registered.

Keywords: Betaine; Enteral nutrition; Human milk; Methionine; Phosphatidylcholine; Proton nuclear magnetic resonance.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Violin plots showing serum concentrations of choline (a), betaine (b), and methionine (c) according to postnatal day. n = 85 (PNA d1), 79 (PNA d7), 81 (PNA d14), 72 (PNA d28), 81 (PNA d33-74), 52 (PNA d75-99), and 54 (PNA > 100). The dashed line in A indicate concentrations of free choline in cord plasma as reported by Bernhard et al. [22] based on median PMA 25.4 weeks at PNA day 1 and PMA 40 weeks at PNA day 100–158; circles show postnatal serum concentrations in full-term infants as reported by Ilcol et al. [30]
Fig. 2
Fig. 2
Postnatal changes in serum metabolites with the intake of enteral and parenteral fluids. a Median amount (ml/kg/d) of enteral (mother’s milk and donor milk, solid lines) and parenteral fluids (dashed lines) given during the infants’ first 28 postnatal days. Error bars indicate 25th and 75th percentiles. Box plots showing the concentration of (b) choline, (c) betaine, and (d) methionine if the infant was receiving less or more (darker boxes) than the median parenteral fluids. Whiskers indicate 25th and 75th percentiles. *p < 0.05, Mann–Whitney U
Fig. 3
Fig. 3
Choline concentration on postnatal day 7 based on gestational age at birth. Infants are grouped based on gestational age at birth n = 30) or > 25 weeks (n = 51). The serum concentration of choline was significantly higher in infants born after 25 weeks (Mann–Whitney U, p = 0.002). Whiskers indicate 25th and 75th percentiles

References

    1. Wiedeman AM, Barr SI, Green TJ, Xu Z, Innis SM, Kitts DD. Dietary choline intake: current state of knowledge across the life cycle. Nutrients. 2018 doi: 10.3390/nu10101513.
    1. Friesen RW, Novak EM, Hasman D, Innis SM. Relationship of dimethylglycine, choline, and betaine with oxoproline in plasma of pregnant women and their newborn infants. J Nutr. 2007;137(12):2641–2646. doi: 10.1093/jn/137.12.2641.
    1. Ueland PM. Choline and betaine in health and disease. J Inherit Metab Dis. 2011;34(1):3–15. doi: 10.1007/s10545-010-9088-4.
    1. Lin C-S, Wu R-D. Choline oxidation and choline dehydrogenase. J Protein Chem. 1986;5(3):193–200. doi: 10.1007/BF01025488.
    1. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76(1):116–129. doi: 10.1016/j.neuron.2012.08.036.
    1. Gibellini F, Smith TK. The Kennedy pathway—De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 2010;62(6):414–428. doi: 10.1002/iub.337.
    1. Zeisel SH, Da Costa KA, Franklin PD, Alexander EA, Lamont JT, Sheard NF, Beiser A. Choline, an essential nutrient for humans. FASEB J. 1991;5(7):2093–2098. doi: 10.1096/fasebj.5.7.2010061.
    1. Caudill MA. Pre- and postnatal health: evidence of increased choline needs. J Am Diet Assoc. 2010;110(8):1198–1206. doi: 10.1016/j.jada.2010.05.009.
    1. Guihard-Costa AM, Menez F, Delezoide AL. Organ weights in human fetuses after formalin fixation: standards by gestational age and body weight. Pediatr Dev Pathol. 2002;5(6):559–578. doi: 10.1007/s10024-002-0036-7.
    1. McMahon KE, Farrell PM. Measurement of free choline concentrations in maternal and neonatal blood by micropyrolysis gas chromatography. Clin Chim Acta. 1985;149(1):1–12. doi: 10.1016/0009-8981(85)90267-0.
    1. Buchman AL, Sohel M, Moukarzel A, Bryant D, Schanler R, Awal M, Burns P, Dorman K, Belfort M, Jenden DJ, Killip D, Roch M. Plasma choline in normal newborns, infants, toddlers, and in very-low-birth-weight neonates requiring total parenteral nutrition. Nutrition. 2001;17(1):18–21. doi: 10.1016/S0899-9007(00)00472-X.
    1. Bernhard W, Full A, Arand J, Maas C, Poets CF, Franz AR. Choline supply of preterm infants: assessment of dietary intake and pathophysiological considerations. Eur J Nutr. 2013;52(3):1269–1278. doi: 10.1007/s00394-012-0438-x.
    1. Sentongo TA, Kumar P, Karza K, Keys L, Iyer K, Buchman AL. Whole-blood-free choline and choline metabolites in infants who require chronic parenteral nutrition therapy. J Pediatr Gastroenterol Nutr. 2010;50(2):194–199. doi: 10.1097/MPG.0b013e3181a93735.
    1. McCann JC, Hudes M, Ames BN. An overview of evidence for a causal relationship between dietary availability of choline during development and cognitive function in offspring. Neurosci Biobehav Rev. 2006;30(5):696–712. doi: 10.1016/j.neubiorev.2005.12.003.
    1. Korsmo HW, Jiang X, Caudill MA. Choline: exploring the growing science on its benefits for moms and babies. Nutrients. 2019;11(8):1823. doi: 10.3390/nu11081823.
    1. Buchman AL, Dubin M, Jenden D, Moukarzel A, Roch MH, Rice K, Gornbein J, Ament ME, Eckhert CD. Lecithin increases plasma free choline and decreases hepatic steatosis in long-term total parenteral nutrition patients. Gastroenterology. 1992;102(4 Pt 1):1363–1370. doi: 10.1016/0016-5085(92)90777-V.
    1. Buchman AL, Ament ME, Sohel M, Dubin M, Jenden DJ, Roch M, Pownall H, Farley W, Awal M, Ahn C. Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: proof of a human choline requirement: a placebo-controlled trial. JPEN J Parenter Enteral Nutr. 2001;25(5):260–268. doi: 10.1177/0148607101025005260.
    1. Buchman AL, Moukarzel A, Jenden DJ, Roch M, Rice K, Ament ME. Low plasma free choline is prevalent in patients receiving long term parenteral nutrition and is associated with hepatic aminotransferase abnormalities. Clin Nutr. 1993;12(1):33–37. doi: 10.1016/0261-5614(93)90143-R.
    1. Buchman AL. The addition of choline to parenteral nutrition. Gastroenterology. 2009;137(5 Suppl):S119–128. doi: 10.1053/j.gastro.2009.08.010.
    1. Hogeveen M, den Heijer M, Semmekrot BA, Sporken JM, Ueland PM, Blom HJ. Umbilical choline and related methylamines betaine and dimethylglycine in relation to birth weight. Pediatr Res. 2013;73(6):783–787. doi: 10.1038/pr.2013.54.
    1. Molloy AM, Mills JL, Cox C, Daly SF, Conley M, Brody LC, Kirke PN, Scott JM, Ueland PM. Choline and homocysteine interrelations in umbilical cord and maternal plasma at delivery. Am J Clin Nutr. 2005;82(4):836–842. doi: 10.1093/ajcn/82.4.836.
    1. Bernhard W, Raith M, Kunze R, Koch V, Heni M, Maas C, Abele H, Poets CF, Franz AR. Choline concentrations are lower in postnatal plasma of preterm infants than in cord plasma. Eur J Nutr. 2015;54(5):733–741. doi: 10.1007/s00394-014-0751-7.
    1. Maas C, Franz AR, Shunova A, Mathes M, Bleeker C, Poets CF, Schleicher E, Bernhard W. Choline and polyunsaturated fatty acids in preterm infants’ maternal milk. Eur J Nutr. 2017;56(4):1733–1742. doi: 10.1007/s00394-016-1220-2.
    1. Bernhard W, Poets CF, Franz AR. Choline and choline-related nutrients in regular and preterm infant growth. Eur J Nutr. 2019;58(3):931–945. doi: 10.1007/s00394-018-1834-7.
    1. Najm S, Löfqvist C, Hellgren G, Engström E, Lundgren P, Hård A-L, Lapillonne A, Sävman K, Nilsson AK, Andersson MX, Smith LEH, Hellström A. Effects of a lipid emulsion containing fish oil on polyunsaturated fatty acid profiles, growth and morbidities in extremely premature infants: a randomized controlled trial. Clin Nutr ESPEN. 2017 doi: 10.1016/j.clnesp.2017.04.004.
    1. Lund AM, Löfqvist C, Pivodic A, Lundgren P, Hård AL, Hellström A, Hansen-Pupp I. Unpasteurised maternal breast milk is positively associated with growth outcomes in extremely preterm infants. Acta Paediatr. 2019 doi: 10.1111/apa.15102.
    1. Tomasi G, Savorani F, Engelsen SB. icoshift: an effective tool for the alignment of chromatographic data. J Chromatogr A. 2011;1218(43):7832–7840. doi: 10.1016/j.chroma.2011.08.086.
    1. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608–d617. doi: 10.1093/nar/gkx1089.
    1. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
    1. Ilcol YO, Ozbek R, Hamurtekin E, Ulus IH. Choline status in newborns, infants, children, breast-feeding women, breast-fed infants and human breast milk. J Nutr Biochem. 2005;16(8):489–499. doi: 10.1016/j.jnutbio.2005.01.011.
    1. Misra S, Ahn C, Ament ME, Choi HJ, Jenden DJ, Roch M, Buchman AL. Plasma choline concentrations in children requiring long-term home parenteral nutrition: a case control study. JPEN J Parenter Enteral Nutr. 1999;23(5):305–308. doi: 10.1177/0148607199023005305.
    1. Sheard NF, Tayek JA, Bistrian BR, Blackburn GL, Zeisel SH. Plasma choline concentration in humans fed parenterally. Am J Clin Nutr. 1986;43(2):219–224. doi: 10.1093/ajcn/43.2.219.
    1. Obeid R. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients. 2013;5(9):3481–3495. doi: 10.3390/nu5093481.
    1. Davies SEC, Woolf DA, Chalmers RA, Rafter JEM, Iles RA. Proton nmr studies of betaine excretion in the human neonate: consequences for choline and methyl group supply. J Nutr Biochem. 1992;3(10):523–530. doi: 10.1016/0955-2863(92)90074-S.
    1. Holmes HC, Snodgrass GJ, Iles RA. Choline metabolism in the neonatal period. Biochem Soc Trans. 1998;26(2):S94. doi: 10.1042/bst026s094.
    1. Du YF, Wei Y, Yang J, Cheng ZY, Zuo XF, Wu TC, Shi HF, Wang XL. Maternal betaine status, but not that of choline or methionine, is inversely associated with infant birth weight. Br J Nutr. 2019;121(11):1279–1286. doi: 10.1017/s0007114519000497.
    1. Moukarzel S, Soberanes L, Dyer RA, Albersheim S, Elango R, Innis SM. Relationships among different water-soluble choline compounds differ between human preterm and donor milk. Nutrients. 2017;9(4):369. doi: 10.3390/nu9040369.
    1. Bitman J, Wood DL, Mehta NR, Hamosh P, Hamosh M. Comparison of the phospholipid composition of breast milk from mothers of term and preterm infants during lactation. Am J Clin Nutr. 1984;40(5):1103–1119. doi: 10.1093/ajcn/40.5.1103.
    1. Kynast G, Schmitz C. Determination of the phospholipid content of human milk, cow’s milk and various infant formulas. Z Ernahrungswiss. 1988;27(4):252–265. doi: 10.1007/bf02019514.
    1. Andersson Y, Sävman K, Bläckberg L, Hernell O. Pasteurization of mother’s own milk reduces fat absorption and growth in preterm infants. Acta Paediatr. 2007;96(10):1445–1449. doi: 10.1111/j.1651-2227.2007.00450.x.
    1. Vanek VW, Borum P, Buchman A, Fessler TA, Howard L, Shenkin A, Valentine CJ. A call to action to bring safer parenteral micronutrient products to the U.S. market. Nutr Clin Pract. 2015;30(4):559–569. doi: 10.1177/0884533615589992.

Source: PubMed

3
Subscribe