Distinct transcriptional repertoire of the androgen receptor in ETS fusion-negative prostate cancer

Anders E Berglund, Robert J Rounbehler, Travis Gerke, Shivanshu Awasthi, Chia-Ho Cheng, Mandeep Takhar, Elai Davicioni, Mohammed Alshalalfa, Nicholas Erho, Eric A Klein, Stephen J Freedland, Ashley E Ross, Edward M Schaeffer, Bruce J Trock, Robert B Den, John L Cleveland, Jong Y Park, Jasreman Dhillon, Kosj Yamoah, Anders E Berglund, Robert J Rounbehler, Travis Gerke, Shivanshu Awasthi, Chia-Ho Cheng, Mandeep Takhar, Elai Davicioni, Mohammed Alshalalfa, Nicholas Erho, Eric A Klein, Stephen J Freedland, Ashley E Ross, Edward M Schaeffer, Bruce J Trock, Robert B Den, John L Cleveland, Jong Y Park, Jasreman Dhillon, Kosj Yamoah

Abstract

Background: Prostate cancer (PCa) tumors harboring translocations of ETS family genes with the androgen responsive TMPRSS2 gene (ETS+ tumors) provide a robust biomarker for detecting PCa in approximately 70% of patients. ETS+ PCa express high levels of the androgen receptor (AR), yet PCa tumors lacking ETS fusions (ETS-) also express AR and demonstrate androgen-regulated growth. In this study, we evaluate the differences in the AR-regulated transcriptomes between ETS+ and ETS- PCa tumors.

Methods: 10,608 patient tumors from three independent PCa datasets classified as ETS+ (samples overexpressing ERG or other ETS family members) or ETS- (all other PCa) were analyzed for differential gene expression using false-discovery-rate adjusted methods and gene-set enrichment analysis (GSEA).

Results: Based on the expression of AR-dependent genes and an unsupervised Principal Component Analysis (PCA) model, AR-regulated gene expression alone was able to separate PCa samples into groups based on ETS status in all PCa databases. ETS status distinguished several differentially expressed genes in both TCGA (6.9%) and GRID (6.6%) databases, with 413 genes overlapping in both databases. Importantly, GSEA showed enrichment of distinct androgen-responsive genes in both ETS- and ETS+ tumors, and AR ChIP-seq data identified 131 direct AR-target genes that are regulated in an ETS-specific fashion. Notably, dysregulation of ETS-dependent AR-target genes within the metabolic and non-canonical WNT pathways was associated with clinical outcomes.

Conclusions: ETS status influences the transcriptional repertoire of the AR, and ETS- PCa tumors appear to rely on distinctly different AR-dependent transcriptional programs to drive and sustain tumorigenesis.

Trial registration: ClinicalTrials.gov NCT02609269.

Conflict of interest statement

Anders E. Berglund. Patents, Royalties, Other Intellectual Property: H. Lee Moffitt Cancer Center & Research Institute. Mandeep Takhar Employment: GenomeDx Biosciences, Mohammed Alshalalfa Employment: GenomeDx Biosciences, Elai Davicioni Employment: GenomeDx Biosciences, Leadership: GenomeDx Biosciences, Stock or Other Ownership: GenomeDx Biosciences, Nicholas Erho, Employment: GenomeDx Biosciences, Ashley E. Ross Stock or Other Ownership: GenomeDx Biosciences, Consulting or Advisory Role: GenomeDx Biosciences, Research Funding: GenomeDx Biosciences, Edward M. Schaeffer Consulting or Advisory Role: GenomeDx Biosciences, Metama, Eric A. Klein Consulting or Advisory Role: GenomeDx Biosciences, Berg, Genomic Health, Speakers’ Bureau: Genomic Health, Robert B. Den Research Funding: GenomeDx Biosciences, Bruce J. Trock Consulting or Advisory Role: GenomeDx Biosciences, Research Funding: Myriad Genetics, John L. Cleveland: No relationship to disclose, Jong Y. Park: No relationship to disclose, Jasreman Dhillon: No relationship to disclose, Stephen J. Freedland: No relationship to disclose, Shivanshu Awasthi: No relationship to disclose, Chia-Ho Cheng: No relationship to disclose, Travis Gerke: No relationship to disclose, Robert J. Rounbehler: No relationship to disclose, Kosj Yamoah: No relationship to disclose.

Figures

Fig. 1
Fig. 1
AR-regulated genes discriminate tumors based on ETS status. An unsupervised PCA model of 101 AR-regulated genes affirms the distinct AR signatures of ETS+ and the ETS− samples in the first principal component for the TCGA RNA-seq (a) and in the second principal component for the GRID microarray profiling (b) PCa datasets. c and d show the relative contribution of the individual AR-regulated genes to the PCA models in a and b, respectively. The t-SNE model shows similar results to the PCA model for the TCGA (e) and the GRID (f) dataset, where there is a clear separation between the ETS− and ETS+ samples. The results also indicate that the molecular subtypes used for ETS+ (1-ERG, 2-ETV1, 3-ETV4, 4-FLI1) and ETS− (5-SPOP, 6-FOXA1, 7-IDH1, 8-other) fall into the correct ETS category
Fig. 2
Fig. 2
Genes differentially expressed in ETS+ versus ETS− PCa tumors. a The GRID dataset has 46050 genes with 3047 (6.6%) being differentially expressed when comparing ETS+ vs. ETS− PCa. The TCGA dataset has 20531 genes with 1423 (6.9%) being differentially expressed based on ETS status. Using a false-discovery-rate adjusted (q < 0.05) Mann–Whitney U test and a fold-change cut-off of 0.585 (TCGA) and 0.05 (GRID), 413 differentially expressed genes based on ETS status were defined in both PCa databases. b There is no significant difference in AR expression between ETS− and ETS+ tumors in either TCGA or GRID. The 413 significant differentially expressed genes (c) in the TCGA and GRID PCa based on ETS status were analyzed by GSEA and the HALLMARK gene sets [43]. Significant gene sets (d) overexpressed in ETS+ are shown at the top and those gene sets for ETS− shown below. Androgen response was the top-ranked gene set for both ETS+ and ETS− significantly overexpressed genes
Fig. 3
Fig. 3
Distinct direct AR target genes are regulated in ETS+ and ETS− PCa tumors. a Schematic of pipeline used to define 5 categories from the 131 direct AR transcription targets in ETS+ and ETS− PCa tumors. b Examples of genes whose expression is significantly different in adjacent normal tissue (N) in ETS+ PCa or ETS− PCa. c Heatmap of differentially expressed direct AR target genes in ETS- Up pink, ETS- Down gray, ETS+ Up blue, ETS+ Down green, and that are upregulated in both ETS+ and ETS− PCa (brown). Each row/gene is normalized to median expression in adjacent normal tissue. The 8 subtypes of ETS+ and ETS− PCa, as defined by their expression of ERG, ATV1, ETV4, FLI1, SPOP, FOXA1, IDH1 and “other” are shown beneath the heatmap
Fig. 4
Fig. 4
Specific AR target pathways show ETS status and BCR dependency. Gene ontology analysis and literature searches revealed that among ETS status-dependent AR target genes, metabolic pathway genes and non-canonical WNT pathway genes are up-regulated in ETS− tumors, whereas signaling and ion transport pathway genes are up-regulated in ETS+ tumors (a). Kaplan–Meier curves for metabolic (b) and non-canonical WNT (c) genes show significance to BCR in ETS+ tumors

References

    1. Brooke GN, Bevan CL. The role of androgen receptor mutations in prostate cancer progression. Curr Genom. 2009;10:18–25. doi: 10.2174/138920209787581307.
    1. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8. doi: 10.1126/science.1117679.
    1. Cancer Genome Atlas Research N. The molecular taxonomy of primary prostate. Cancer Cell. 2015;163:1011–25.
    1. Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007;448:595–9. doi: 10.1038/nature06024.
    1. Paulo P, Barros-Silva JD, Ribeiro FR, Ramalho-Carvalho J, Jeronimo C, Henrique R, et al. FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer. Genes Chromosomes Cancer. 2012;51:240–9. doi: 10.1002/gcc.20948.
    1. Kunderfranco P, Mello-Grand M, Cangemi R, Pellini S, Mensah A, Albertini V, et al. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS ONE. 2010;5:e10547. doi: 10.1371/journal.pone.0010547.
    1. Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, Furusato B, et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene. 2008;27:5348–53. doi: 10.1038/onc.2008.183.
    1. Weischenfeldt J, Simon R, Feuerbach L, Schlangen K, Weichenhan D, Minner S, et al. Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell. 2013;23:159–70. doi: 10.1016/j.ccr.2013.01.002.
    1. Kron K, Trudel D, Pethe V, Briollais L, Fleshner N, van der Kwast T, et al. Altered DNA methylation landscapes of polycomb-repressed loci are associated with prostate cancer progression and ERG oncogene expression in prostate cancer. Clin Cancer Res. 2013;19:3450–61. doi: 10.1158/1078-0432.CCR-12-3139.
    1. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet. 2007;39:41–51. doi: 10.1038/ng1935.
    1. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470:214–20. doi: 10.1038/nature09744.
    1. Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17:443–54. doi: 10.1016/j.ccr.2010.03.018.
    1. Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science. 2009;326:1230. doi: 10.1126/science.1178124.
    1. Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 2011;30:2719–33. doi: 10.1038/emboj.2011.158.
    1. Pomerantz MM, Li F, Takeda DY, Lenci R, Chonkar A, Chabot M, et al. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat Genet. 2015;47:1346–51. doi: 10.1038/ng.3419.
    1. Sharma NL, Massie CE, Ramos-Montoya A, Zecchini V, Scott HE, Lamb AD, et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell. 2013;23:35–47. doi: 10.1016/j.ccr.2012.11.010.
    1. Venet D, Dumont JE, Detours V. Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol. 2011;7:e1002240. doi: 10.1371/journal.pcbi.1002240.
    1. Berglund AE, Welsh EA, Eschrich SA. Characteristics and validation techniques for PCA-based gene-expression signatures. Int J Genom. 2017;2017:2354564.
    1. Khan AP, Rajendiran TM, Ateeq B, Asangani IA, Athanikar JN, Yocum AK, et al. The role of sarcosine metabolism in prostate cancer progression. Neoplasia. 2013;15:491–501. doi: 10.1593/neo.13314.
    1. Lucarelli G, Ditonno P, Bettocchi C, Spilotros M, Rutigliano M, Vavallo A, et al. Serum sarcosine is a risk factor for progression and survival in patients with metastatic castration-resistant prostate cancer. Future Oncol. 2013;9:899–907. doi: 10.2217/fon.13.50.
    1. Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development. J Steroid Biochem Mol Biol. 2017;166:1–15. doi: 10.1016/j.jsbmb.2016.04.009.
    1. Tang S, Bhatia B, Maldonado CJ, Yang P, Newman RA, Liu J, et al. Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells. J Biol Chem. 2002;277:16189–201. doi: 10.1074/jbc.M111936200.
    1. Obinata D, Takada S, Takayama K, Urano T, Ito A, Ashikari D, et al. Abhydrolase domain containing 2, an androgen target gene, promotes prostate cancer cell proliferation and migration. Eur J Cancer. 2016;57:39–49. doi: 10.1016/j.ejca.2016.01.002.
    1. Chen C, Wei X, Rao X, Wu J, Yang S, Chen F, et al. Cytochrome P450 2J2 is highly expressed in hematologic malignant diseases and promotes tumor cell growth. J Pharmacol Exp Ther. 2011;336:344–55. doi: 10.1124/jpet.110.174805.
    1. Chen H, Li H, Chen Q. INPP4B overexpression suppresses migration, invasion and angiogenesis of human prostate cancer cells. Clin Exp Pharmacol Physiol. 2017;44:700–8. doi: 10.1111/1440-1681.12745.
    1. Hodgson MC, Deryugina EI, Suarez E, Lopez SM, Lin D, Xue H, et al. INPP4B suppresses prostate cancer cell invasion. Cell Commun Signal. 2014;12:61. doi: 10.1186/s12964-014-0061-y.
    1. Cyriac J, Haleem R, Cai X, Wang Z. Androgen regulation of spermidine synthase expression in the rat prostate. Prostate. 2002;50:252–61. doi: 10.1002/pros.10052.
    1. van der Graaf M, Schipper RG, Oosterhof GO, Schalken JA, Verhofstad AA, Heerschap A. Proton MR spectroscopy of prostatic tissue focused on the detection of spermine, a possible biomarker of malignant behavior in prostate cancer. MAGMA. 2000;10:153–9.
    1. Li J, Ren S, Piao HL, Wang F, Yin P, Xu C, et al. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Sci Rep. 2016;6:20984. doi: 10.1038/srep20984.
    1. Robinson DR, Zylstra CR, Williams BO. Wnt signaling and prostate cancer. Curr Drug Targets. 2008;9:571–80. doi: 10.2174/138945008784911831.
    1. Brase JC, Johannes M, Mannsperger H, Falth M, Metzger J, Kacprzyk LA, et al. TMPRSS2-ERG -specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-beta signaling. BMC Cancer. 2011;11:507. doi: 10.1186/1471-2407-11-507.
    1. Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, Chen Y, et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene. 2005;24:3847–52. doi: 10.1038/sj.onc.1208518.
    1. Mosquera JM, Mehra R, Regan MM, Perner S, Genega EM, Bueti G, et al. Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clin Cancer Res. 2009;15:4706–11. doi: 10.1158/1078-0432.CCR-08-2927.
    1. Magi-Galluzzi C, Tsusuki T, Elson P, Simmerman K, LaFargue C, Esgueva R, et al. TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate. 2011;71:489–97. doi: 10.1002/pros.21265.
    1. Hu Y, Dobi A, Sreenath T, Cook C, Tadase AY, Ravindranath L, et al. Delineation of TMPRSS2-ERG splice variants in prostate cancer. Clin Cancer Res. 2008;14:4719–25. doi: 10.1158/1078-0432.CCR-08-0531.
    1. Yamoah Kosj, Johnson Michael H., Choeurng Voleak, Faisal Farzana A., Yousefi Kasra, Haddad Zaid, Ross Ashley E., Alshalafa Mohammed, Den Robert, Lal Priti, Feldman Michael, Dicker Adam P., Klein Eric A., Davicioni Elai, Rebbeck Timothy R., Schaeffer Edward M. Novel Biomarker Signature That May Predict Aggressive Disease in African American Men With Prostate Cancer. Journal of Clinical Oncology. 2015;33(25):2789–2796. doi: 10.1200/JCO.2014.59.8912.
    1. Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity. Nat Commun. 2015;6:8971. doi: 10.1038/ncomms9971.
    1. Yamoah K, Johnson MH, Choeurng V, Faisal FA, Yousefi K, Haddad Z, et al. Novel biomarker signature that may predict aggressive disease in African American men with prostate cancer. J Clin Oncol. 2015;33:2789–96. doi: 10.1200/JCO.2014.59.8912.
    1. Alshalalfa M, Verhaegh GW, Gibb EA, Santiago-Jimenez M, Erho N, Jordan J, et al. Low PCA3 expression is a marker of poor differentiation in localized prostate tumors: exploratory analysis from 12,076 patients. Oncotarget. 2017;8:50804–13. doi: 10.18632/oncotarget.15133.
    1. Piccolo SR, Withers MR, Francis OE, Bild AH, Johnson WE. Multiplatform single-sample estimates of transcriptional activation. Proc Natl Acad Sci USA. 2013;110:17778–83. doi: 10.1073/pnas.1305823110.
    1. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27. doi: 10.1093/biostatistics/kxj037.
    1. Torres A, Alshalalfa M, Tomlins SA, Erho N, Gibb EA, Chelliserry J, et al. Comprehensive determination of prostate tumor ETS gene status in clinical samples using the CLIA decipher assay. J Mol Diagn. 2017;19:475–84. doi: 10.1016/j.jmoldx.2017.01.007.
    1. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25. doi: 10.1016/j.cels.2015.12.004.
    1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50. doi: 10.1073/pnas.0506580102.

Source: PubMed

3
Subscribe