Objective monitoring of nasal patency and nasal physiology in rhinitis

Robert A Nathan, Ron Eccles, Peter H Howarth, Sverre K Steinsvåg, Alkis Togias, Robert A Nathan, Ron Eccles, Peter H Howarth, Sverre K Steinsvåg, Alkis Togias

Abstract

Nasal obstruction can be monitored objectively by measurement of nasal airflow, as evaluated by nasal peak flow, or as airways resistance/conductance as evaluated by rhinomanometry. Peak flow can be measured during inspiration or expiration. Of these measurements, nasal inspiratory peak flow is the best validated technique for home monitoring in clinical trials. The equipment is portable, relatively inexpensive, and simple to use. One disadvantage, however, is that nasal inspiratory peak flow is influenced by lower airway as well as upper airway function. Rhinomanometry is a more sensitive technique that is specific for nasal measurements. The equipment, however, requires an operator, is more expensive, and is not portable. Thus, it is applicable only for clinic visit measures in clinical trials. Measurements require patient cooperation and coordination, and not all can achieve repeatable results. Thus, this objective measure is best suited to laboratory challenge studies involving smaller numbers of selected volunteers. A nonphysiological measure of nasal patency is acoustic rhinometry. This sonic echo technique measures internal nasal luminal volume and the minimum cross-sectional area. The derivation of these measures from the reflected sound waves requires complex mathematical transformation and makes several theoretical assumptions. Despite this, however, such measures correlate well with the nasal physiological measures, and the nasal volume measures have been shown to relate well to results obtained by imaging techniques such as computed tomography scanning or magnetic resonance imaging. Like rhinomanometry, acoustic rhinometry is not suitable for home monitoring and can be applied only to clinic visit measures or for laboratory nasal challenge monitoring. It has advantages in being easy to use, in requiring little patient cooperation, and in providing repeatable results. In addition to nasal obstruction, allergic rhinitis is recognized to be associated with impaired mucociliary clearance and altered nasal responsiveness. Measures exist for the monitoring of these aspects of nasal dysfunction. Although measures of mucociliary clearance are simple to perform, they have a poor record of reproducibility. Their incorporation into clinical trials is thus questionable, although positive outcomes from therapeutic intervention have been reported. Measures of nasal responsiveness are at present largely confined to research studies investigating disease mechanisms in allergic and nonallergic rhinitis. The techniques are insufficiently standardized to be applied to multicenter clinical trials but could be used in limited-center studies to gain insight into the regulatory effects of different therapeutic modalities.

Figures

Fig 1
Fig 1
The technique of posterior rhinomanometry involves a pressure-sensing tube in the mouth, which detects the changes in pressure in the posterior nares, and a flow head to measure nasal airflow.
Fig 2
Fig 2
Spontaneous changes in left and right nasal resistance recorded in 1 patient with common cold. Reproduced with permission from Acta Oto-Laryngologica.
Fig 3
Fig 3
Paired measurements of total nasal resistance measured in 21 patients with common cold. Measurements were made no more than 6 minutes apart on 2 separate rhinomanometers with different staff making the measurements. The shaded and unshaded bars represent separate readings for each patient. The figure shows the repeatability of rhinomanometer measurements. Eccles, unpublished data, 2002.
Fig 4
Fig 4
Changes in nasal volume (upper panel), as measured by acoustic rhinometry, and in NAR (lower panel), as measured by active posterior rhinomanometry, with prostaglandin D2 (PGD2) intranasal challenge in healthy subjects. Howarth, unpublished data, 2003.

References

    1. Wihl J.A., Malm L. Rhinomanometry and nasal peak expiratory and inspiratory flow rate. Ann Allergy. 1988;61:50–55.
    1. Panagou P., Loukides S., Tsipra S., Syrigou K., Anastasakis C., Kalogeropoulos N. Evaluation of nasal patency: comparison of patient and clinician assessments with rhinomanometry. Acta Otolaryngol. 1998;118:847–851.
    1. Oluwole M., Gardiner Q., White P.S. The naso-oral index: a more valid measure than peak flow rate? Clin Otolaryngol. 1997;22:346–349.
    1. Hanif J., Eccles R., Jawad S.S. Use of a portable spirometer for studies on the nasal cycle. Am J Rhinol. 2001;15:303–306.
    1. Harar R.P., Kalan A., Kenyon G.S. Assessing the reproducibility of nasal spirometry parameters in the measurement of nasal patency. Rhinology. 2001;39:211–214.
    1. Frølund L., Madsen F., Mygind N., Nielsen N.H., Svendsen U.G., Weeke B. Comparison between different techniques for measuring nasal patency in a group of unselected patients. Acta Otolaryngol. 1987;104:175–179.
    1. Malm L. Measurement of nasal patency. Allergy. 1997;52:19–23.
    1. Fodil R., Brugel-Ribere L., Croce C., Sbirleau-Apiou G., Larger C., Papon J.F. Inspiratory flow in the nose: a model coupling flow and vasoerectile tissue distensibility. J Appl Physiol. 2005;98:288–295.
    1. Enberg R.N., Ownby D.R. Peak nasal inspiratory flow and Wright peak flow: a comparison of their reproducibility. Ann Allergy. 1991;67:371–374.
    1. Holmstrom M., Scadding G.K., Lund V.J., Darby Y.C. Assessment of nasal obstruction. A comparison between rhinomanometry and nasal inspiratory peak flow. Rhinology. 1990;28:191–196.
    1. Lund V.J. Objective assessment of nasal obstruction. Otolaryngol Clin North Am. 1989;22:279–290.
    1. Phagoo S.B., Watson R.A., Pride N.B. Use of nasal peak flow to assess nasal patency. Allergy. 1997;52:901–908.
    1. Hooper R.G. Forced inspiratory nasal flow-volume curves: a simple test of nasal airflow. Mayo Clin Proc. 2001;76:990–994.
    1. Gleeson M.J., Youlten L.J., Shelton D.M., Siodlak M.Z., Eiser N.M., Wengraf C.L. Assessment of nasal airway patency: a comparison of four methods. Clin Otolaryngol. 1986;11:99–107.
    1. Philpott C.M., Conboy P., Al-Azzawi F., Murty G. Nasal physiological changes during pregnancy. Clin Otolaryngol. 2004;29:343–351.
    1. Philpott C.M., El-Alami M., Murty G.E. The effect of the steroid sex hormones on the nasal airway during the normal menstrual cycle. Clin Otolaryngol. 2004;29:138–142.
    1. Wilson A.M., Sims E.J., Orr L.C., Coutie W.J., White P.S., Gardiner Q. Effects of topical corticosteroid and combined mediator blockade on domiciliary and laboratory measurements of nasal function in seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2001;87:344–349.
    1. Clarke R.W., Jones A.S., Richardson H. Peak nasal inspiratory flow—the plateau effect. J Laryngol Otol. 1995;109:399–402.
    1. Larsen K., Kristensen S. The peak flow nasal patency index. Ear Nose Throat J. 1992;71:23–25.
    1. Jones A.S., Viani L., Phillips D., Charters P. The objective assessment of nasal patency. Clin Otolaryngol. 1991;16:206–211.
    1. Fairley J.W., Durham L.H., Ell S.R. Correlation of subjective sensation of nasal patency with nasal inspiratory peak flow rate. Clin Otolaryngol. 1993;18:19–22.
    1. Sims E.J., Wilson A.M., White P.S., Gardiner Q., Lipworth B.J. Short-term repeatability and correlates of laboratory measures of nasal function in patients with seasonal allergic rhinitis. Rhinology. 2002;40:66–68.
    1. Marais J., Murray J.A., Marshall I., Douglas N., Martin S. Minimal cross-sectional areas, nasal peak flow and patients' satisfaction in septoplasty and inferior turbinectomy. Rhinology. 1994;32:145–147.
    1. Morrissey M.S., Alun-Jones T., Hill J. The relationship of peak inspiratory airflow to subjective airflow in the nose. Clin Otolaryngol. 1990;15:447–451.
    1. Prescott C.A., Prescott K.E. Peak nasal inspiratory flow measurement: an investigation in children. Int J Pediatr Otorhinolaryngol. 1995;32:137–141.
    1. Ahman M. Nasal peak flow rate records in work related nasal blockage. Acta Otolaryngol. 1992;112:839–844.
    1. Ahman M., Soderman E. Serial nasal peak expiratory flow measurements in woodwork teachers. Int Arch Occup Environ Health. 1996;68:177–182.
    1. Greiff L., Ahlström-Emanuelsson C., Andersson M. Dose-efficacy comparison of mometasone and budesonide aqueous nasal spray in seasonal allergic rhinitis. Allergy. 1999;54(suppl 52):136.
    1. Meltzer E.O., Gallet C.L., Jalowayski A.A., Garcia J., Diener P., Liao Y. Triamcinolone acetonide and fluticasone propionate aqueous nasal sprays significantly improve nasal airflow in patients with seasonal allergic rhinitis. Allergy Asthma Proc. 2004;25:53–58.
    1. Jordana G., Dolovich J., Briscoe M.P., Day J.H., Drouin M.A., Gold M. Intranasal fluticasone propionate versus loratadine in the treatment of adolescent patients with seasonal allergic rhinitis. J Allergy Clin Immunol. 1996;97:588–595.
    1. Yang W.H., Mehra S., Knight A., Zhang P., Stepner N. Fluticasone propionate nasal spray (FP) as adjunctive therapy to antibiotics in patients with recurrent sinusitis. J Allergy Clin Immunol. 1999;103:S115.
    1. Mastalerz L., Milewski M., Duplaga M., Nizankowska E., Szczeklik A. Intranasal fluticasone propionate for chronic eosinophilic rhinitis in patients with aspirin-induced asthma. Allergy. 1997;52:895–900.
    1. Holmberg K., Juliusson S., Balder B., Smith D.L., Richards D.H., Karlsson G. Fluticasone propionate aqueous nasal spray in the treatment of nasal polyposis. Ann Allergy Asthma Immunol. 1997;78:270–276.
    1. Moinuddin R., deTineo M., Maleckar B., Naclerio R.M., Baroody F.M. Comparison of the combinations of fexofenadine-pseudoephedrine and loratadine-montelukast in the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2004;92:73–79.
    1. Jankowski R., Schrewelius C., Bonfils P., Saban Y., Gilain L., Prades J.M. Efficacy and tolerability of budesonide aqueous nasal spray treatment in patients with nasal polyps. Arch Otolaryngol Head Neck Surg. 2001;127:447–452.
    1. Chalton R., Mackay I., Wilson R., Cole P. Double blind, placebo controlled trial of betamethasone nasal drops for nasal polyposis. BMJ (Clin Res Ed) 1985;291:788.
    1. Lildholdt T., Fogstrup J., Gammelgaard N., Kortholm B., Ulsoe C. Surgical versus medical treatment of nasal polyps. Acta Otolaryngol. 1988;105:140–143.
    1. Johansen L.V., Illum P., Kristensen S., Winther L., Petersen S.N., Synnerstad B. The effect of budesonide (Rhinocort) in the treatment of small and medium-sized nasal polyps. Clin Otolaryngol. 1993;18:524–527.
    1. Lildholdt T., Rundcrantz H., Lindqvist N. Efficacy of topical corticosteroid powder for nasal polyps: a double-blind, placebo-controlled study of budesonide. Clin Otolaryngol. 1995;20:26–30.
    1. Empey D.W. Assessment of the nasal passages. Br J Clin Pharmacol. 1980;9:317–319.
    1. McCaffrey T.V. Rhinomanometry and diagnosis of nasal obstruction. Facial Plast Surg. 1990;7:266–273.
    1. Eccles R. Rhinomanometry and nasal challenge. In: Mackay I.S., Bull T.R., editors. Scott-Brown's otolaryngology. 5th ed. Butterworth-Heinemann; London: 1987. pp. 40–53.
    1. Eccles R. Physiology of the nose. In: Jones A.S., Phillips D.E., Hilgers F.J.M., editors. Diseases of the head and neck, nose and throat. 1st ed. Arnold Publishers; London: 1998. pp. 675–686.
    1. Morris S., Jawad M.S., Eccles R. Relationships between vital capacity, height and nasal airway resistance in asymptomatic volunteers. Rhinology. 1992;30:259–264.
    1. Polgar G., Kong G.P. The nasal resistance of newborn infants. J Pediatr. 1965;67:557–567.
    1. Stocks J., Godfrey S. Nasal resistance during infancy. Respir Physiol. 1978;34:233–246.
    1. Syabbalo N.C., Bundgaard A., Entholm P., Schmidt A., Widdicombe J.G. Measurement and regulation of nasal airflow resistance in man. Rhinology. 1986;24:87–101.
    1. Vig P.S., Zajac D.J. Age and gender effects on nasal respiratory function in normal subjects. Cleft Palate Craniofac J. 1993;30:279–284.
    1. Broms P. Rhinomanometry, III: procedures and criteria for distinction between skeletal stenosis and mucosal swelling. Acta Otolaryngol. 1982;94:361–370.
    1. Eccles R., Reilly M., Eccles K.S. Changes in the amplitude of the nasal cycle associated with symptoms of acute upper respiratory tract infection. Acta Otolaryngol. 1996;116:77–81.
    1. Flanagan P., Eccles R. Spontaneous changes of unilateral nasal airflow in man: a re-examination of the “nasal cycle”. Acta Otolaryngol. 1997;117:590–595.
    1. Flanagan P., Eccles R. The normal range of unilateral nasal airflow in healthy human volunteers. J Physiol. 1996;491:P53–P54.
    1. Takeuchi H., Jawad M., Eccles R. Changes in unilateral nasal airflow in patients with seasonal allergic rhinitis measured in and out of season. Auris Nasus Larynx. 2000;27:141–145.
    1. Jawad S.S., Eccles R. Effect of pseudoephedrine on nasal airflow in patients with nasal congestion associated with common cold. Rhinology. 1998;36:73–76.
    1. Quine S.M., Aitken P.M., Eccles R. Effect of submucosal diathermy to the inferior turbinates on unilateral and total nasal airflow in patients with rhinitis. Acta Otolaryngol. 1999;119:911–915.
    1. Hasegawa M., Kern E.B. The human nasal cycle. Mayo Clin Proc. 1977;52:28–34.
    1. Hasegawa M., Saito Y. Postural variations in nasal resistance and symptomatology in allergic rhinitis. Acta Otolaryngol. 1979;88:268–272.
    1. Akerlund A., Klint T., Olen L., Rundcrantz H. Nasal decongestant effect of oxymetazoline in the common cold: an objective dose-response study in 106 patients. J Laryngol Otol. 1989;103:743–746.
    1. Schmidt B.M., Timmer W., Georgens A.C., Hilt M., Mattinger C., Wurst W. The new topical steroid ciclesonide is effective in the treatment of allergic rhinitis. J Clin Pharmacol. 1999;39:1062–1069.
    1. Rundcrantz H. Posture and congestion of nasal mucosa allergic rhinitis. Acta Otolaryngol. 1969;58:281–287.
    1. Forsyth R.D., Cole P., Shephard R.J. Exercise and nasal patency. J Appl Physiol. 1983;55:860–865.
    1. Dallimore N.S., Eccles R. Changes in human nasal resistance associated with exercise, hyperventilation and rebreathing. Acta Otolaryngol. 1977;84:416–421.
    1. Cole P., Forsyth R., Haight J.S. Effects of cold air and exercise on nasal patency. Ann Otol Rhinol Laryngol. 1983;92:196–198.
    1. Eccles R., Tolley N.S. The effect of alcohol ingestion upon nasal airway resistance. Rhinology. 1987;25:245–248.
    1. Flanagan P., Eccles R. Physiological versus pharmacological decongestion of the nose in healthy human subjects. Acta Otolaryngol. 1998;118:110–113.
    1. Eccles R. Nasal airflow and decongestants. In: Naclerio R.M., Durham S.R., Mygind N., editors. Rhinitis mechanisms and management. Marcel Dekker; New York: 1999. pp. 291–312.
    1. Eccles R. Relationship between measured nasal airway resistance and the sensation of nasal airflow. Facial Plast Surg. 1990;7:278–282.
    1. Jones A.S., Willatt D.J., Durham L.M. Nasal airflow: resistance and sensation. J Laryngol Otol. 1989;103:909–911.
    1. Naito K., Cole P., Chaban R., Oprysk D. Nasal resistance, sensation of obstruction, and rhinoscopic findings compared. Am J Rhinol. 1988;2:65–69.
    1. Eccles R. The relationship between subjective and objective measures of nasal function. Jpn J Rhinol. 1998;37:61–69.
    1. Hilberg O. Objective measurement of nasal airway dimensions using acoustic rhinometry: methodological and clinical aspects. Allergy. 2002;57(suppl 70):5–39.
    1. Jackson A.C., Butler J.P., Millet E.J., Hoppin F.G., Jr., Dawson S.V. Airway geometry by analysis of acoustic pulse response measurements. J Appl Physiol. 1977;43:523–536.
    1. Fredberg J.J. Acoustic determinants of respiratory system properties. Ann Biomed Eng. 1981;9:463–473.
    1. Hilberg O., Jackson A.C., Swift D.L., Pedersen O.F. Acoustic rhinometry: evaluation of nasal cavity geometry by acoustic reflection. J Appl Physiol. 1989;66:295–303.
    1. Hilberg O., Jensen F.T., Pedersen O.F. Nasal airway geometry: comparison between acoustic reflections and magnetic resonance scanning. J Appl Physiol. 1993;75:2811–2819.
    1. Gilain L., Coste A., Ricolfi F., Dahan E., Marliac D., Peynegre R. Nasal cavity geometry measured by acoustic rhinometry and computed tomography. Arch Otolaryngol Head Neck Surg. 1997;123:401–405.
    1. Hilberg O., Pedersen O.F. Acoustic rhinometry: influence of paranasal sinuses. J Appl Physiol. 1996;80:1589–1594.
    1. Corey J.P., Gungor A., Nelson R., Fredberg J., Lai V. A comparison of the nasal cross-sectional areas and volumes obtained with acoustic rhinometry and magnetic resonance imaging. Otolaryngol Head Neck Surg. 1997;117:349–354.
    1. Dastidar P., Heinonen T., Numminen J., Rautiainen M., Laasonen E. Semi-automatic segmentation of computed tomographic images in volumetric estimation of nasal airway. Eur Arch Otorhinolaryngol. 1999;256:192–198.
    1. Wilson A.M., Fowler S.J., Martin S.W., White P.S., Gardiner Q., Lipworth B.J. Evaluation of the importance of head and probe stabilisation in acoustic rhinometry. Rhinology. 2001;39:93–97.
    1. Lenders H., Scholl R., Brunner M. Acoustic rhinometry: the bat principle of the nose. HNO. 1992;40:239–247. [in German]
    1. Tanida M., Nonaka S., Yokoyama T., Horikawa H., Unno T. [A fundamental study of relationships between rhinomanometry and acoustic rhinometry] Nippon Jibiinkoka Gakkai Kaiho. 1996;99:601–610. [in Japanese]
    1. Tomkinson A., Eccles R. Errors arising in cross-sectional area estimation by acoustic rhinometry produced by breathing during measurement. Rhinology. 1995;33:138–140.
    1. Silkoff P.E., Chakravorty S., Chapnik J., Cole P., Zamel N. Reproducibility of acoustic rhinometry and rhinomanometry in normal subjects. Am J Rhinol. 1999;13:131–135.
    1. Mayhew T.M., O'Flynn P. Validation of acoustic rhinometry by using the Cavalieri principle to estimate nasal cavity volume in cadavers. Clin Otolaryngol. 1993;18:220–225.
    1. Hamilton J.W., McRae R.D., Jones A.S. The magnitude of random errors in acoustic rhinometry and re-interpretation of the acoustic profile. Clin Otolaryngol. 1997;22:408–413.
    1. Keuning J. Leiden University; Leiden: 1967. On the nasal cycle. Thesis.
    1. Fisher E.W., Scadding G.K., Lund V.J. The role of acoustic rhinometry in studying the nasal cycle. Rhinology. 1993;31:57–61.
    1. Fisher E.W., Liu M., Lund V.J. The nasal cycle after deprivation of airflow: a study of laryngectomy patients using acoustic rhinometry. Acta Otolaryngol. 1994;114:443–446.
    1. Hilberg O., Grymer L.F., Pedersen O.F. Spontaneous variations in congestion of the nasal mucosa. Ann Allergy Asthma Immunol. 1995;74:516–521.
    1. Morgan N.J., MacGregor F.B., Birchall M.A., Lund V.J., Sittampalam Y. Racial differences in nasal fossa dimensions determined by acoustic rhinometry. Rhinology. 1995;33:224–228.
    1. Corey J.P., Gungor A., Nelson R., Liu X., Fredberg J. Normative standards for nasal cross-sectional areas by race as measured by acoustic rhinometry. Otolaryngol Head Neck Surg. 1998;119:389–393.
    1. Gurr P., Diver J., Morgan N., MacGregor F., Lund V. Acoustic rhinometry of the Indian and Anglo-Saxon nose. Rhinology. 1996;34:156–159.
    1. Millqvist E., Bende M. Reference values for acoustic rhinometry in subjects without nasal symptoms. Am J Rhinol. 1998;12:341–343.
    1. Tomkinson A., Eccles R. External facial dimensions and minimum nasal cross-sectional area. Clin Otolaryngol. 1995;20:557–560.
    1. Sipila J., Nyberg-Simola S., Suonpaa J., Laippala P. Some fundamental studies on clinical measurement conditions in acoustic rhinometry. Rhinology. 1996;34:206–209.
    1. Austin C.E., Foreman J.C. Acoustic rhinometry compared with posterior rhinomanometry in the measurement of histamine- and bradykinin-induced changes in nasal airway patency. Br J Clin Pharmacol. 1994;37:33–37.
    1. Hilberg O., Grymer L.F., Pedersen O.F. Nasal histamine challenge in nonallergic and allergic subjects evaluated by acoustic rhinometry. Allergy. 1995;50:166–173.
    1. Wang D.Y., Raza M.T., Goh D.Y., Lee B.W., Chan Y.H. Acoustic rhinometry in nasal allergen challenge study: which dimensional measures are meaningful? Clin Exp Allergy. 2004;34:1093–1098.
    1. Corey J.P., Kemker B.J., Nelson R., Gungor A. Evaluation of the nasal cavity by acoustic rhinometry in normal and allergic subjects. Otolaryngol Head Neck Surg. 1997;117:22–28.
    1. Takeno S., Kawamoto H., Hirata S., Fukushima N., Yazin K. [Decongesting effect of tramazoline on nasal airway patency and nasal symptoms as evaluated by acoustic rhinometry: an objective study in 30 allergic and six non-allergic subjects] Nippon Jibiinkoka Gakkai Kaiho. 1998;101:900–907. [in Japanese]
    1. Kesavanathan J., Swift D.L., Fitzgerald T.K., Permutt T., Bascom R. Evaluation of acoustic rhinometry and posterior rhinomanometry as tools for inhalation challenge studies. J Toxicol Environ Health. 1996;48:295–307.
    1. Roithmann R., Cole P., Chapnik J., Barreto S.M., Szalai J.P., Zamel N. Acoustic rhinometry, rhinomanometry, and the sensation of nasal patency: a correlative study. J Otolaryngol. 1994;23:454–458.
    1. Porter M.J., Williamson I.G., Kerridge D.H., Maw A.R. A comparison of the sensitivity of manometric rhinometry, acoustic rhinometry, rhinomanometry and nasal peak flow to detect the decongestant effect of xylometazoline. Clin Otolaryngol. 1996;21:218–221.
    1. Roithmann R., Shpirer I., Cole P., Chapnik J., Szalai J.P., Zamel N. The role of acoustic rhinometry in nasal provocation testing. Ear Nose Throat J. 1997;76:747–750. 52.
    1. Ganslmayer M., Spertini F., Rahm F., Terrien M.H., Mosimann B., Leimgruber A. Evaluation of acoustic rhinometry in a nasal provocation test with allergen. Allergy. 1999;54:974–979.
    1. Bickford L., Shakib S., Taverner D. The nasal airways response in normal subjects to oxymetazoline spray: randomized double-blind placebo-controlled trial. Br J Clin Pharmacol. 1999;48:53–56.
    1. Taverner D., Bickford L., Shakib S., Tonkin A. Evaluation of the dose-response relationship for intra-nasal oxymetazoline hydrochloride in normal adults. Eur J Clin Pharmacol. 1999;55:509–513.
    1. Ohki M., Sata Y., Kawano K., Usui N. [Evaluation of nasal obstruction with acoustic rhinometry: a simulated study with a nasal model] Nippon Jibiinkoka Gakkai Kaiho. 1998;101:1022–1028. [in Japanese]
    1. Hilberg O. Effect of terfenadine and budesonide on nasal symptoms, olfaction, and nasal airway patency following allergen challenge. Allergy. 1995;50:683–688.
    1. Tai C.F., Ho K.Y., Hasegawa M. Evaluating the sensation of nasal obstruction with acoustic rhinometry and rhinomanometry. Kaohsiung J Med Sci. 1998;14:548–553.
    1. Zheng C., Pochon N., Lacroix J.S. [Acoustic rhinometry: comparison of pre- and post-septoplasty] Zhonghua Er Bi Yan Hou Ke Za Zhi. 1995;30:343–346. [in Chinese]
    1. Chatkin J.M., Djupesland P.G., Qian W., McClean P., Furlott H., Gutierrez C. Nasal nitric oxide is independent of nasal cavity volume. Am J Rhinol. 1999;13:179–184.
    1. Silkoff P.E., Roth Y., McClean P., Cole P., Chapnik J., Zamel N. Nasal nitric oxide does not control basal nasal patency or acute congestion following allergen challenge in allergic rhinitis. Ann Otol Rhinol Laryngol. 1999;108:368–372.
    1. Akerlund A., Bende M., Murphy C. Olfactory threshold and nasal mucosal changes in experimentally induced common cold. Acta Otolaryngol. 1995;115:88–92.
    1. Hummel T., Rothbauer C., Barz S., Grosser K., Pauli E., Kobal G. Olfactory function in acute rhinitis. Ann N Y Acad Sci. 1998;855:616–624.
    1. Hummel T., Rothbauer C., Pauli E., Kobal G. Effects of the nasal decongestant oxymetazoline on human olfactory and intranasal trigeminal function in acute rhinitis. Eur J Clin Pharmacol. 1998;54:521–528.
    1. Lane A.P., Zweiman B., Lanza D.C., Swift D., Doty R., Dhong H.J. Acoustic rhinometry in the study of the acute nasal allergic response. Ann Otol Rhinol Laryngol. 1996;105:811–818.
    1. Lale A.M., Mason J.D., Jones N.S. Mucociliary transport and its assessment: a review. Clin Otolaryngol. 1998;23:388–396.
    1. Liote H., Zahm J.M., Pierrot D., Puchelle E. Role of mucus and cilia in nasal mucociliary clearance in healthy subjects. Am Rev Respir Dis. 1989;140:132–136.
    1. Nuutinen J. Asymmetry in the nasal mucociliary transport rate. Laryngoscope. 1996;106:1424–1428.
    1. Selwyn D.A., Gyi A., Raphael J.H., Key A., Langton J.A. A perfusion system for in vitro measurement of human cilia beat frequency. Br J Anaesth. 1996;76:111–115.
    1. Mercke U., Toremalm N.G. Air humidity and mucociliary activity. Ann Otol Rhinol Laryngol. 1976;85:32–37.
    1. Roessler F., Grossenbacher R., Walt H. Effects of tracheostomy on human tracheobronchial mucosa: a scanning electron microscopic study. Laryngoscope. 1988;98:1261–1267.
    1. Luk C.K., Dulfano M.J. Effect of pH, viscosity and ionic-strength changes on ciliary beating frequency of human bronchial explants. Clin Sci (Lond) 1983;64:449–451.
    1. van de Donk H.J., Zuidema J., Merkus F.W. The influence of the pH and osmotic pressure upon tracheal ciliary beat frequency as determined with a new photo-electric registration device. Rhinology. 1980;18:93–104.
    1. Yager J., Chen T.M., Dulfano M.J. Measurement of frequency of ciliary beats of human respiratory epithelium. Chest. 1978;73:627–633.
    1. Hasani A., Vora H., Pavia D., Agnew J.E., Clarke S.W. No effect of gender on lung mucociliary clearance in young healthy adults. Respir Med. 1994;88:697–700.
    1. Isawa T., Teshima T., Anazawa Y., Miki M., Shiraishi K., Motomiya M. Effect of respiratory phases and gravity on mucociliary transport in the normal lungs. Sci Rep Res Inst Tohoku Univ [Med] 1991;38:43–50.
    1. Wolff R.K., Dolovich M.B., Obminski G., Newhouse M.T. Effects of exercise and eucapnic hyperventilation on bronchial clearance in man. J Appl Physiol. 1977;43:46–50.
    1. Pavia D. Lung mucociliary clearance. In: Clarke S., Pavia D., editors. Aerosols and the lung: clinical and experimental aspects. Butterworth-Heinemann; London: 1984. pp. 127–155.
    1. Goodman R.M., Yergin B.M., Landa J.F., Golivanux M.H., Sackner M.A. Relationship of smoking history and pulmonary function tests to tracheal mucous velocity in nonsmokers, young smokers, ex-smokers, and patients with chronic bronchitis. Am Rev Respir Dis. 1978;117:205–214.
    1. Mortensen J., Lange P., Nyboe J., Groth S. Lung mucociliary clearance. Eur J Nucl Med. 1994;21:953–961.
    1. Riechelmann H., Maurer J., Kienast K., Hafner B., Mann W.J. Respiratory epithelium exposed to sulfur dioxide—functional and ultrastructural alterations. Laryngoscope. 1995;105:295–299.
    1. Wolff R.K. Effects of airborne pollutants on mucociliary clearance. Environ Health Perspect. 1986;66:223–237.
    1. Man S.F., Hulbert W.C., Man G., Mok K., Williams D.J. Effects of SO2 exposure on canine pulmonary epithelial functions. Exp Lung Res. 1989;15:181–198.
    1. Gerrity T.R., Bennett W.D., Kehrl H., DeWitt P.J. Mucociliary clearance of inhaled particles measured at 2 h after ozone exposure in humans. J Appl Physiol. 1993;74:2984–2989.
    1. Camner P., Mossberg B. Airway mucus clearance and mucociliary transport. In: Moren F., Dolovich M., Newhouse M., Newman S., editors. Aerosols in medicine: principles, diagnosis and therapy. Elsevier; Amsterdam: 1993. pp. 247–260.
    1. Lopez-Vidriero M.T., Reid L. Bronchial mucus in health and disease. Br Med Bull. 1978;34:63–74.
    1. Wanner A., Sielczak M., Mella J.F., Abraham W.M. Ciliary responsiveness in allergic and nonallergic airways. J Appl Physiol. 1986;60:1967–1971.
    1. Ragab S.M., Lund V.J., Scadding G. Evaluation of the medical and surgical treatment of chronic rhinosinusitis: a prospective, randomised, controlled trial. Laryngoscope. 2004;114:923–930.
    1. Holmberg K., Pipkorn U. Influence of topical beclomethasone dipropionate suspension on human nasal mucociliary activity. Eur J Clin Pharmacol. 1986;30:625–627.
    1. Klossek J.M., Laliberte F., Laliberte M.F., Mounedji N., Bousquet J. Local safety of intranasal triamcinolone acetonide: clinical and histological aspects of nasal mucosa in the long-term treatment of perennial allergic rhinitis. Rhinology. 2001;39:17–22.
    1. Merkus F.W., Schusler-van Hees M.T. Influence of levocabastine suspension on ciliary beat frequency and mucociliary clearance. Allergy. 1992;47:230–233.
    1. Lee L.M., Gendeh B.S. Pre and post treatment mucociliary function in allergic rhinitis in three different treatment modalities. Med J Malaysia. 2003;58:17–20.
    1. Piatti G., Ceriotti L., Cavallaro G., Ambrosetti U., Mantovani M., Pistone A. Effects of zafirlukast on bronchial asthma and allergic rhinitis. Pharmacol Res. 2003;47:541–547.
    1. Cho J.H., Kwun Y.S., Jang H.S., Kang J.M., Won Y.S., Yoon H.R. Long-term use of preservatives on rat nasal respiratory mucosa: effects of benzalkonium chloride and potassium sorbate. Laryngoscope. 2000;110:312–317.
    1. Berg O.H., Lie K., Steinsvag S.K. The effects of topical nasal steroids on rat respiratory mucosa in vivo, with special reference to benzalkonium chloride. Allergy. 1997;52:627–632.
    1. Marple B., Roland P., Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngol Head Neck Surg. 2004;130:131–141.
    1. Diemer F.B., Sanico A.M., Horowitz E., Togias A. Non-allergenic inhalant triggers in seasonal and perennial allergic rhinitis. J Allergy Clin Immunol. 1999;103:S2.
    1. Togias A. Non-allergic rhinitis. In: Mygind N., Naclerio R., Durham S., editors. Rhinitis. Marcel Dekker; New York: 1998. pp. 383–399.
    1. Connell J.T. Quantitative intranasal pollen challenges, 3: the priming effect in allergic rhinitis. J Allergy. 1969;43:33–44.
    1. Wachs M., Proud D., Lichtenstein L.M., Kagey-Sobotka A., Norman P.S., Naclerio R.M. Observations on the pathogenesis of nasal priming. J Allergy Clin Immunol. 1989;84:492–501.
    1. Walden S.M., Proud D., Lichtenstein L.M., Kagey-Sobotka A., Naclerio R.M. Antigen-provoked increase in histamine reactivity: observations on mechanisms. Am Rev Respir Dis. 1991;144:642–648.
    1. Mygind N. Nasal allergy. Blackwell Science Ltd; London: 1979. Perennial rhinitis; pp. 224–232.
    1. Raphael G.D., Druce H.M., Baraniuk J.N., Kaliner M.A. Pathophysiology of rhinitis, 1: assessment of the sources of protein in methacholine-induced nasal secretions. Am Rev Respir Dis. 1988;138:413–420.
    1. Anggard A. The effects of parasympathetic nerve stimulation on the microcirculation and secretion in the nasal mucosa of the cat. Acta Otolaryngol. 1974;78:98–105.
    1. Baroody F.M., Wagenmann M., Naclerio R.M. Comparison of the secretory response of the nasal mucosa to methacholine and histamine. J Appl Physiol. 1993;74:2661–2671.
    1. Raphael G.D., Jeney E.V., Baraniuk J.N., Kim I., Meredith S.D., Kaliner M.A. Pathophysiology of rhinitis: lactoferrin and lysozyme in nasal secretions. J Clin Invest. 1989;84:1528–1535.
    1. Konno A., Terada N., Okamoto Y., Togawa K. The role of chemical mediators and mucosal hyperreactivity in nasal hypersecretion in nasal allergy. J Allergy Clin Immunol. 1987;79:620–627.
    1. Gerth Van Wijk R., Dieges P.H. Comparison of nasal responsiveness to histamine, methacholine and phentolamine in allergic rhinitis patients and controls. Clin Allergy. 1987;17:563–570.
    1. Druce H.M., Wright R.H., Kossoff D., Kaliner M.A. Cholinergic nasal hyperreactivity in atopic subjects. J Allergy Clin Immunol. 1985;76:445–452.
    1. Corrado O.J., Gould C.A., Kassab J.Y., Davies R.J. Nasal response of rhinitic and non-rhinitic subjects to histamine and methacholine: a comparative study. Thorax. 1986;41:863–868.
    1. White M.V. Nasal cholinergic hyperresponsiveness in atopic subjects studied out of season. J Allergy Clin Immunol. 1993;92:278–287.
    1. Klementsson H., Andersson M., Pipkorn U. Allergen-induced increase in nonspecific nasal reactivity is blocked by antihistamines without a clear-cut relationship to eosinophil influx. J Allergy Clin Immunol. 1990;86:466–472.
    1. Sanico A.M., Philip G., Lai G.K., Togias A. Hyperosmolar saline induces reflex nasal secretions, evincing neural hyperresponsiveness in allergic rhinitis. J Appl Physiol. 1999;86:1202–1210.
    1. Caterina M.J., Schumacher M.A., Tominaga M., Rosen T.A., Levine J.D., Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–824.
    1. Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev. 1991;43:143–201.
    1. Philip G., Baroody F.M., Proud D., Naclerio R.M., Togias A.G. The human nasal response to capsaicin. J Allergy Clin Immunol. 1994;94:1035–1045.
    1. Sanico A.M., Atsuta S., Proud D., Togias A. Dose-dependent effects of capsaicin nasal challenge: in vivo evidence of human airway neurogenic inflammation. J Allergy Clin Immunol. 1997;100:632–641.
    1. Sanico A.M., Koliatsos V.E., Stanisz A.M., Bienenstock J., Togias A. Neural hyperresponsiveness and nerve growth factor in allergic rhinitis. Int Arch Allergy Immunol. 1999;118:154–158.
    1. Okuda M., Ohtsuka H., Sakaguchi K., Watase T. Nasal histamine sensitivity in allergic rhinitis. Ann Allergy. 1983;51:51–55.
    1. Clement P.A., Stoop A.P., Kaufman L. Histamine threshold and nasal hyperreactivity in non specific allergic rhinopathy. Rhinology. 1985;23:35–42.
    1. Mullins R.J., Olson L.G., Sutherland D.C. Nasal histamine challenges in symptomatic allergic rhinitis. J Allergy Clin Immunol. 1989;83:955–959.
    1. Bedard P.M., Jobin M., Clement L., Mourad W., Hebert J. Evaluation of nonspecific nasal reactivity to histamine during and after natural ragweed pollen exposure. Am J Rhinol. 1989;3:211–215.
    1. Baroody F.M., Cruz A.A., Lichtenstein L.M., Kagey-Sobotka A., Proud D., Naclerio R.M. Intranasal beclomethasone inhibits antigen-induced nasal hyperresponsiveness to histamine. J Allergy Clin Immunol. 1992;90:373–376.
    1. Andersson M., Andersson P., Pipkorn U. Allergen-induced specific and non-specific nasal reactions: reciprocal relationship and inhibition by topical glucocorticosteroids. Acta Otolaryngol. 1989;107:270–277.
    1. de Graaf-in 't Veld T., Koenders S., Garrelds I.M., Gerth van Wijk R. The relationships between nasal hyperreactivity, quality of life, and nasal symptoms in patients with perennial allergic rhinitis. J Allergy Clin Immunol. 1996;98:508–513.
    1. Okayama M., Baraniuk J.N., Hausfeld J.N., Merida M., Kaliner M.A. Characterization and autoradiographic localization of histamine H1 receptors in human nasal turbinates. J Allergy Clin Immunol. 1992;89:1144–1150.
    1. Proud D., Togias A., Naclerio R.M., Crush S.A., Norman P.S., Lichtenstein L.M. Kinins are generated in vivo following nasal airway challenge of allergic individuals with allergen. J Clin Invest. 1983;72:1678–1685.
    1. Riccio M.M., Proud D. Evidence that enhanced nasal reactivity to bradykinin in patients with symptomatic allergy is mediated by neural reflexes. J Allergy Clin Immunol. 1996;97:1252–1263.
    1. Baraniuk J.N., Silver P.B., Kaliner M.A., Barnes P.J. Perennial rhinitis subjects have altered vascular, glandular, and neural responses to bradykinin nasal provocation. Int Arch Allergy Immunol. 1994;103:202–208.
    1. Berman A.R., Togias A.G., Skloot G., Proud D. Allergen-induced hyperresponsiveness to bradykinin is more pronounced than that to methacholine. J Appl Physiol. 1995;78:1844–1852.
    1. Reynolds C.J., Togias A., Proud D. Airways hyper-responsiveness to bradykinin and methacholine: effects of inhaled fluticasone. Clin Exp Allergy. 2002;32:1174–1179.
    1. Silvers W.S. The skier's nose: a model of cold-induced rhinorrhea. Ann Allergy. 1991;67:32–36.
    1. Togias A.G., Naclerio R.M., Proud D., Fish J.E., Adkinson N.F., Jr., Kagey-Sobotka A. Nasal challenge with cold, dry air results in release of inflammatory mediators: possible mast cell involvement. J Clin Invest. 1985;76:1375–1381.
    1. Togias A.G., Naclerio R.M., Peters S.P., Nimmagadda I., Proud D., Kagey-Sobotka A. Local generation of sulfidopeptide leukotrienes upon nasal provocation with cold, dry air. Am Rev Respir Dis. 1986;133:1133–1137.
    1. Togias A.G., Proud D., Lichtenstein L.M., Adams G.K., 3rd, Norman P.S., Kagey-Sobotka A. The osmolality of nasal secretions increases when inflammatory mediators are released in response to inhalation of cold, dry air. Am Rev Respir Dis. 1988;137:625–629.
    1. Togias A., Lichtenstein L.M., Norman P.S., Bascom R., Proud D., Kagey-Sobotka A. The relationship between atopy and the response to cold dry air CDA and histamine H challenge in perennial rhinitis PR. J Allergy Clin Immunol. 1988;81:283.
    1. Togias A., Eggleston P., Kagey-Sobotka A., Proud D., Lichtenstein L.M., Naclerio R.M. Hyperosmolar and histamine H nasal challenge of individuals with and without cold dry air CDA sensitivity. J Allergy Clin Immunol. 1989;83:280.
    1. Philip G., Jankowski R., Baroody F.M., Naclerio R.M., Togias A.G. Reflex activation of nasal secretion by unilateral inhalation of cold dry air. Am Rev Respir Dis. 1993;148:1616–1622.
    1. Stephens L., Proud D., Togias A. Nasal cold, dry air (CDA) challenge results in stronger nasal and pulmonary responses in asthmatics compared to patients with rhinitis. J Allergy Clin Immunol. 1996;97:315.
    1. Togias A., Krishnamurthy A., Proud D., Kagey-Sobotka A., Lichtenstein L.M., Naclerio R. Antigen AG augments the upper airway reaction to cold dry air. Am Rev Respir Dis. 1991;143:A37.
    1. Braat J.P., Mulder P.G., Fokkens W.J., van Wijk R.G., Rijntjes E. Intranasal cold dry air is superior to histamine challenge in determining the presence and degree of nasal hyperreactivity in nonallergic noninfectious perennial rhinitis. Am J Respir Crit Care Med. 1998;157:1748–1755.
    1. Anderson S., Togias A. Dry air and hyperosmolar challenge in asthma and rhinitis. In: Busse W.W., Holgate S., editors. Asthma and rhinitis. Blackwell Scientific Publications Inc; Boston: 1995. pp. 1178–1195.
    1. Cruz A.A., Togias A.G., Lichtenstein L.M., Kagey-Sobotka A., Proud D., Naclerio R.M. Local application of atropine attenuates the upper airway reaction to cold, dry air. Am Rev Respir Dis. 1992;146:340–346.
    1. Silber G., Proud D., Warner J., Naclerio R., Kagey-Sobotka A., Lichtenstein L. In vivo release of inflammatory mediators by hyperosmolar solutions. Am Rev Respir Dis. 1988;137:606–612.
    1. Krayenbuhl M.C., Hudspith B.N., Scadding G.K., Brostoff J. Nasal response to allergen and hyperosmolar challenge. Clin Allergy. 1988;18:157–164.
    1. Greiff L., Andersson M., Wollmer P., Persson C.G. Hypertonic saline increases secretory and exudative responsiveness of human nasal airway in vivo. Eur Respir J. 2003;21:308–312.
    1. Shusterman D., Balmes J. Measurement of nasal irritant sensitivity to pulsed carbon dioxide: a pilot study. Arch Environ Health. 1997;52:334–340.
    1. Shusterman D.J., Murphy M.A., Balmes J.R. Subjects with seasonal allergic rhinitis and nonrhinitic subjects react differentially to nasal provocation with chlorine gas. J Allergy Clin Immunol. 1998;101:732–740.
    1. Togias A., Naclerio R.M., Proud D., Baumgarten C., Peters S., Creticos P.S. Mediator release during nasal provocation: a model to investigate the pathophysiology of rhinitis. Am J Med. 1985;79:26–33.
    1. Greiff L., Pipkorn U., Alkner U., Persson C.G. The “nasal pool” device applies controlled concentrations of solutes on human nasal airway mucosa and samples its surface exudations/secretions. Clin Exp Allergy. 1990;20:253–259.
    1. Klementsson H., Venge P., Andersson M., Pipkorn U. Allergen-induced changes in nasal secretory responsiveness and eosinophil granulocytes. Acta Otolaryngol. 1991;111:776–784.
    1. Malm L., Wihl J.A., Lamm C.J., Lindqvist N. Reduction of methacholine induced nasal secretion by treatment with a new topical steroid in perennial nonallergic rhinitis. Allergy. 1981;36:209–214.
    1. Toft A., Wihl J.A., Toxman J., Mygind N. Double-blind comparison between beclomethasone dipropionate as aerosol and as powder in patients with nasal polyposis. Clin Allergy. 1982;12:391–401.
    1. Klementsson H., Svensson C., Andersson M., Venge P., Pipkorn U., Persson C.G. Eosinophils, secretory responsiveness and glucocorticoid-induced effects on the nasal mucosa during a weak pollen season. Clin Exp Allergy. 1991;21:705–710.
    1. Veld G., Garrels I.M., Toorenbergen A.W. Effect of topical levocabastine on nasal response to allergen challenge and nasal hyperreactivity in perennial rhinitis. Ann Allergy. 1995;725:261–266.

Source: PubMed

3
Subscribe