Review on Recent Trials Evaluating the Effect of Intravitreal Injections of Anti-VEGF Agents on the Macular Perfusion of Diabetic Patients with Diabetic Macular Edema

Ayman G Elnahry, Ahmed A Abdel-Kader, Ahmed E Habib, Gehad A Elnahry, Karim A Raafat, Khaled Elrakhawy, Ayman G Elnahry, Ahmed A Abdel-Kader, Ahmed E Habib, Gehad A Elnahry, Karim A Raafat, Khaled Elrakhawy

Abstract

Background: Diabetic macular edema (DME) is a major cause of vision loss in diabetics worldwide. Anti-vascular endothelial growth factor (anti-VEGF) agents have become the mainstay of treatment of vision loss due to DME. Long-term effects of these agents on the macular perfusion (MP) are a current concern.

Objective: To review recently published studies that evaluated the effect of intravitreal injection of anti-VEGF agents on the MP of diabetics with DME.

Methods: Different databases were searched including PubMed, Medline, Ovid, Science Direct, and Google Scholar for relevant studies published between 2010 and 2019. All studies found were compared regarding methodology and results and included in this review. Some studies relating to retinal perfusion in general and not strictly MP were also included for comprehensiveness.

Results: Several studies utilizing different anti-VEGF agents were identified. All the large randomized controlled clinical trials identified utilized primarily fluorescein angiography (FA) and human graders and found generally no worsening of MP associated with anti-VEGF agents use in diabetic patients with DME. Some of these studies, however, depended on post-hoc analysis. Several more recent, but smaller case series, have utilized the relatively new and non-invasive optical coherence tomography angiography (OCTA) in this evaluation and found more conflicting results.

Conclusion: The large clinical trials recently performed depended mainly on FA in the analysis of MP changes following injections and generally found no worsening of MP. More recently, smaller case series have utilized OCTA in this analysis, yielding more conflicting results. Large randomized controlled trials using OCTA are thus needed.

Keywords: Anti-VEGF agents; clinical trials; diabetic macular edema; fluorescein angiography; macular perfusion; optical coherence tomography angiography.

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.

Figures

Fig. (1)
Fig. (1)
FA and OCTA images of a patient from our research group are shown. Fluorescein angiography imaging uses an intravenously injected fluorescent dye which is detected inside retinal vessels by a blue light that is absorbed by the fluorescent dye and is re-emitted as another light of longer wavelength allowing visualization of the retinal vasculature and areas of capillary loss on a background of diffuse choroidal fluorescence (A and B). OCTA is a non-invasive, dye-free imaging modality that can obtain images of the superficial (C) and deep (D) retinal vascular layers separately by comparing the decorrelation signal between consecutive, repeated OCT B-scans that are acquired in rapid succession at the same retinal location, allowing motion contrast generated by the flow of red blood cells in blood vessels to be detected leading to vascular imaging.

References

    1. Korobelnik J.F., Do D.V., Schmidt-Erfurth U., Boyer D.S., Holz F.G., Heier J.S., Midena E., Kaiser P.K., Terasaki H., Marcus D.M., Nguyen Q.D., Jaffe G.J., Slakter J.S., Simader C., Soo Y., Schmelter T., Yancopoulos G.D., Stahl N., Vitti R., Berliner A.J., Zeitz O., Metzig C., Brown D.M. Intravitreal aflibercept for diabetic macular edema. Ophthalmology. 2014;121(11):2247–2254. doi: 10.1016/j.ophtha.2014.05.006.
    1. Zhang X., Saaddine J.B., Chou C.F., Cotch M.F., Cheng Y.J., Geiss L.S., Gregg E.W., Albright A.L., Klein B.E., Klein R. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA. 2010;304(6):649–656. doi: 10.1001/jama.2010.1111.
    1. Klein B.E. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol. 2007;14(4):179–183. doi: 10.1080/09286580701396720.
    1. Moss S.E., Klein R., Klein B.E. The 14-year incidence of visual loss in a diabetic population. Ophthalmology. 1998;105(6):998–1003. doi: 10.1016/S0161-6420(98)96025-0.
    1. Yau J.W., Rogers S.L., Kawasaki R., Lamoureux E.L., Kowalski J.W., Bek T., Chen S.J., Dekker J.M., Fletcher A., Grauslund J., Haffner S., Hamman R.F., Ikram M.K., Kayama T., Klein B.E., Klein R., Krishnaiah S., Mayurasakorn K., O’Hare J.P., Orchard T.J., Porta M., Rema M., Roy M.S., Sharma T., Shaw J., Taylor H., Tielsch J.M., Varma R., Wang J.J., Wang N., West S., Xu L., Yasuda M., Zhang X., Mitchell P., Wong T.Y. Meta-Analysis for Eye Disease (META-EYE) Study Group. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–564. doi: 10.2337/dc11-1909.
    1. Bahrami B., Zhu M., Hong T., Chang A. Diabetic macular oedema: Pathophysiology, management challenges and treatment resistance. Diabetologia. 2016;59(8):1594–1608. doi: 10.1007/s00125-016-3974-8.
    1. Elnahry A.G., Hassan F.K., Abdel-Kader A.A. Bevacizumab for the treatment of intraretinal cystic spaces in a patient with gyrate atrophy of the choroid and retina. Ophthalmic Genet. 2018;39(6):759–762. doi: 10.1080/13816810.2018.1536220.
    1. Dugel P.U., Jaffe G.J., Sallstig P., Warburton J., Weichselberger A., Wieland M., Singerman L. Brolucizumab versus aflibercept in participants with neovascular age-related macular degeneration: A randomized trial. Ophthalmology. 2017;124(9):1296–1304. doi: 10.1016/j.ophtha.2017.03.057.
    1. Elnahry A.G., Sallam E.M., Guirguis K.J., Talbet J.H., Abdel-Kader A.A. Vitrectomy for a secondary epiretinal membrane following treatment of adult-onset Coats’ disease. Am. J. Ophthalmol. Case Rep. 2019;15:100508. doi: 10.1016/j.ajoc.2019.15:100508.
    1. Ferrara N., Gerber H.P., LeCouter J. The biology of VEGF and its receptors. Nat. Med. 2003;9(6):669–676. doi: 10.1038/nm0603-669.
    1. Alon T., Hemo I., Itin A., Pe’er J., Stone J., Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1995;1(10):1024–1028. doi: 10.1038/nm1095-1024.
    1. Ferrara N., Kerbel R.S. Angiogenesis as a therapeutic target. Nature. 2005;438(7070):967–974. doi: 10.1038/nature04483.
    1. Kurihara T., Westenskow P.D., Bravo S., Aguilar E., Friedlander M. Targeted deletion of Vegfa in adult mice induces vision loss. J. Clin. Invest. 2012;122(11):4213–4217. doi: 10.1172/JCI65157.
    1. Sun F.Y., Guo X. Molecular and cellular mechanisms of neuroprotection by vascular endothelial growth factor. J. Neurosci. Res. 2005;79(1-2):180–184. doi: 10.1002/jnr.20321.
    1. Elnahry A.G., Abdel-Kader A.A., Raafat K.A., Elrakhawy K. Evaluation of the effect of repeated intravitreal bevacizumab injections on the macular microvasculature of a diabetic patient using optical coherence tomography angiography. Case Rep. Ophthalmol. Med. 2019;2019:3936168. doi: 10.1155/2019/3936168.
    1. Manousaridis K., Talks J. Macular ischaemia: A contraindication for anti-VEGF treatment in retinal vascular disease? Br. J. Ophthalmol. 2012;96(2):179–184. doi: 10.1136/bjophthalmol-2011-301087.
    1. Dorrell M.I., Aguilar E., Scheppke L., Barnett F.H., Friedlander M. Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc. Natl. Acad. Sci. USA. 2007;104(3):967–972. doi: 10.1073/pnas.0607542104.
    1. Baffert F., Le T., Sennino B., Thurston G., Kuo C.J., Hu-Lowe D., McDonald D.M. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am. J. Physiol. Heart Circ. Physiol. 2006;290(2):H547–H559. doi: 10.1152/ajpheart.00616.2005.
    1. Early Treatment Diabetic Retinopathy Study Research Group. Classification of diabetic retinopathy from fluorescein angiograms. ETDRS report number 11. Ophthalmology. 1991;98(5) Suppl.:807–822. doi: 10.1016/S0161-6420(13)38013-0.
    1. Rajendram R., Fraser-Bell S., Kaines A., Michaelides M., Hamilton R.D., Esposti S.D., Peto T., Egan C., Bunce C., Leslie R.D., Hykin P.G. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: Report 3. Arch. Ophthalmol. 2012;130(8):972–979. doi: 10.1001/archophthalmol.2012.393.
    1. Michaelides M., Kaines A., Hamilton R.D., Fraser-Bell S., Rajendram R., Quhill F., Boos C.J., Xing W., Egan C., Peto T., Bunce C., Leslie R.D., Hykin P.G. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: Report 2. Ophthalmology. 2010;117(6):1078–1086.e2. doi: 10.1016/j.ophtha.2010.03.045.
    1. Michaelides M., Fraser-Bell S., Hamilton R., Kaines A., Egan C., Bunce C., Peto T., Hykin P. Macular perfusion determined by fundus fluorescein angiography at the 4-month time point in a prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (Bolt Study): Report 1. Retina. 2010;30(5):781–786. doi: 10.1097/IAE.0b013e3181d2f145.
    1. Chung E.J., Roh M.I., Kwon O.W., Koh H.J. Effects of macular ischemia on the outcome of intravitreal bevacizumab therapy for diabetic macular edema. Retina. 2008;28(7):957–963. doi: 10.1097/IAE.0b013e3181754209.
    1. Campochiaro P.A., Wykoff C.C., Shapiro H., Rubio R.G., Ehrlich J.S. Neutralization of vascular endothelial growth factor slows progression of retinal nonperfusion in patients with diabetic macular edema. Ophthalmology. 2014;121(9):1783–1789. doi: 10.1016/j.ophtha.2014.03.021.
    1. Tolentino M.J., Miller J.W., Gragoudas E.S., Jakobiec F.A., Flynn E., Chatzistefanou K., Ferrara N., Adamis A.P. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology. 1996;103(11):1820–1828. doi: 10.1016/S0161-6420(96)30420-X.
    1. Wykoff C.C., Shah C., Dhoot D., Coleman H.R., Thompson D., Du W., Baker K., Vitti R., Berliner A.J., Metzig C., Saroj N. Longitudinal retinal perfusion status in eyes with diabetic macular edema receiving intravitreal aflibercept or laser in VISTA study. Ophthalmology. 2019;126(8):1171–1180. doi: 10.1016/j.ophtha.2019.03.040.
    1. Feucht N., Schönbach E.M., Lanzl I., Kotliar K., Lohmann C.P., Maier M. Changes in the foveal microstructure after intravitreal bevacizumab application in patients with retinal vascular disease. Clin. Ophthalmol. 2013;7:173–178. doi: 10.2147/OPTH.S37544.
    1. Erol N., Gursoy H., Kimyon S., Topbas S., Colak E. Vision, retinal thickness, and foveal avascular zone size after intravitreal bevacizumab for diabetic macular edema. Adv. Ther. 2012;29(4):359–369. doi: 10.1007/s12325-012-0009-9.
    1. Wykoff C.C., Nittala M.G., Zhou B., Fan W., Velaga S.B., Lampen S.I.R., Rusakevich A.M., Ehlers J.P., Babiuch A., Brown D.M., Ip M.S., Sadda S.R. Intravitreal aflibercept for retinal nonperfusion in proliferative diabetic retinopathy study group. intravitreal aflibercept for retinal nonperfusion in proliferative diabetic retinopathy: Outcomes from the Randomized RECOVERY Trial. Ophthalmol. Retina. 2019;3(12):1076–1086. doi: 10.1016/j.oret.2019.07.011.
    1. Bonnin S., Dupas B., Lavia C., Erginay A., Dhundass M., Couturier A., Gaudric A., Tadayoni R. Anti–vascular endothelial growth factor therapy can improve diabetic retinopathy score without change in retinal perfusion. Retina. 2019;39(3):426–434. doi: 10.1097/IAE.0000000000002422.
    1. Couturier A., Rey P.A., Erginay A., Lavia C., Bonnin S., Dupas B., Gaudric A., Tadayoni R. Widefield OCT-Angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and edema treated with anti-vascular endothelial growth factor. Ophthalmology. 2019;126(12):1685–1694. doi: 10.1016/j.ophtha.2019.06.022.
    1. Figueiredo N., Srivastava S.K., Singh R.P., Babiuch A., Sharma S., Rachitskaya A., Talcott K., Reese J., Hu M., Ehlers J.P. Longitudinal panretinal leakage and ischemic indices in retinal vascular disease after aflibercept therapy: The PERMEATE Study. Ophthalmol. Retina. 2020;4(2):154–163. doi: 10.1016/j.oret.2019.09.001.
    1. Hwang T.S., Gao S.S., Liu L., Lauer A.K., Bailey S.T., Flaxel C.J., Wilson D.J., Huang D., Jia Y. Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol. 2016;134(4):367–373. doi: 10.1001/jamaophthalmol.2015.5658.
    1. Gill A., Cole E.D., Novais E.A., Louzada R.N., de Carlo T., Duker J.S., Waheed N.K., Baumal C.R., Witkin A.J. Visualization of changes in the foveal avascular zone in both observed and treated diabetic macular edema using optical coherence tomography angiography. Int. J. Retina Vitreous. 2017;3:19. doi: 10.1186/s40942-017-0074-y.
    1. Spaide R.F., Klancnik J.M., Jr, Cooney M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45–50. doi: 10.1001/jamaophthalmol.2014.3616.
    1. Ishibazawa A., Nagaoka T., Takahashi A., Omae T., Tani T., Sogawa K., Yokota H., Yoshida A. Optical coherence tomography angiography in diabetic retinopathy: A Prospective Pilot Study. Am. J. Ophthalmol. 2015;160(1):35–44.e1. doi: 10.1016/j.ajo.2015.04.021.
    1. Garcia J.M., Lima T.T., Louzada R.N., Rassi A.T., Isaac D.L., Avila M. Diabetic macular ischemia diagnosis: Comparison between optical coherence tomography angiography and fluorescein angiography. J. Ophthalmol. 2016;2016:3989310. doi: 10.1155/2016/3989310.
    1. Bradley P.D., Sim D.A., Keane P.A., Cardoso J., Agrawal R., Tufail A., Egan C.A. The evaluation of diabetic macular ischemia using optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 2016;57(2):626–631. doi: 10.1167/iovs.15-18034.
    1. Rabiolo A., Gelormini F., Sacconi R., Cicinelli M.V., Triolo G., Bettin P., Nouri-Mahdavi K., Bandello F., Querques G. Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography. PLoS One. 2018;13(10):e0205773. doi: 10.1371/journal.pone.0205773.
    1. Lei J., Durbin M.K., Shi Y., Uji A., Balasubramanian S., Baghdasaryan E., Al-Sheikh M., Sadda S.R. Repeatability and reproducibility of superficial macular retinal vessel density measurements using optical coherence tomography angiography en face images. JAMA Ophthalmol. 2017;135(10):1092–1098. doi: 10.1001/jamaophthalmol.2017.3431.
    1. Al-Sheikh M., Tepelus T.C., Nazikyan T., Sadda S.R. Repeatability of automated vessel density measurements using optical coherence tomography angiography. Br. J. Ophthalmol. 2017;101(4):449–452. doi: 10.1136/bjophthalmol-2016-308764.
    1. Eladawi N., Elmogy M., Helmy O., Aboelfetouh A., Riad A., Sandhu H., Schaal S., El-Baz A. Automatic blood vessels segmentation based on different retinal maps from OCTA scans. Comput. Biol. Med. 2017;89:150–161. doi: 10.1016/j.compbiomed.2017.08.008.
    1. Kim A.Y., Chu Z., Shahidzadeh A., Wang R.K., Puliafito C.A., Kashani A.H. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 2016;57(9):OCT362–OCT370. doi: 10.1167/iovs.15-18904.
    1. Yannuzzi L.A., Rohrer K.T., Tindel L.J., Sobel R.S., Costanza M.A., Shields W., Zang E. Fluorescein angiography complication survey. Ophthalmology. 1986;93(5):611–617. doi: 10.1016/S0161-6420(86)33697-2.
    1. Reddy R.K., Pieramici D.J., Gune S., Ghanekar A., Lu N., Quezada-Ruiz C., Baumal C.R. Efficacy of Ranibizumab in Eyes with Diabetic Macular Edema and Macular Nonperfusion in RIDE and RISE. Ophthalmology. 2018;125(10):1568–1574. doi: 10.1016/j.ophtha.2018.04.002.
    1. Ghasemi Falavarjani K., Iafe N.A., Hubschman J.P., Tsui I., Sadda S.R., Sarraf D. Optical coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-VEGF therapy in eyes with diabetic macular edema and retinal vein occlusion. Invest. Ophthalmol. Vis. Sci. 2017;58(1):30–34. doi: 10.1167/iovs.16-20579.
    1. Sorour O.A., Sabrosa A.S., Yasin Alibhai A., Arya M., Ishibazawa A., Witkin A.J., Baumal C.R., Duker J.S., Waheed N.K. Optical coherence tomography angiography analysis of macular vessel density before and after anti-VEGF therapy in eyes with diabetic retinopathy. Int. Ophthalmol. 2019;39(10):2361–2371. doi: 10.1007/s10792-019-01076-x.
    1. Busch C., Wakabayashi T., Sato T., Fukushima Y., Hara C., Shiraki N., Winegarner A., Nishida K., Sakaguchi H., Nishida K. Retinal microvasculature and visual acuity after intravitreal aflibercept in diabetic macular edema: An optical coherence tomography angiography study. Sci. Rep. 2019;9(1):1561. doi: 10.1038/s41598-018-38248-1.
    1. Hsieh Y.T., Alam M.N., Le D., Hsiao C.C., Yang C.H., Chao D.L., Yao X. OCT angiography biomarkers for predicting visual outcomes after ranibizumab treatment for diabetic macular edema. Ophthalmol. Retina. 2019;3(10):826–834. doi: 10.1016/j.oret.2019.04.027.
    1. Dastiridou A., Karathanou K., Riga P., Anagnostopoulou S., Balasubramanian S., Mataftsi A., Brazitikos P., Ziakas N., Androudi S. OCT angiography study of the macula in patients with diabetic macular edema treated with intravitreal aflibercept. Ocul. Immunol. Inflamm. 2020:1–6. doi: 10.1080/09273948.2019.1704028.
    1. Pereira F., Godoy B.R., Maia M., Regatieri C.V. Microperimetry and OCT angiography evaluation of patients with ischemic diabetic macular edema treated with monthly intravitreal bevacizumab: A pilot study. Int. J. Retina Vitreous. 2019;5(1):24. doi: 10.1186/s40942-019-0176-9.
    1. Elnahry A.G., Abdel-Kader A.A., Raafat K.A., Elrakhawy K. Evaluation of changes in macular perfusion detected by optical coherence tomography angiography following 3 intravitreal monthly bevacizumab injections for diabetic macular edema in the IMPACT Study. J. Ophthalmol. 2020;2020:5814165. doi: 10.1155/2020/5814165.
    1. Michalska-Małecka K., Heinke Knudsen A. Optical coherence tomography angiography in patients with diabetic retinopathy treated with anti-VEGF intravitreal injections: Case report. Medicine (Baltimore) 2017;96(45):e8379. doi: 10.1097/MD.0000000000008379.
    1. Barash A., Chui T.Y.P., Garcia P., Rosen R.B. Acute macular and peripapillary angiographic changes with intravitreal injections. Retina. 2020;40(4):648–56.
    1. Mastropasqua L., Toto L., Borrelli E., Carpineto P., Di Antonio L., Mastropasqua R. Optical coherence tomography angiography assessment of vascular effects occurring after aflibercept intravitreal injections in treatment-naïve patients with wet age-related macular degeneration. Retina. 2017;37(2):247–256. doi: 10.1097/IAE.0000000000001145.
    1. Spaide R.F., Fujimoto J.G., Waheed N.K., Sadda S.R., Staurenghi G. Optical coherence tomography angiography. Prog. Retin. Eye Res. 2018;64:1–55. doi: 10.1016/j.preteyeres.2017.11.003.
    1. Spaide R.F., Fujimoto J.G., Waheed N.K. Image artifacts in optical coherence tomography angiography. Retina. 2015;35(11):2163–2180. doi: 10.1097/IAE.0000000000000765.
    1. Ramsey D.J., Elnahry A.G. Automated image alignment for comparing vascular changes in fundus fluorescein angiography and optical coherence tomography angiography in the macula of patients with diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2019;60(9):3035.
    1. Elnahry A.G., Ramsey D.J. Spatial correlation of microaneurysms detected by fluorescein angiography aligned with microdomains of macular ischemia delineated by optical coherence tomography angiography in patients with diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2019;60(11):PB061.
    1. Rosen R, Romo JSA, Toral MVC, et al. Reference-Based OCT angiography perfusion density mapping for identifying acute and chronic changes in eyes with retinopathy over time. Invest Ophthalmol Vis Sci . 2019;60(11):003.
    1. Hofman P., van Blijswijk B.C., Gaillard P.J., Vrensen G.F., Schlingemann R.O. Endothelial cell hypertrophy induced by vascular endothelial growth factor in the retina: New insights into the pathogenesis of capillary nonperfusion. Arch. Ophthalmol. 2001;119(6):861–866. doi: 10.1001/archopht.119.6.861.
    1. Kurt M.M., Çekiç O., Akpolat Ç., Elçioglu M. Effects of intravitreal ranibizumab and bevacizumab on the retinal vessel size in diabetic macular edema. Retina. 2018;38(6):1120–1126. doi: 10.1097/IAE.0000000000001682.
    1. Zhu X., Wu S., Dahut W.L., Parikh C.R. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: Systematic review and meta-analysis. Am. J. Kidney Dis. 2007;49(2):186–193. doi: 10.1053/j.ajkd.2006.11.039.
    1. Bonnin P., Pournaras J.A., Lazrak Z., Cohen S.Y., Legargasson J.F., Gaudric A., Levy B.I., Massin P. Ultrasound assessment of short-term ocular vascular effects of intravitreal injection of bevacizumab (Avastin(®)) in neovascular age-related macular degeneration. Acta Ophthalmol. 2010;88(6):641–645. doi: 10.1111/j.1755-3768.2009.01526.x.
    1. Benjamin L.E., Hemo I., Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development. 1998;125(9):1591–1598.
    1. Lindahl P., Johansson B.R., Levéen P., Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277(5323):242–245. doi: 10.1126/science.277.5323.242.
    1. Stitt A.W., Gardiner T.A., Archer D.B. Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients. Br. J. Ophthalmol. 1995;79(4):362–367. doi: 10.1136/bjo.79.4.362.
    1. Markham A. Brolucizumab: First Approval. Drugs. 2019;79(18):1997–2000. doi: 10.1007/s40265-019-01231-9.
    1. Sahni J., Patel S.S., Dugel P.U., Khanani A.M., Jhaveri C.D., Wykoff C.C., Hershberger V.S., Pauly-Evers M., Sadikhov S., Szczesny P., Schwab D., Nogoceke E., Osborne A., Weikert R., Fauser S. Simultaneous inhibition of angiopoietin-2 and vascular endothelial growth factor-A with Faricimab in diabetic macular edema: BOULEVARD phase 2 randomized trial. Ophthalmology. 2019;126(8):1155–1170. doi: 10.1016/j.ophtha.2019.03.023.

Source: PubMed

3
Subscribe