The role of whole brain radiation therapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline

Laurie E Gaspar, Minesh P Mehta, Roy A Patchell, Stuart H Burri, Paula D Robinson, Rachel E Morris, Mario Ammirati, David W Andrews, Anthony L Asher, Charles S Cobbs, Douglas Kondziolka, Mark E Linskey, Jay S Loeffler, Michael McDermott, Tom Mikkelsen, Jeffrey J Olson, Nina A Paleologos, Timothy C Ryken, Steven N Kalkanis, Laurie E Gaspar, Minesh P Mehta, Roy A Patchell, Stuart H Burri, Paula D Robinson, Rachel E Morris, Mario Ammirati, David W Andrews, Anthony L Asher, Charles S Cobbs, Douglas Kondziolka, Mark E Linskey, Jay S Loeffler, Michael McDermott, Tom Mikkelsen, Jeffrey J Olson, Nina A Paleologos, Timothy C Ryken, Steven N Kalkanis

Abstract

Question: Should patients with newly-diagnosed metastatic brain tumors undergo open surgical resection versus whole brain radiation therapy (WBRT) and/or other treatment modalities such as radiosurgery, and in what clinical settings?

Target population: These recommendations apply to adults with a newly diagnosed single brain metastasis amenable to surgical resection.

Recommendations: Surgical resection plus WBRT versus surgical resection alone Level 1 Surgical resection followed by WBRT represents a superior treatment modality, in terms of improving tumor control at the original site of the metastasis and in the brain overall, when compared to surgical resection alone. Surgical resection plus WBRT versus SRS + or - WBRT Level 2 Surgical resection plus WBRT, versus stereotactic radiosurgery (SRS) plus WBRT, both represent effective treatment strategies, resulting in relatively equal survival rates. SRS has not been assessed from an evidence-based standpoint for larger lesions (>3 cm) or for those causing significant mass effect (>1 cm midline shift). Level 3 Underpowered class I evidence along with the preponderance of conflicting class II evidence suggests that SRS alone may provide equivalent functional and survival outcomes compared with resection + WBRT for patients with single brain metastases, so long as ready detection of distant site failure and salvage SRS are possible. Note The following question is fully addressed in the WBRT guideline paper within this series by Gaspar et al. Given that the recommendation resulting from the systematic review of the literature on this topic is also highly relevant to the discussion of the role of surgical resection in the management of brain metastases, this recommendation has been included below.

Figures

Fig. 1
Fig. 1
Flowchart of studies to final number of eligible studies
Fig. 2
Fig. 2
Comparison of low dose WBRT (BED 10) versus WBRT control dose (BED = 39 Gy10): mortality at 6 months
Fig. 3
Fig. 3
Comparison of high dose WBRT (BED > 39 Gy10) versus WBRT control dose (BED = 39 Gy10): mortality at 6 months (Note: extraction of data for Komarnicky trial is based on the K–M curve)
Fig. 4
Fig. 4
Comparison of low dose WBRT (BED 10) versus WBRT control dose (BED = 39 Gy10): overall survival
Fig. 5
Fig. 5
Comparison of high dose WBRT (BED > 39 Gy10) versus WBRT control dose (BED = 39 Gy): overall survival

References

    1. Kalkanis SN, Kondziolka D, Gaspar LE, Burri SH, Asher AL, Cobbs CS et al (2009) The role of surgical resection in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol. doi:10.1007/s11060-009-0061-8
    1. Linskey ME, Andrews DW, Asher AL, Burri SH, Kondziolka DS, Robinson PD et al (2009) The role of stereotactic radiosurgery in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol. doi:10.1007/s11060-009-0073-4
    1. Robinson PD, Kalkanis SN, Linskey ME, Santaguida PL (2009) Methodology used to develop the AANS/CNS management of brain metastases evidence-based clinical practice parameter guidelines. J Neurooncol. doi:10.1007/s11060-009-0059-2
    1. Centre for Evidence-Based Physiotherapy (2009) Physiotherapy Evidence Database (PEDro). . Accessed January 2009
    1. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–721.
    1. Patchell RA, Tibbs PA, Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med. 1990;322(8):494–500.
    1. Mintz AH, Kestle J, Rathbone MP, Gaspar L, Hugenholtz H, Fisher B, et al. A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastasis. Cancer. 1996;78(7):1470–1476. doi: 10.1002/(SICI)1097-0142(19961001)78:7<1470::AID-CNCR14>;2-X.
    1. Vecht CJ, Haaxma-Reiche H, Noordijk EM, Padberg GW, Voormolen JH, Hoekstra FH, et al. Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann Neurol. 1993;33(6):583–590. doi: 10.1002/ana.410330605.
    1. Ampil FL, Nanda A, Willis BK, Nandy I, Meehan R. Metastatic disease in the cerebellum The LSU experience in 1981–1993. Am J Clin Oncol. 1996;19(5):509–511. doi: 10.1097/00000421-199610000-00016.
    1. Rades D, Kieckebusch S, Haatanen T, Lohynska R, Dunst J, Schild SE. Surgical resection followed by whole brain radiotherapy versus whole brain radiotherapy alone for single brain metastasis. Int J Radiat Oncol Biol Phys. 2008;70(5):1319–1324.
    1. Sause WT, Crowley JJ, Morantz R, Rotman M, Mowry PA, Bouzaglou A, et al. Solitary brain metastasis: results of an RTOG/SWOG protocol evaluation surgery + RT versus RT alone. Am J Clin Oncol. 1990;13(5):427–432. doi: 10.1097/00000421-199010000-00013.
    1. Borgelt B, Gelber R, Larson M, Hendrickson F, Griffin T, Roth R. Ultra-rapid high dose irradiation schedules for the palliation of brain metastases: final results of the first two studies by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1981;7(12):1633–1638.
    1. Chatani M, Matayoshi Y, Masaki N, Inoue T. Radiation therapy for brain metastases from lung carcinoma. Prospective randomized trial according to the level of lactate dehydrogenase. Strahlenther Onkol. 1994;170(3):155–161.
    1. Chatani M, Teshima T, Hata K, Inoue T, Suzuki T. Whole brain irradiation for metastases from lung carcinoma. A clinical investigation. Acta Radiol Oncol. 1985;24(4):311–314. doi: 10.3109/02841868509136057.
    1. Davey P, Hoegler D, Ennis M, Smith J. A phase III study of accelerated versus conventional hypofractionated whole brain irradiation in patients of good performance status with brain metastases not suitable for surgical excision. Radiother Oncol. 2008;88(2):173–176. doi: 10.1016/j.radonc.2008.05.020.
    1. Haie-Meder C, Pellae-Cosset B, Laplanche A, Lagrange JL, Tuchais C, Nogues C, et al. Results of a randomized clinical trial comparing two radiation schedules in the palliative treatment of brain metastases. Radiother Oncol. 1993;26(2):111–116. doi: 10.1016/0167-8140(93)90091-L.
    1. Komarnicky LT, Phillips TL, Martz K, Asbell S, Isaacson S, Urtasun R. A randomized phase III protocol for the evaluation of misonidazole combined with radiation in the treatment of patients with brain metastases (RTOG-7916) Int J Radiat Oncol Biol Phys. 1991;20(1):53–58.
    1. Kurtz JM, Gelber R, Brady LW, Carella RJ, Cooper JS. The palliation of brain metastases in a favorable patient population: a randomized clinical trial by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1981;7(7):891–895.
    1. Murray KJ, Scott C, Greenberg HM, Emami B, Seider M, Vora NL, et al. A randomized phase III study of accelerated hyperfractionation versus standard in patients with unresected brain metastases: a report of the Radiation Therapy Oncology Group (RTOG) 9104. Int J Radiat Oncol Biol Phys. 1997;39(3):571–574.
    1. Priestman TJ, Dunn J, Brada M, Rampling R, Baker PG. Final results of the Royal College of Radiologists’ trial comparing two different radiotherapy schedules in the treatment of cerebral metastases. Clin Oncol (R Coll Radiol) 1996;8(5):308–315.
    1. Sause WT, Scott C, Krisch R, Rotman M, Sneed PK, Janjan N, et al. Phase I/II trial of accelerated fractionation in brain metastases RTOG 85–28. Int J Radiat Oncol Biol Phys. 1993;26(4):653–657.
    1. Bach F, Sorensen JB, Adrian L, Larsen H, Langer SW, Nelausen KM, et al. Brain relapses in chemotherapy-treated small cell lung cancer: a retrospective review of two time-dose regimens of therapeutic brain irradiation. Lung Cancer. 1996;15(2):171–181. doi: 10.1016/0169-5002(95)00580-3.
    1. Conill C, Jorcano S, Domingo-Domenech J, Gallego R, Malvehy J, Puig S, et al. Whole brain irradiation and temozolomide based chemotherapy in melanoma brain metastases. Clin Transl Oncol. 2006;8(4):266–270. doi: 10.1007/BF02664937.
    1. Nieder C, Berberich W, Nestle U, Niewald M, Walter K, Schnabel K. Relation between local result and total dose of radiotherapy for brain metastases. Int J Radiat Oncol Biol Phys. 1995;33(2):349–355.
    1. Nieder C, Nestle U, Niewald M, Schnabel K. Accelerated radiotherapy for brain metastases. Radiother Oncol. 1997;45(1):17–22. doi: 10.1016/S0167-8140(97)00113-8.
    1. Rades D, Schild SE, Lohynska R, Veninga T, Stalpers LJ, Dunst J. Two radiation regimens and prognostic factors for brain metastases in nonsmall cell lung cancer patients. Cancer. 2007;110(5):1077–1082. doi: 10.1002/cncr.22877.
    1. Rades D, Haatanen T, Schild SE, Dunst J. Dose escalation beyond 30 grays in 10 fractions for patients with multiple brain metastases. Cancer. 2007;110(6):1345–1350. doi: 10.1002/cncr.22906.
    1. Rades D, Bohlen G, Dunst J, Lohynska R, Veninga T, Stalpers L, et al. Comparison of short-course versus long-course whole-brain radiotherapy in the treatment of brain metastases. Strahlenther Onkol. 2008;184(1):30–35. doi: 10.1007/s00066-008-1795-5.
    1. Sundstrom JT, Minn H, Lertola KK, Nordman E. Prognosis of patients treated for intracranial metastases with whole-brain irradiation. Ann Med. 1998;30(3):296–299. doi: 10.3109/07853899809005858.
    1. Noordijk EM, Vecht CJ, Haaxma-Reiche H, Padberg GW, Voormolen JH, Hoekstra FH, et al. The choice of treatment of single brain metastasis should be based on extracranial tumor activity and age. Int J Radiat Oncol Biol Phys. 1994;29(4):711–717.
    1. Chatani M, Teshima T, Hata K, Inoue T. Prognostic factors in patients with brain metastases from lung carcinoma. Strahlenther Onkol. 1986;162(3):157–161.
    1. Regine WF, Scott C, Murray K, Curran W. Neurocognitive outcome in brain metastases patients treated with accelerated-fractionation vs. accelerated-hyperfractionated radiotherapy: an analysis from Radiation Therapy Oncology Group Study 91–04. Int J Radiat Oncol Biol Phys. 2001;51(3):711–717.
    1. Epstein BE, Scott CB, Sause WT, Rotman M, Sneed PK, Janjan NA, et al. Improved survival duration in patients with unresected solitary brain metastasis using accelerated hyperfractionated radiation therapy at total doses of 54.4 gray and greater. Results of Radiation Therapy Oncology Group 85–28. Cancer. 1993;71(4):1362–1367. doi: 10.1002/1097-0142(19930215)71:4<1362::AID-CNCR2820710431>;2-5.
    1. Rades D, Bohlen G, Lohynska R, Veninga T, Stalpers LJ, Schild SE, et al. Whole-brain radiotherapy with 20 Gy in 5 fractions for brain metastases in patients with cancer of unknown primary (CUP) Strahlenther Onkol. 2007;183(11):631–636. doi: 10.1007/s00066-007-1763-5.
    1. Rades D, Kieckebusch S, Lohynska R, Veninga T, Stalpers LJ, Dunst J et al (2007) Reduction of overall treatment time in patients irradiated for more than three brain metastases. Int J Radiat Oncol Biol Phys 69(5):1509–1513 (update Sept 24 2008)
    1. Rades D, Lohynska R, Veninga T, Stalpers LJ, Schild SE. Evaluation of 2 whole-brain radiotherapy schedules and prognostic factors for brain metastases in breast cancer patients. Cancer. 2007;110(11):2587–2592. doi: 10.1002/cncr.23082.
    1. Fowler JF. Practical time-dose evaluations, or how to stop worrying and learn to love linear quadratics. In: Levitt SH, Purdy JA, Perez CA, Vijayakumar S, editors. Technical basis of radiation therapy: practical clinical applications. 4. Berlin, Heidelberg: Springer; 2006. pp. 3–31.
    1. Jones B, Dale RG, Deehan C, Hopkins KI, Morgan DA. The role of biologically effective dose (BED) in clinical oncology. Clin Oncol (R Coll Radiol) 2001;13(2):71–81.

Source: PubMed

3
Subscribe