A Mechanism-Based Population Pharmacokinetic Analysis Assessing the Feasibility of Efavirenz Dose Reduction to 400 mg in Pregnant Women

Stein Schalkwijk, Rob Ter Heine, Angela C Colbers, Alwin D R Huitema, Paolo Denti, Kelly E Dooley, Edmund Capparelli, Brookie M Best, Tim R Cressey, Rick Greupink, Frans G M Russel, Mark Mirochnick, David M Burger, Stein Schalkwijk, Rob Ter Heine, Angela C Colbers, Alwin D R Huitema, Paolo Denti, Kelly E Dooley, Edmund Capparelli, Brookie M Best, Tim R Cressey, Rick Greupink, Frans G M Russel, Mark Mirochnick, David M Burger

Abstract

Background: Reducing the dose of efavirenz can improve safety, reduce costs, and increase access for patients with HIV infection. According to the World Health Organization, a similar dosing strategy for all patient populations is desirable for universal roll-out; however, it remains unknown whether the 400 mg daily dose is adequate during pregnancy.

Methods: We developed a mechanistic population pharmacokinetic model using pooled data from women included in seven studies (1968 samples, 774 collected during pregnancy). Total and free efavirenz exposure (AUC24 and C12) were predicted for 400 (reduced) and 600 mg (standard) doses in both pregnant and non-pregnant women.

Results: Using a 400 mg dose, the median efavirenz total AUC24 and C12 during the third trimester of pregnancy were 91 and 87% of values among non-pregnant women, respectively. Furthermore, the median free efavirenz C12 and AUC24 were predicted to increase during pregnancy by 11 and 15%, respectively.

Conclusions: It was predicted that reduced-dose efavirenz provides adequate exposure during pregnancy. These findings warrant prospective confirmation.

Conflict of interest statement

Stein Schalkwijk, Rob ter Heine, Angela C. Colbers, Alwin D.R. Huitema, Paolo Denti, Kelly E. Dooley, Edmund Capparelli, Brookie M. Best, Tim R. Cressey, Rick Greupink, Frans G.M. Russel, Mark Mirochnick, and David M. Burger declare that they have no conflicts of interest.

Figures

Fig. 1
Fig. 1
Final structural model. Efavirenz is absorbed through three transit compartments into the liver compartment, based on four identical first-order rate constants. For the first pass through the liver, a fraction of the efavirenz amount is extracted and cleared, and the fraction of the amount remaining reaches the systemic circulation and becomes available for redistribution into the peripheral compartment. Efavirenz recirculates from the central compartment to the liver with a flow equivalent to liver plasma flow, and at each pass the liver extracts a further fraction. ktr first-order rate constant, Eh fraction of efavirenz extracted, Qh liver plasma flow, N number of transit compartments, CLh hepatic clearance, Q intercompartmental clearance, VhVc and Vp volume of ditribution of the liver, central and peripheral compartments, respectively
Fig. 2
Fig. 2
Standard goodness-of-fit plots for the final model. a Observed concentration versus individual-predicted concentration around the line of unity. b Observed concentration versus population-predicted concentration around the line of unity. c CWRES versus population-predicted concentrations. d Conditional weighted residual versus time after dose. The dotted lines represent the 95% limits of the assumed CWRES distribution (i.e. 0 ± 1.96). CWRES conditional weighted residual
Fig. 3
Fig. 3
pcVPC of the final model for efavirenz 600 mg stratified for pregnancy. The observations are indicated by the open circles. The median (continuous line) and 5th and 95th percentiles (dashed line) of the observations are shown, as well as the 95% confidence interval around the median (pink-shaded areas) and 5th and 95th percentiles (purple-shaded areas) of the simulated data. pcVPC prediction corrected visual predictive checks
Fig. 4
Fig. 4
Simulated a total and b free concentrations following administration of efavirenz 400 mg once daily during the third trimester of pregnancy and for non-pregnant women, stratified by metabolizer status. The horizontal dotted lines represent the total and free efavirenz plasma target concentrations of a 0.7 mg/L and b 0.002 mg/L, respectively. EFV efavirenz, QD once daily. C12 mid-dose concentration

References

    1. UNAIDS. Fact Sheet 2017. Available at: .
    1. WHO. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Recommendations for a public health approach – second edition. 2016 [updated June 2016. Available at: .
    1. WHO. Antiretroviral drugs for treating pregnant women and preventing HIV infection in infants. Recommendations for a public health approach. 2010. Available at: .
    1. US FDA. Sustiva: prescribing information. 2011 Available at: .
    1. DHHS. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. 2016 [updated 14 Jul 2016]. Available at: .
    1. Maartens G, Meintjes G. Lower-dose efavirenz: what is needed before implementation? Lancet Infect Dis. 2015;15(7):749–751. doi: 10.1016/S1473-3099(15)70108-8.
    1. CHAI. Clinton Health Access Initiative—Second Conference on Antiretroviral Drug Optimization. 2012.
    1. ENCORE1 Study Group Efficacy of 400 mg efavirenz versus standard 600 mg dose in HIV-infected, antiretroviral-naive adults (ENCORE1): a randomised, double-blind, placebo-controlled, non-inferiority trial. Lancet. 2014;383(9927):1474–1482. doi: 10.1016/S0140-6736(13)62187-X.
    1. Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, Buclin T. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS. 2001;15(1):71–75. doi: 10.1097/00002030-200101050-00011.
    1. Orrell C, Bienczak A, Cohen K, Bangsberg D, Wood R, Maartens G, et al. Effect of mid-dose efavirenz concentrations and CYP2B6 genotype on viral suppression in patients on first-line antiretroviral therapy. Int J Antimicrob Agents. 2016;47(6):466–472. doi: 10.1016/j.ijantimicag.2016.03.017.
    1. Gilbert EM, Darin KM, Scarsi KK, McLaughlin MM. Antiretroviral pharmacokinetics in pregnant women. Pharmacotherapy. 2015;35(9):838–855. doi: 10.1002/phar.1626.
    1. Dawes M, Chowienczyk PJ. Drugs in pregnancy. Pharmacokinetics in pregnancy. Best Pract Res Clin Obstet Gynaecol. 2001;15(6):819–826. doi: 10.1053/beog.2001.0231.
    1. Cressey TR, Stek A, Capparelli E, Bowonwatanuwong C, Prommas S, Sirivatanapa P, et al. Efavirenz pharmacokinetics during the third trimester of pregnancy and postpartum. J Acquir Immune Defic Syndr. 2012;59(3):245–252. doi: 10.1097/QAI.0b013e31823ff052.
    1. Dooley KE, Denti P, Martinson N, Cohn S, Mashabela F, Hoffmann J, et al. Pharmacokinetics of efavirenz and treatment of HIV-1 among pregnant women with and without tuberculosis coinfection. J Infect Dis. 2015;211(2):197–205. doi: 10.1093/infdis/jiu429.
    1. Olagunju A, Bolaji O, Amara A, Else L, Okafor O, Adejuyigbe E, et al. Pharmacogenetics of pregnancy-induced changes in efavirenz pharmacokinetics. Clin Pharmacol Ther. 2015;97(3):298–306. doi: 10.1002/cpt.43.
    1. IMPAACT. Pharmacokinetic properties of antiretroviral and related drugs during pregnancy and postpartum. 2015. Available at: .
    1. Semvua HH, Mtabho CM, Fillekes Q, van den Boogaard J, Kisonga RM, Mleoh L, et al. Efavirenz, tenofovir and emtricitabine combined with first-line tuberculosis treatment in tuberculosis-HIV-coinfected Tanzanian patients: a pharmacokinetic and safety study. Antivir Ther. 2013;18(1):105–113. doi: 10.3851/IMP2413.
    1. Van Leth F, Phanuphak P, Ruxrungtham K, Baraldi E, Miller S, Gazzard B, et al. Comparison of first-line antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus stavudine and lamivudine: a randomised open-label trial, the 2NN Study. Lancet. 2004;363(9417):1253–1263. doi: 10.1016/S0140-6736(04)15997-7.
    1. Kappelhoff BS, Huitema AD, Yalvac Z, Prins JM, Mulder JW, Meenhorst PL, et al. Population pharmacokinetics of efavirenz in an unselected cohort of HIV-1-infected individuals. Clin Pharmacokinet. 2005;44(8):849–861. doi: 10.2165/00003088-200544080-00006.
    1. Gordi T, Xie R, Huong NV, Huong DX, Karlsson MO, Ashton M. A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction. Br J Clin Pharmacol. 2005;59(2):189–198. doi: 10.1111/j.1365-2125.2004.02321.x.
    1. Holzinger ER, Grady B, Ritchie MD, Ribaudo HJ, Acosta EP, Morse GD, et al. Genome-wide association study of plasma efavirenz pharmacokinetics in AIDS Clinical Trials Group protocols implicates several CYP2B6 variants. Pharmacogenet Genomics. 2012;22(12):858–867. doi: 10.1097/FPC.0b013e32835a450b.
    1. Abduljalil K, Furness P, Johnson TN, Rostami-Hodjegan A, Soltani H. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy: a database for parameters required in physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2012;51(6):365–396. doi: 10.2165/11597440-000000000-00000.
    1. Avery LB, Bakshi RP, Cao YJ, Hendrix CW. The male genital tract is not a pharmacological sanctuary from efavirenz. Clin Pharmacol Ther. 2011;90(1):151–156. doi: 10.1038/clpt.2011.99.
    1. Zheng S, Easterling TR, Umans JG, Miodovnik M, Calamia JC, Thummel KE, et al. Pharmacokinetics of tacrolimus during pregnancy. Ther Drug Monit. 2012;34(6):660–670. doi: 10.1097/FTD.0b013e3182708edf.
    1. Nakai A, Sekiya I, Oya A, Koshino T, Araki T. Assessment of the hepatic arterial and portal venous blood flows during pregnancy with Doppler ultrasonography. Arch Gynecol Obstet. 2002;266(1):25–29. doi: 10.1007/PL00007495.
    1. Avery LB, Sacktor N, McArthur JC, Hendrix CW. Protein-free efavirenz concentrations in cerebrospinal fluid and blood plasma are equivalent: applying the law of mass action to predict protein-free drug concentration. Antimicrob Agents Chemother. 2013;57(3):1409–1414. doi: 10.1128/AAC.02329-12.
    1. Toutain PL, Bousquet-Melou A. Free drug fraction vs free drug concentration: a matter of frequent confusion. J Vet Pharmacol Ther. 2002;25(6):460–463. doi: 10.1046/j.1365-2885.2002.00442.x.
    1. Keizer RJ, van Benten M, Beijnen JH, Schellens JH, Huitema AD. Pirana and PCluster: a modeling environment and cluster infrastructure for NONMEM. Comput Methods Programs Biomed. 2011;101(1):72–79. doi: 10.1016/j.cmpb.2010.04.018.
    1. Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacomet Syst Pharmacol. 2013;2:e50. doi: 10.1038/psp.2013.24.
    1. Kappelhoff BS, Van Leth F, MacGregor TR, Lange J, Beijnen JH, Huitema AD. Nevirapine and efavirenz pharmacokinetics and covariate analysis in the 2NN study. Antivir Ther. 2005;10(1):145–155.
    1. West GB, Brown JH, Enquist BJ. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science. 1999;284(5420):1677–1679. doi: 10.1126/science.284.5420.1677.
    1. Hu TM, Hayton WL. Allometric scaling of xenobiotic clearance: uncertainty versus universality. AAPS Pharm Sci. 2001;3(4):E29. doi: 10.1208/ps030429.
    1. Carlsson KC, Savic RM, Hooker AC, Karlsson MO. Modeling subpopulations with the $MIXTURE subroutine in NONMEM: finding the individual probability of belonging to a subpopulation for the use in model analysis and improved decision making. AAPS J. 2009;11(1):148–154. doi: 10.1208/s12248-009-9093-4.
    1. Keizer RJ, Zandvliet AS, Beijnen JH, Schellens JH, Huitema AD. Performance of methods for handling missing categorical covariate data in population pharmacokinetic analyses. AAPS J. 2012;14(3):601–611. doi: 10.1208/s12248-012-9373-2.
    1. Dosne AG, Bergstrand M, Harling K, Karlsson MO. Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling. J Pharmacokinet Pharmacodyn. 2016;43(6):583–596. doi: 10.1007/s10928-016-9487-8.
    1. Svensson E, van der Walt JS, Barnes KI, Cohen K, Kredo T, Huitema A, et al. Integration of data from multiple sources for simultaneous modelling analysis: experience from nevirapine population pharmacokinetics. Br J Clin Pharmacol. 2012;74(3):465–476. doi: 10.1111/j.1365-2125.2012.04205.x.
    1. Brendel K, Comets E, Laffont C, Laveille C, Mentre F. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm Res. 2006;23(9):2036–2049. doi: 10.1007/s11095-006-9067-5.
    1. Comets E, Brendel K, Mentre F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed. 2008;90(2):154–166. doi: 10.1016/j.cmpb.2007.12.002.
    1. DHHS. Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-Infected Women for Maternal Health and Interventions to Reduce Perinatal HIV Transmission in the United States. 2016.
    1. Schalkwijk S, Greupink R, Burger D. Free dug concentrations in pregnancy: bound to measure unbound? Br J Clin Pharmacol. 2017;83(12):2595–2598. doi: 10.1111/bcp.13432.
    1. Rotger M, Tegude H, Colombo S, Cavassini M, Furrer H, Decosterd L, et al. Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals. Clin Pharmacol Ther. 2007;81(4):557–566. doi: 10.1038/sj.clpt.6100072.
    1. Sukasem C, Cressey TR, Prapaithong P, Tawon Y, Pasomsub E, Srichunrusami C, et al. Pharmacogenetic markers of CYP2B6 associated with efavirenz plasma concentrations in HIV-1 infected Thai adults. Br J Clin Pharmacol. 2012;74(6):1005–1012. doi: 10.1111/j.1365-2125.2012.04288.x.
    1. Gounden V, van Niekerk C, Snyman T, George JA. Presence of the CYP2B6 516G > T polymorphism, increased plasma efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients. AIDS Res Ther. 2010;7:32. doi: 10.1186/1742-6405-7-32.
    1. Vong C, Bergstrand M, Nyberg J, Karlsson MO. Rapid sample size calculations for a defined likelihood ratio test-based power in mixed-effects models. AAPS J. 2012;14(2):176–186. doi: 10.1208/s12248-012-9327-8.
    1. Acosta EP, Limoli KL, Trinh L, Parkin NT, King JR, Weidler JM, et al. Novel method to assess antiretroviral target trough concentrations using in vitro susceptibility data. Antimicrob Agents Chemother. 2012;56(11):5938–5945. doi: 10.1128/AAC.00691-12.
    1. Jilek BL, Zarr M, Sampah ME, Rabi SA, Bullen CK, Lai J, et al. A quantitative basis for antiretroviral therapy for HIV-1 infection. Nat Med. 2012;18(3):446–451. doi: 10.1038/nm.2649.
    1. Dickmann LJ, Isoherranen N. Quantitative prediction of CYP2B6 induction by estradiol during pregnancy: potential explanation for increased methadone clearance during pregnancy. Drug Metab Dispos. 2013;41(2):270–274. doi: 10.1124/dmd.112.047118.
    1. Chiappetta DA, Hocht C, Sosnik A. A highly concentrated and taste-improved aqueous formulation of efavirenz for a more appropriate pediatric management of the anti-HIV therapy. Curr HIV Res. 2010;8(3):223–231. doi: 10.2174/157016210791111142.
    1. Tarning J, Rijken MJ, McGready R, Phyo AP, Hanpithakpong W, Day NP, et al. Population pharmacokinetics of dihydroartemisinin and piperaquine in pregnant and nonpregnant women with uncomplicated malaria. Antimicrob Agents Chemother. 2012;56(4):1997–2007. doi: 10.1128/AAC.05756-11.
    1. Pharmacokinetics of Antiretroviral Agents in HIV-infected Pregnant Women. (PANNA). Available at: .
    1. Colbers A. Timing of the postpartum curve in Pharmacokinetic studies in pregnancy should not be too early. In: 17th International Workshop on Clinical Pharmacology of HIV & Hepatitis Therapy; Washington, DC; 2016.
    1. Dickinson L, Amin J, Else L, Boffito M, Egan D, Owen A, et al. Pharmacokinetic and pharmacodynamic comparison of once-daily efavirenz (400 mg vs. 600 mg) in treatment-naive HIV-infected patients: results of the ENCORE1 Study. Clin Pharmacol Ther. 2015;98(4):406–416. doi: 10.1002/cpt.156.

Source: PubMed

3
Subscribe