Serum neutrophil gelatinase-associated lipocalin at inception of renal replacement therapy predicts survival in critically ill patients with acute kidney injury

Philipp Kümpers, Carsten Hafer, Alexander Lukasz, Ralf Lichtinghagen, Korbinian Brand, Danilo Fliser, Robert Faulhaber-Walter, Jan T Kielstein, Philipp Kümpers, Carsten Hafer, Alexander Lukasz, Ralf Lichtinghagen, Korbinian Brand, Danilo Fliser, Robert Faulhaber-Walter, Jan T Kielstein

Abstract

Introduction: Neutrophil gelatinase-associated lipocalin (NGAL) is a promising novel biomarker that correlates with the severity and outcome of acute kidney injury (AKI). However, its prognostic utility during the late course of AKI, especially in patients that require renal replacement therapy (RRT) remains unknown. The aim of this study was to evaluate the predictive value of serum NGAL in patients with established AKI at inception of RRT in the intensive care unit (ICU).

Methods: Serum NGAL (ELISA methodology) was measured in 109 critically ill patients with AKI at inception of RRT in 7 ICUs of a tertiary care university hospital. The primary outcome studied was 28-day mortality. Secondary outcome measures were ICU length of stay, ventilator-free days, and renal recovery at day 28.

Results: There was a significant difference in serum NGAL between healthy subjects (median [interquartile range] 39.0 [37.5-42.75] ng/mL), critically ill patients with systemic inflammatory response syndrome (SIRS) (297 [184-490] ng/mL), and critically ill patients with sepsis (708 [365-1301] ng/mL; P < 0.0001), respectively. Multiple linear regression showed that NGAL levels were independently related to the severity of AKI and the extent of systemic inflammation. NGAL levels were higher in non-survivors (430 [303-942] ng/mL) compared to survivors (298 [159-506] ng/mL; P = 0.004). Consistently, Cox proportional hazards regression analysis identified NGAL as a strong independent predictor for 28-day survival (hazard ratio 1.6 (95% confidence interval [CI] 1.15 - 2.23), P = 0.005).

Conclusions: This is the first prospective evaluation of serum NGAL as an outcome-specific biomarker in critically ill patients at initiation of RRT. The results from this study indicate that serum NGAL is as an independent predictor of 28-day mortality in ICU patients with dialysis-dependent AKI.

Figures

Figure 1
Figure 1
Correlation of NGAL serum levels. (a and c). Correlation of NGAL serum levels with sepsis and acute kidney injury (AKI). Bar charts (mean ± standard error of the mean) showing serum neutrophil gelatinase-associated lipocalin (NGAL) levels of critically ill patients with AKI at inception of renal replacement therapy (RRT) stratified by (a) the presence (n = 31) or absence (n = 78) of sepsis as according to the SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions [25], or (c) stratified by the renal variable from the Sequential Organ Failure Assessment (SOFA) score (1 point (n = 9), 2 points (n = 27), 3 points (n = 28), 4 points (n = 45)). (b and d) Scatter plot showing the correlation of serum NGAL concentrations with (c) C reactive protein (CRP) levels, and (d) serum cystatin C levels in critically ill patients at initiation of RRT (n = 109).
Figure 2
Figure 2
Survival to day 28 according to serum NGAL. Kaplan-Meier curves of 28-day survival stratified to (a) neutrophil gelatinase-associated lipocalin (NGAL) quartiles (Q) (Log-rank (Mantel-Cox) P = 0.01; Log-rank test for trend P = 0.003), and (b) Sequential Organ Failure Assessment (SOFA) quartiles (total SOFA), respectively (Log-rank (Mantel-Cox) P = 0.01; Log-rank test for trend P = 0.002) at inception of renal replacement therapy in critically ill patients with acute kidney injury (n = 109).
Figure 3
Figure 3
Serum NGAL test characteristics at various cut-off values at initiation of RRT. Receiver-operator characteristic (ROC) curve showing the prognostic sensitivity and specificity of serum neutrophil gelatinase-associated lipocalin (NGAL) at initiation of renal replacement therapy (RRT) with regard to 14-day mortality (area under the curve (AUC) 0.74 (95% confidence interval (CI) 0.64 to 0.84) P < 0.0002). Cuboids indicate the cut-off values between NGAL quartiles (see also Figure 2 and Table 5).

References

    1. Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ. Acute renal failure in intensive care units--causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med. 1996;24:192–198. doi: 10.1097/00003246-199602000-00003.
    1. Joannidis M, Metnitz B, Bauer P, Schusterschitz N, Moreno R, Druml W, Metnitz PG. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med. 2009;35(10):1692–1702. doi: 10.1007/s00134-009-1530-4.
    1. Oppert M, Engel C, Brunkhorst FM, Bogatsch H, Reinhart K, Frei U, Eckardt KU, Loeffler M, John S. Acute renal failure in patients with severe sepsis and septic shock--a significant independent risk factor for mortality: results from the German Prevalence Study. Nephrol Dial Transplant. 2008;23:904–909. doi: 10.1093/ndt/gfm610.
    1. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–818. doi: 10.1001/jama.294.7.813.
    1. Palevsky PM, Zhang JH, O'Connor TZ, Chertow GM, Crowley ST, Choudhury D, Finkel K, Kellum JA, Paganini E, Schein RM, Smith MW, Swanson KM, Thompson BT, Vijayan A, Watnick S, Star RA, Peduzzi P. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20. doi: 10.1056/NEJMoa0802639.
    1. Silvester W, Bellomo R, Cole L. Epidemiology, management, and outcome of severe acute renal failure of critical illness in Australia. Crit Care Med. 2001;29:1910–1915. doi: 10.1097/00003246-200110000-00010.
    1. Douma CE, Redekop WK, Meulen JH van der, van Olden RW, Haeck J, Struijk DG, Krediet RT. Predicting mortality in intensive care patients with acute renal failure treated with dialysis. J Am Soc Nephrol. 1997;8:111–117.
    1. Chertow GM, Soroko SH, Paganini EP, Cho KC, Himmelfarb J, Ikizler TA, Mehta RL. Mortality after acute renal failure: models for prognostic stratification and risk adjustment. Kidney Int. 2006;70:1120–1126. doi: 10.1038/sj.ki.5001579.
    1. Maccariello E, Soares M, Valente C, Nogueira L, Valenca RV, Machado JE, Rocha E. RIFLE classification in patients with acute kidney injury in need of renal replacement therapy. Intensive Care Med. 2007;33:597–605. doi: 10.1007/s00134-007-0535-0.
    1. Schaefer JH, Jochimsen F, Keller F, Wegscheider K, Distler A. Outcome prediction of acute renal failure in medical intensive care. Intensive Care Med. 1991;17:19–24. doi: 10.1007/BF01708404.
    1. Nickolas TL, O'Rourke MJ, Yang J, Sise ME, Canetta PA, Barasch N, Buchen C, Khan F, Mori K, Giglio J, Devarajan P, Barasch J. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148:810–819.
    1. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Pawlak K, Mysliwiec M, Lawnicki S, Szmitkowski M, Dobrzycki S. Could neutrophil-gelatinase-associated lipocalin and cystatin C predict the development of contrast-induced nephropathy after percutaneous coronary interventions in patients with stable angina and normal serum creatinine values? Kidney Blood Press Res. 2007;30:408–415. doi: 10.1159/000109102.
    1. Hirsch R, Dent C, Pfriem H, Allen J, Beekman RH III, Ma Q, Dastrala S, Bennett M, Mitsnefes M, Devarajan P. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol. 2007;22:2089–2095. doi: 10.1007/s00467-007-0601-4.
    1. Ling W, Zhaohui N, Ben H, Leyi G, Jianping L, Huili D, Jiaqi Q. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin Pract. 2008;108:c176–c181. doi: 10.1159/000117814.
    1. Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R, Syed H, Ali S, Barasch J, Devarajan P. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol. 2008;3:665–673. doi: 10.2215/CJN.04010907.
    1. Haase-Fielitz A, Bellomo R, Devarajan P, Bennett M, Story D, Matalanis G, Frei U, Dragun D, Haase M. The predictive performance of plasma neutrophil gelatinase-associated lipocalin (NGAL) increases with grade of acute kidney injury. Nephrol Dial Transplant. 2009;24(11):3349–3354. doi: 10.1093/ndt/gfp234.
    1. Haase M, Bellomo R, Devarajan P, Ma Q, Bennett MR, Mockel M, Matalanis G, Dragun D, Haase-Fielitz A. Novel biomarkers early predict the severity of acute kidney injury after cardiac surgery in adults. Ann Thorac Surg. 2009;88:124–130. doi: 10.1016/j.athoracsur.2009.04.023.
    1. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–1238. doi: 10.1016/S0140-6736(05)74811-X.
    1. Wagener G, Jan M, Kim M, Mori K, Barasch JM, Sladen RN, Lee HT. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006;105:485–491. doi: 10.1097/00000542-200609000-00011.
    1. Wheeler DS, Devarajan P, Ma Q, Harmon K, Monaco M, Cvijanovich N, Wong HR. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008;36:1297–1303. doi: 10.1097/CCM.0b013e318169245a.
    1. Faulhaber-Walter R, Hafer C, Jahr N, Vahlbruch J, Hoy L, Haller H, Fliser D, Kielstein JT. The Hannover Dialysis Outcome study: comparison of standard versus intensified extended dialysis for treatment of patients with acute kidney injury in the intensive care unit. Nephrol Dial Transplant. 2009;24:2179–2186. doi: 10.1093/ndt/gfp035.
    1. Kielstein JT, Kretschmer U, Ernst T, Hafer C, Bahr MJ, Haller H, Fliser D. Efficacy and cardiovascular tolerability of extended dialysis in critically ill patients: a randomized controlled study. Am J Kidney Dis. 2004;43:342–349. doi: 10.1053/j.ajkd.2003.10.021.
    1. Vincent JL, Moreno R, Takala J, Willatts S, de Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–710. doi: 10.1007/BF01709751.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–829. doi: 10.1097/00003246-198510000-00009.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;29:530–538.
    1. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–R212. doi: 10.1186/cc2872.
    1. Bolignano D, Coppolino G, Romeo A, De Paola L, Buemi A, Lacquaniti A, Nicocia G, Lombardi L, Buemi M. Neutrophil gelatinase-associated lipocalin (NGAL) reflects iron status in haemodialysis patients. Nephrol Dial Transplant. 2009;24(11):3398–3403. doi: 10.1093/ndt/gfp310.
    1. 2-way Contingency Table Analysis.
    1. Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P, Barasch J. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18:407–413. doi: 10.1681/ASN.2006080882.
    1. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D'Agati V, Devarajan P, Barasch J. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest. 2005;115:610–621.
    1. Devarajan P. Neutrophil gelatinase-associated lipocalin--an emerging troponin for kidney injury. Nephrol Dial Transplant. 2008;23:3737–3743. doi: 10.1093/ndt/gfn531.
    1. Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics. 1997;45:17–23. doi: 10.1006/geno.1997.4896.
    1. Kjeldsen L, Cowland JB, Borregaard N. Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta. 2000;1482:272–283.
    1. Klausen P, Niemann CU, Cowland JB, Krabbe K, Borregaard N. On mouse and man: neutrophil gelatinase associated lipocalin is not involved in apoptosis or acute response. Eur J Haematol. 2005;75:332–340. doi: 10.1111/j.1600-0609.2005.00511.x.
    1. Fjaertoft G, Foucard T, Xu S, Venge P. Human neutrophil lipocalin (HNL) as a diagnostic tool in children with acute infections: a study of the kinetics. Acta Paediatr. 2005;94:661–666. doi: 10.1080/08035250510031610.
    1. Dent CL, Ma Q, Dastrala S, Bennett M, Mitsnefes MM, Barasch J, Devarajan P. Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care. 2007;11:R127. doi: 10.1186/cc6192.
    1. Haase-Fielitz A, Bellomo R, Devarajan P, Story D, Matalanis G, Dragun D, Haase M. Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery--a prospective cohort study. Crit Care Med. 2009;37:553–560. doi: 10.1097/CCM.0b013e318195846e.
    1. Haase-Fielitz A, Haase M, Bellomo R. Instability of urinary NGAL during long-term storage. Am J Kidney Dis. 2009;53:564–565. doi: 10.1053/j.ajkd.2009.01.009.

Source: PubMed

3
Subscribe