DNA methylation, its mediators and genome integrity

Huan Meng, Ying Cao, Jinzhong Qin, Xiaoyu Song, Qing Zhang, Yun Shi, Liu Cao, Huan Meng, Ying Cao, Jinzhong Qin, Xiaoyu Song, Qing Zhang, Yun Shi, Liu Cao

Abstract

DNA methylation regulates many cellular processes, including embryonic development, transcription, chromatin structure, X-chromosome inactivation, genomic imprinting and chromosome stability. DNA methyltransferases establish and maintain the presence of 5-methylcytosine (5mC), and ten-eleven translocation cytosine dioxygenases (TETs) oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which can be removed by base excision repair (BER) proteins. Multiple forms of DNA methylation are recognised by methyl-CpG binding proteins (MeCPs), which play vital roles in chromatin-based transcriptional regulation, DNA repair and replication. Accordingly, defects in DNA methylation and its mediators may cause silencing of tumour suppressor genes and misregulation of multiple cell cycles, DNA repair and chromosome stability genes, and hence contribute to genome instability in various human diseases, including cancer. Thus, understanding functional genetic mutations and aberrant expression of these DNA methylation mediators is critical to deciphering the crosstalk between concurrent genetic and epigenetic alterations in specific cancer types and to the development of new therapeutic strategies.

Keywords: BRCA1; DNA glycosylases; DNA methylation; DNA methyltransferases; genome instability.; methyl-CpG binding proteins.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Figure 1
Figure 1
Major forms and distribution of DNA methylation. (A) The three major forms of cytosine bases in mammalian DNA. The 5-position of cytosine is covalently methylated by DNA cytosine methyltransferases (DNMTs) with the presence of co-factor S-adenosyl methionine (SAM). The resulting 5-methylcytosine (5mC) is mostly found on CpG dinucleotides in somatic cells. 5-hydroxymethylcytosine (5hmC) is formed by methylation and subsequent hydroxylation and is mediated by the ten-eleven translocation cytosine dioxygenases (TETs). (B) Distribution of CpG dinucleotides in mammalian genomes. In vertebrate genomes, CpG dinucleotides are generally highly methylated, whereas CpG islands (CGIs) that are associated with gene promoters have exceptional global unmethylated patterns. Exceptions include CGIs on inactive X-chromosomes in female cells, where CGIs are hypermethylated. In addition to canonical CGIs located at annotated transcription start sites (TSSs), orphan CGIs of unknown function are found within gene bodies (intragenic) and between annotated genes (intergenic). Unmethylated CGIs at 5' ends of multiple genes are positively correlated with transcriptional activity (active, left), whereas a small number of genes are hypermethylated at their promoter CGIs and are repressed in specific cell types (inactive, right). Gene bodies are often methylated with higher DNA methylation at exons than introns, and 5hmC is present at expressed gene bodies and are the proposed 5mC oxidation products of TET enzymes (labelled white squares at body of gene). White circles, nonmethylated CpGs; black circles, methylated CpGs; white squares, hydroxylmethylated CpGs; red boxes, active and transcribed exons; black boxes, inactive and silenced exons; transcriptional states of these genes are represented by the red arrow (active) and the black cross (inactive).
Figure 2
Figure 2
Mediators of DNA methylation machinery. (A) Domain structures of mammalian DNA methyltransferases (DNMTs). Functional domains in the N-terminal regions of DNMTs are shown and the conserved motifs in the C-terminal region are labelled. In the N-terminal region, the sub-domains include a proliferating cell nuclear antigen binding site (PBD), nuclear localisation signal region (NLS), plant homeo domain (PHD) like domain and PWWP domain (highly conserved proline-tryptophan-tryptophan-proline motif that is involved in protein-protein interactions) and bromo-adjacent homology domains (BAH). N- and C-terminal domains are linked by Gly-Lys dipeptides. Highly conserved C-terminal methyltransferase motifs are shown as thick black lines (indicated as I-X). (B) Domain structures of methyl-CpG binding proteins (MeCPs). Three families of characterised mammalian MeCPs include (1) the methyl-CpG binding domain proteins (MBDs) MBD1, MBD2, MBD3, MBD4 and MeCP2. (2) the structurally unrelated methyl-CpG binding zinc-finger proteins of the Kaiso family KAISO/ZBTB33, ZBTB4 and ZBTB38 and (3) the methyl-CpG binding SRA domain proteins of the UHRF family UHRF1 and its homologue UHRF2. Labelled sub-domains include MBD, methyl-CpG binding domain; TRD, trans-repressor domain; GR, E, P, amino acid repeats; BTB/POZ, broad complex, tramtrack, and bric à brac domains; ZF, zinc finger motifs; UBL, ubiquitin-like motif; PHD, Plant homeodomain and SRA, SET and Ring-associated domain. DNA binding regions are indicated. (C) Domain structures of ten-eleven translocation methylcytosine dioxygenases (TETs). Schematic representation of conserved domains of mouse Tet proteins is shown, including a double-stranded-helix (DSBH) fold (all Tets), cysteine-rich (Cys-rich) domain (all Tets) and CXXC zinc fingers (Tet1 and Tet3).

References

    1. Johnson TB, Coghill RD. The Discovery of 5-methyl-cytosine in Tuberculinic Acid, The Nucleic Acid of The Tubercle Bacillus. J Am Chem Soc. 1925;47:2838–44. doi:10.1021/ja01688a030.
    1. Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 1948;175:315–32.
    1. Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14:9–25.
    1. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187:226–32.
    1. Doerfler W. De novo methylation, long-term promoter silencing, methylation patterns in the human genome, and consequences of foreign DNA insertion. Curr Top Microbiol Immunol. 2006;301:125–75.
    1. Waddington CH. The epigenotype. Endeavour. 1942. pp. 18–20.
    1. Russo E, Martienssen R, Riggs AD. Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor Lab Press, Plainview, NY. 1996.
    1. Bickle TA, Kruger DH. Biology of DNA restriction. Microbiol Rev. 1993;57:434–50.
    1. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–402.
    1. Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA. et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature. 2010;464:1351–6. doi:10.1038/nature08990.
    1. Sproul D, Nestor C, Culley J, Dickson JH, Dixon JM, Harrison DJ. et al. Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer. Proc Natl Acad Sci U S A. 2011;108:4364–9. doi:10.1073/pnas.1013224108.
    1. Beaujean N, Taylor J, Gardner J, Wilmut I, Meehan R, Young L. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod. 2004;71:185–93. doi:10.1095/biolreprod.103.026559.
    1. Illingworth RS, Bird AP. CpG islands--'a rough guide'. FEBS Lett. 2009;583:1713–20. doi:10.1016/j.febslet.2009.04.012.
    1. Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ, Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS genetics. 2010. 6. doi:10.1371/journal.pgen.1001134.
    1. Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324:929–30. doi:10.1126/science.1169786.
    1. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5. doi:10.1126/science.1170116.
    1. Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011;286:35334–8. doi:10.1074/jbc.C111.284620.
    1. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11:607–20. doi:10.1038/nrm2950.
    1. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7. doi:10.1126/science.1210944.
    1. Meng H, Chen G, Gao HM, Song X, Shi Y, Cao L. The Emerging Nexus of Active DNA Demethylation and Mitochondrial Oxidative Metabolism in Post-Mitotic Neurons. Int J Mol Sci. 2014;15:22604–25. doi:10.3390/ijms151222604.
    1. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22. doi:10.1038/nature08514.
    1. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A. 2000;97:5237–42.
    1. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3:662–73. doi:10.1038/nrg887.
    1. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–81. doi:10.1016/j.cell.2007.01.033.
    1. Iyer LM, Tahiliani M, Rao A, Aravind L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell cycle. 2009;8:1698–710.
    1. Inoue A, Shen L, Dai Q, He C, Zhang Y. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 2011;21:1670–6. doi:10.1038/cr.2011.189.
    1. Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L. et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell. 2013;153:678–91. doi:10.1016/j.cell.2013.04.001.
    1. Nestor C, Ruzov A, Meehan R, Dunican D. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques. 2010;48:317–9. doi:10.2144/000113403.
    1. Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One. 2010;5:e8888.. doi:10.1371/journal.pone.0008888.
    1. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011;29:68–72. doi:10.1038/nbt.1732.
    1. Nestor CE, Ottaviano R, Reddington J, Sproul D, Reinhardt D, Dunican D. et al. Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res. 2012;22:467–77. doi:10.1101/gr.126417.111.
    1. Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011;25:2436–52. doi:10.1101/gad.179184.111.
    1. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766–70. doi:10.1038/nature07107.
    1. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND. et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341:1237905.. doi:10.1126/science.1237905.
    1. Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6:a019133.. doi:10.1101/cshperspect.a019133.
    1. Bird A, Taggart M, Frommer M, Miller OJ, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985;40:91–9.
    1. Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A. 2002;99:3740–5. doi:10.1073/pnas.052410099.
    1. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209–13. doi:10.1038/321209a0.
    1. Wolf SF, Dintzis S, Toniolo D, Persico G, Lunnen KD, Axelman J. et al. Complete concordance between glucose-6-phosphate dehydrogenase activity and hypomethylation of 3' CpG clusters: implications for X chromosome dosage compensation. Nucleic Acids Res. 1984;12:9333–48.
    1. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36. doi:10.1093/carcin/bgp220.
    1. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT. et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010;20:320–31. doi:10.1101/gr.101907.109.
    1. Zhang Y, Rohde C, Tierling S, Jurkowski TP, Bock C, Santacruz D. et al. DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution. PLoS genetics. 2009;5:e1000438.. doi:10.1371/journal.pgen.1000438.
    1. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet. 2012;44:40–6. doi:10.1038/ng.969.
    1. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG. et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43:768–75. doi:10.1038/ng.865.
    1. Suter CM, Martin DI, Ward RL. Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis. 2004;19:95–101. doi:10.1007/s00384-003-0539-3.
    1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.
    1. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability--an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8. doi:10.1038/nrm2858.
    1. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.
    1. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19:219–20. doi:10.1038/890.
    1. Kim JK, Samaranayake M, Pradhan S. Epigenetic mechanisms in mammals. Cellular and molecular life sciences: CMLS. 2009;66:596–612. doi:10.1007/s00018-008-8432-4.
    1. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514. doi:10.1146/annurev.biochem.74.010904.153721.
    1. Leonhardt H, Page AW, Weier HU, Bestor TH. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 1992;71:865–73.
    1. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007;317:1760–4. doi:10.1126/science.1147939.
    1. Sharif J, Koseki H. Recruitment of Dnmt1 roles of the SRA protein Np95 (Uhrf1) and other factors. Prog Mol Biol Transl Sci. 2011;101:289–310. doi:10.1016/B978-0-12-387685-0.00008-1.
    1. Achour M, Jacq X, Ronde P, Alhosin M, Charlot C, Chataigneau T. et al. The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene. 2008;27:2187–97. doi:10.1038/sj.onc.1210855.
    1. Smallwood A, Esteve PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 2007;21:1169–78. doi:10.1101/gad.1536807.
    1. Esteve PO, Chin HG, Smallwood A, Feehery GR, Gangisetty O, Karpf AR. et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 2006;20:3089–103. doi:10.1101/gad.1463706.
    1. Ooi SK, Wolf D, Hartung O, Agarwal S, Daley GQ, Goff SP. et al. Dynamic instability of genomic methylation patterns in pluripotent stem cells. Epigenetics & chromatin. 2010;3:17.. doi:10.1186/1756-8935-3-17.
    1. Chedin F, Lieber MR, Hsieh CL. The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A. 2002;99:16916–21. doi:10.1073/pnas.262443999.
    1. Chen ZX, Mann JR, Hsieh CL, Riggs AD, Chedin F. Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem. 2005;95:902–17. doi:10.1002/jcb.20447.
    1. Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A. Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem. 2005;280:13341–8. doi:10.1074/jbc.M413412200.
    1. Kareta MS, Botello ZM, Ennis JJ, Chou C, Chedin F. Reconstitution and mechanism of the stimulation of de novo methylation by human DNMT3L. J Biol Chem. 2006;281:25893–902. doi:10.1074/jbc.M603140200.
    1. Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature. 2007;449:248–51. doi:10.1038/nature06146.
    1. Jurkowska RZ, Rajavelu A, Anspach N, Urbanke C, Jankevicius G, Ragozin S. et al. Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules: heterochromatic localization and role of Dnmt3L. J Biol Chem. 2011;286:24200–7. doi:10.1074/jbc.M111.254987.
    1. Neri F, Krepelova A, Incarnato D, Maldotti M, Parlato C, Galvagni F. et al. Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs. Cell. 2013;155:121–34. doi:10.1016/j.cell.2013.08.056.
    1. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97. doi:10.1016/j.tibs.2005.12.008.
    1. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22:9–20. doi:10.1016/j.ccr.2012.06.008.
    1. Subramaniam D, Thombre R, Dhar A, Anant S. DNA methyltransferases: a novel target for prevention and therapy. Front Oncol. 2014;4:80.. doi:10.3389/fonc.2014.00080.
    1. Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, Hirohashi S. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett. 2003;192:75–82.
    1. Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y. et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001;97:1172–9.
    1. Rajendran G, Shanmuganandam K, Bendre A, Muzumdar D, Goel A, Shiras A. Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas. J Neurooncol. 2011;104:483–94. doi:10.1007/s11060-010-0520-2.
    1. Xing J, Stewart DJ, Gu J, Lu C, Spitz MR, Wu X. Expression of methylation-related genes is associated with overall survival in patients with non-small cell lung cancer. Br J Cancer. 2008;98:1716–22. doi:10.1038/sj.bjc.6604343.
    1. Li A, Omura N, Hong SM, Goggins M. Pancreatic cancer DNMT1 expression and sensitivity to DNMT1 inhibitors. Cancer Biol Ther. 2010;9:321–9. doi:10.4161/cbt.9.4.10750.
    1. Etoh T, Kanai Y, Ushijima S, Nakagawa T, Nakanishi Y, Sasako M. et al. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol. 2004;164:689–99. doi:10.1016/S0002-9440(10)63156-2.
    1. Nagai M, Nakamura A, Makino R, Mitamura K. Expression of DNA (5-cytosin)-methyltransferases (DNMTs) in hepatocellular carcinomas. Hepatol Res. 2003;26:186–91.
    1. Mirza S, Sharma G, Parshad R, Gupta SD, Pandya P, Ralhan R. Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer. 2013;16:23–31. doi:10.4048/jbc.2013.16.1.23.
    1. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915–26.
    1. Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM. et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell. 2001;104:829–38.
    1. Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology. 2001;33:561–8. doi:10.1053/jhep.2001.22507.
    1. Kanai Y, Ushijima S, Kondo Y, Nakanishi Y, Hirohashi S. DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. Int J Cancer. 2001;91:205–12.
    1. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X. et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311:395–8. doi:10.1126/science.1120976.
    1. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE. et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33. doi:10.1056/NEJMoa1005143.
    1. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y. et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011;43:309–15. doi:10.1038/ng.788.
    1. Yang J, Wei X, Wu Q, Xu Z, Gu D, Jin Y. et al. Clinical significance of the expression of DNA methyltransferase proteins in gastric cancer. Mol Med Rep. 2011;4:1139–43. doi:10.3892/mmr.2011.578.
    1. He S, Wang F, Yang L, Guo C, Wan R, Ke A. et al. Expression of DNMT1 and DNMT3a are regulated by GLI1 in human pancreatic cancer. PLoS One. 2011;6:e27684.. doi:10.1371/journal.pone.0027684.
    1. Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA. et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 1999;27:2291–8.
    1. Wijmenga C, Hansen RS, Gimelli G, Bjorck EJ, Davies EG, Valentine D. et al. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat. 2000;16:509–17.
    1. Shen H, Wang L, Spitz MR, Hong WK, Mao L, Wei Q. A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. Cancer Res. 2002;62:4992–5.
    1. Ibrahim AE, Arends MJ, Silva AL, Wyllie AH, Greger L, Ito Y. et al. Sequential DNA methylation changes are associated with DNMT3B overexpression in colorectal neoplastic progression. Gut. 2011;60:499–508. doi:10.1136/gut.2010.223602.
    1. Kobayashi Y, Absher DM, Gulzar ZG, Young SR, McKenney JK, Peehl DM. et al. DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res. 2011;21:1017–27. doi:10.1101/gr.119487.110.
    1. Girault I, Tozlu S, Lidereau R, Bieche I. Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res. 2003;9:4415–22.
    1. Gokul G, Gautami B, Malathi S, Sowjanya AP, Poli UR, Jain M. et al. DNA methylation profile at the DNMT3L promoter: a potential biomarker for cervical cancer. Epigenetics. 2007;2:80–5.
    1. Minami K, Chano T, Kawakami T, Ushida H, Kushima R, Okabe H. et al. DNMT3L is a novel marker and is essential for the growth of human embryonal carcinoma. Clin Cancer Res. 2010;16:2751–9. doi:10.1158/1078-0432.CCR-09-3338.
    1. Webster KE, O'Bryan MK, Fletcher S, Crewther PE, Aapola U, Craig J. et al. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci U S A. 2005;102:4068–73. doi:10.1073/pnas.0500702102.
    1. Bourc'his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294:2536–9. doi:10.1126/science.1065848.
    1. Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet. 2001;27:322–6. doi:10.1038/85899.
    1. Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001;27:327–31. doi:10.1038/85906.
    1. Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K. et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci U S A. 2003;100:6777–82. doi:10.1073/pnas.1131928100.
    1. Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 2001;15:710–23. doi:10.1101/gad.194101.
    1. Pontes TB, Chen ES, Gigek CO, Calcagno DQ, Wisnieski F, Leal MF. et al. Reduced mRNA expression levels of MBD2 and MBD3 in gastric carcinogenesis. Tumour Biol. 2014;35:3447–53. doi:10.1007/s13277-013-1455-y.
    1. Kaji K, Caballero IM, MacLeod R, Nichols J, Wilson VA, Hendrich B. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nat Cell Biol. 2006;8:285–92. doi:10.1038/ncb1372.
    1. Riccio A, Aaltonen LA, Godwin AK, Loukola A, Percesepe A, Salovaara R. et al. The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nat Genet. 1999;23:266–8. doi:10.1038/15443.
    1. Bader SA, Walker M, Harrison DJ. A human cancer-associated truncation of MBD4 causes dominant negative impairment of DNA repair in colon cancer cells. Br J Cancer. 2007;96:660–6. doi:10.1038/sj.bjc.6603592.
    1. Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B. et al. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science. 2002;297:403–5. doi:10.1126/science.1073354.
    1. Wong E, Yang K, Kuraguchi M, Werling U, Avdievich E, Fan K. et al. Mbd4 inactivation increases Cright-arrowT transition mutations and promotes gastrointestinal tumor formation. Proc Natl Acad Sci U S A. 2002;99:14937–42. doi:10.1073/pnas.232579299.
    1. Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D. et al. Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol. 2006;26:199–208. doi:10.1128/MCB.26.1.199-208.2006.
    1. Kim K, Chadalapaka G, Lee SO, Yamada D, Sastre-Garau X, Defossez PA. et al. Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer. Oncogene. 2012;31:1034–44. doi:10.1038/onc.2011.296.
    1. Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fiel MI. et al. UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell. 2014;25:196–209. doi:10.1016/j.ccr.2014.01.003.
    1. Unoki M, Kelly JD, Neal DE, Ponder BA, Nakamura Y, Hamamoto R. UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. Br J Cancer. 2009;101:98–105. doi:10.1038/sj.bjc.6605123.
    1. Unoki M, Daigo Y, Koinuma J, Tsuchiya E, Hamamoto R, Nakamura Y. UHRF1 is a novel diagnostic marker of lung cancer. Br J Cancer. 2010;103:217–22. doi:10.1038/sj.bjc.6605717.
    1. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007;450:908–12. doi:10.1038/nature06397.
    1. Lu S, Yan D, Wu Z, Jiang T, Chen J, Yuan L. et al. Ubiquitin-like with PHD and ring finger domains 2 is a predictor of survival and a potential therapeutic target in colon cancer. Oncol Rep. 2014;31:1802–10. doi:10.3892/or.2014.3035.
    1. Clouaire T, de Las Heras JI, Merusi C, Stancheva I. Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA. Nucleic Acids Res. 2010;38:4620–34. doi:10.1093/nar/gkq228.
    1. Scarsdale JN, Webb HD, Ginder GD, Williams DC Jr. Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-methylated DNA sequence. Nucleic Acids Res. 2011;39:6741–52. doi:10.1093/nar/gkr262.
    1. Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I, Bird AP. DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell. 2005;19:667–78. doi:10.1016/j.molcel.2005.07.021.
    1. Filion GJ, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez PA. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol. 2006;26:169–81. doi:10.1128/MCB.26.1.169-181.2006.
    1. Prokhortchouk A, Hendrich B, Jorgensen H, Ruzov A, Wilm M, Georgiev G. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001;15:1613–8. doi:10.1101/gad.198501.
    1. Ruzov A, Dunican DS, Prokhortchouk A, Pennings S, Stancheva I, Prokhortchouk E. et al. Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development. 2004;131:6185–94. doi:10.1242/dev.01549.
    1. Hashimoto H, Horton JR, Zhang X, Bostick M, Jacobsen SE, Cheng X. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature. 2008;455:826–9. doi:10.1038/nature07280.
    1. Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature. 2008;455:818–21. doi:10.1038/nature07249.
    1. Avvakumov GV, Walker JR, Xue S, Li Y, Duan S, Bronner C. et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature. 2008;455:822–5. doi:10.1038/nature07273.
    1. Pichler G, Wolf P, Schmidt CS, Meilinger D, Schneider K, Frauer C. et al. Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways. J Cell Biochem. 2011;112:2585–93. doi:10.1002/jcb.23185.
    1. Zhou T, Xiong J, Wang M, Yang N, Wong J, Zhu B. et al. Structural Basis for Hydroxymethylcytosine Recognition by the SRA Domain of UHRF2. Mol Cell. 2014 doi:10.1016/j.molcel.2014.04.003.
    1. Campanero MR, Armstrong MI, Flemington EK. CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci U S A. 2000;97:6481–6. doi:10.1073/pnas.100340697.
    1. Iguchi-Ariga SM, Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 1989;3:612–9.
    1. Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem. 2003;278:4035–40. doi:10.1074/jbc.M210256200.
    1. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19:187–91. doi:10.1038/561.
    1. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–9. doi:10.1038/30764.
    1. Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet. 1999;23:62–6. doi:10.1038/12664.
    1. Kokura K, Kaul SC, Wadhwa R, Nomura T, Khan MM, Shinagawa T. et al. The Ski protein family is required for MeCP2-mediated transcriptional repression. J Biol Chem. 2001;276:34115–21. doi:10.1074/jbc.M105747200.
    1. Borst P, Sabatini R. Base J: discovery, biosynthesis, and possible functions. Annu Rev Microbiol. 2008;62:235–51. doi:10.1146/annurev.micro.62.081307.162750.
    1. Pfaffeneder T, Hackner B, Truss M, Munzel M, Muller M, Deiml CA. et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem Int Ed Engl. 2011;50:7008–12. doi:10.1002/anie.201103899.
    1. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3. doi:10.1126/science.1210597.
    1. McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ. Structural studies on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol. 2010;20:659–72. doi:10.1016/j.sbi.2010.08.006.
    1. Xu Y, Xu C, Kato A, Tempel W, Abreu JG, Bian C. et al. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell. 2012;151:1200–13. doi:10.1016/j.cell.2012.11.014.
    1. Munzel M, Lercher L, Muller M, Carell T. Chemical discrimination between dC and 5MedC via their hydroxylamine adducts. Nucleic Acids Res. 2010;38:e192.. doi:10.1093/nar/gkq724.
    1. Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012;149:1368–80. doi:10.1016/j.cell.2012.04.027.
    1. Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2) Nucleic Acids Res. 2004;32:4100–8. doi:10.1093/nar/gkh739.
    1. Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM. et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 2012;40:4841–9. doi:10.1093/nar/gks155.
    1. Khrapunov S, Warren C, Cheng H, Berko ER, Greally JM, Brenowitz M. Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry. 2014;53:3379–91. doi:10.1021/bi500424z.
    1. Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 2012;151:1417–30. doi:10.1016/j.cell.2012.11.022.
    1. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell. 2013;152:1146–59. doi:10.1016/j.cell.2013.02.004.
    1. Frauer C, Hoffmann T, Bultmann S, Casa V, Cardoso MC, Antes I. et al. Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS One. 2011;6:e21306.. doi:10.1371/journal.pone.0021306.
    1. Iurlaro M, Ficz G, Oxley D, Raiber EA, Bachman M, Booth MJ. et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 2013;14:R119.. doi:10.1186/gb-2013-14-10-r119.
    1. Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet. 2009;43:143–66. doi:10.1146/annurev-genet-102108-134205.
    1. Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A. et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell. 2011;146:67–79. doi:10.1016/j.cell.2011.06.020.
    1. Pfaffeneder T, Spada F, Wagner M, Brandmayr C, Laube SK, Eisen D. et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat Chem Biol. 2014;10:574–81. doi:10.1038/nchembio.1532.
    1. Svilar D, Goellner EM, Almeida KH, Sobol RW. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal. 2011;14:2491–507. doi:10.1089/ars.2010.3466.
    1. Shen L, Song CX, He C, Zhang Y. Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem. 2014;83:585–614. doi:10.1146/annurev-biochem-060713-035513.
    1. Jacobs AL, Schar P. DNA glycosylases: in DNA repair and beyond. Chromosoma. 2012;121:1–20. doi:10.1007/s00412-011-0347-4.
    1. Trivedi RN, Almeida KH, Fornsaglio JL, Schamus S, Sobol RW. The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res. 2005;65:6394–400. doi:10.1158/0008-5472.CAN-05-0715.
    1. Hardeland U, Bentele M, Jiricny J, Schar P. The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs. Nucleic Acids Res. 2003;31:2261–71.
    1. Cortazar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E. et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature. 2011;470:419–23. doi:10.1038/nature09672.
    1. Bjelland S, Seeberg E. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res. 2003;531:37–80.
    1. Wibley JE, Waters TR, Haushalter K, Verdine GL, Pearl LH. Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol Cell. 2003;11:1647–59.
    1. Darwanto A, Theruvathu JA, Sowers JL, Rogstad DK, Pascal T, Goddard W 3rd. et al. Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase. J Biol Chem. 2009;284:15835–46. doi:10.1074/jbc.M807846200.
    1. Kemmerich K, Dingler FA, Rada C, Neuberger MS. Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup uracil-excision activities and increases cancer predisposition of Ung-/-Msh2-/- mice. Nucleic Acids Res. 2012;40:6016–25. doi:10.1093/nar/gks259.
    1. Endres M, Biniszkiewicz D, Sobol RW, Harms C, Ahmadi M, Lipski A. et al. Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. J Clin Invest. 2004;113:1711–21. doi:10.1172/JCI20926.
    1. Nilsen H, Rosewell I, Robins P, Skjelbred CF, Andersen S, Slupphaug G. et al. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol Cell. 2000;5:1059–65.
    1. Vartanian V, Lowell B, Minko IG, Wood TG, Ceci JD, George S. et al. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc Natl Acad Sci U S A. 2006;103:1864–9. doi:10.1073/pnas.0507444103.
    1. Takao M, Kanno S, Shiromoto T, Hasegawa R, Ide H, Ikeda S. et al. Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols. EMBO J. 2002;21:3486–93. doi:10.1093/emboj/cdf350.
    1. Deng CX. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res. 2006;34:1416–26. doi:10.1093/nar/gkl010.
    1. Shukla V, Coumoul X, Lahusen T, Wang RH, Xu X, Vassilopoulos A. et al. BRCA1 affects global DNA methylation through regulation of DNMT1. Cell Res. 2010;20:1201–15. doi:10.1038/cr.2010.128.
    1. Ruzov A, Shorning B, Mortusewicz O, Dunican DS, Leonhardt H, Meehan RR. MBD4 and MLH1 are required for apoptotic induction in xDNMT1-depleted embryos. Development. 2009;136:2277–86. doi:10.1242/dev.032227.
    1. Laget S, Miotto B, Chin HG, Esteve PO, Roberts RJ, Pradhan S. et al. MBD4 cooperates with DNMT1 to mediate methyl-DNA repression and protects mammalian cells from oxidative stress. Epigenetics. 2014;9:546–56. doi:10.4161/epi.27695.
    1. Meng HX, Hackett JA, Nestor C, Dunican DS, Madej M, Reddington JP. et al. Apoptosis and DNA Methylation. Cancers (Basel) 2011;3:1798–820. doi:10.3390/cancers3021798.
    1. Felle M, Joppien S, Nemeth A, Diermeier S, Thalhammer V, Dobner T. et al. The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res. 2011;39:8355–65. doi:10.1093/nar/gkr528.
    1. Ma H, Chen H, Guo X, Wang Z, Sowa ME, Zheng L. et al. M phase phosphorylation of the epigenetic regulator UHRF1 regulates its physical association with the deubiquitylase USP7 and stability. Proc Natl Acad Sci U S A. 2012;109:4828–33. doi:10.1073/pnas.1116349109.
    1. Meng H, Harrison DJ, Meehan RR. MBD4 Interacts with and Recruits USP7 to heterochromatic foci. J Cell Biochem. 2014 doi:10.1002/jcb.25001.
    1. Tien AL, Senbanerjee S, Kulkarni A, Mudbhary R, Goudreau B, Ganesan S. et al. UHRF1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis. Biochem J. 2011;435:175–85. doi:10.1042/BJ20100840.
    1. Mistry H, Tamblyn L, Butt H, Sisgoreo D, Gracias A, Larin M. et al. UHRF1 is a genome caretaker that facilitates the DNA damage response to gamma-irradiation. Genome Integr. 2010;1:7.. doi:10.1186/2041-9414-1-7.
    1. Yang C, Wang Y, Zhang F, Sun G, Li C, Jing S. et al. Inhibiting UHRF1 expression enhances radiosensitivity in human esophageal squamous cell carcinoma. Mol Biol Rep. 2013;40:5225–35. doi:10.1007/s11033-013-2559-6.
    1. Whitelaw NC, Chong S, Morgan DK, Nestor C, Bruxner TJ, Ashe A. et al. Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise. Genome Biol. 2010;11:R111.. doi:10.1186/gb-2010-11-11-r111.
    1. Cedar H, Bergman Y. Programming of DNA methylation patterns. Annu Rev Biochem. 2012;81:97–117. doi:10.1146/annurev-biochem-052610-091920.
    1. Buschhausen G, Wittig B, Graessmann M, Graessmann A. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci U S A. 1987;84:1177–81.
    1. Keshet I, Lieman-Hurwitz J, Cedar H. DNA methylation affects the formation of active chromatin. Cell. 1986;44:535–43.
    1. Razin A, Cedar H. Distribution of 5-methylcytosine in chromatin. Proc Natl Acad Sci U S A. 1977;74:2725–8.
    1. Solage A, Cedar H. Organization of 5-methylcytosine in chromosomal DNA. Biochemistry. 1978;17:2934–8.
    1. Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y. et al. Relationship between nucleosome positioning and DNA methylation. Nature. 2010;466:388–92. doi:10.1038/nature09147.
    1. Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000;405:482–5. doi:10.1038/35013100.
    1. Jin SG, Kadam S, Pfeifer GP. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 2010;38:e125.. doi:10.1093/nar/gkq223.
    1. Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature. 2010;464:1082–6. doi:10.1038/nature08924.
    1. Barnes DE, Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445–76. doi:10.1146/annurev.genet.38.072902.092448.
    1. Jimeno S, Rondon AG, Luna R, Aguilera A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J. 2002;21:3526–35. doi:10.1093/emboj/cdf335.
    1. Branzei D, Foiani M. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 2010;11:208–19. doi:10.1038/nrm2852.
    1. Knott SR, Viggiani CJ, Aparicio OM. To promote and protect: coordinating DNA replication and transcription for genome stability. Epigenetics. 2009;4:362–5.
    1. Aguilera A, Garcia-Muse T. R loops: from transcription byproducts to threats to genome stability. Mol Cell. 2012;46:115–24. doi:10.1016/j.molcel.2012.04.009.
    1. Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011;11:726–34. doi:10.1038/nrc3130.
    1. Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJ, Khachigian LM. et al. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5'UTR. Cancer Cell. 2011;20:200–13. doi:10.1016/j.ccr.2011.07.003.
    1. Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D. et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2012;22:271–82. doi:10.1101/gr.117523.110.
    1. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6:107–16. doi:10.1038/nrc1799.
    1. Markl ID, Cheng J, Liang G, Shibata D, Laird PW, Jones PA. Global and gene-specific epigenetic patterns in human bladder cancer genomes are relatively stable in vivo and in vitro over time. Cancer Res. 2001;61:5875–84.
    1. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92. doi:10.1038/nrg3230.
    1. Fraga MF, Ballestar E, Montoya G, Taysavang P, Wade PA, Esteller M. The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res. 2003;31:1765–74.
    1. Ballestar E, Wolffe AP. Methyl-CpG-binding proteins. Targeting specific gene repression. European journal of biochemistry / FEBS. 2001;268:1–6.
    1. Wolf SF, Jolly DJ, Lunnen KD, Friedmann T, Migeon BR. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc Natl Acad Sci U S A. 1984;81:2806–10.
    1. Hellman A, Chess A. Gene body-specific methylation on the active X chromosome. Science. 2007;315:1141–3. doi:10.1126/science.1136352.
    1. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13:335–40.
    1. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479:74–9. doi:10.1038/nature10442.
    1. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA. et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011;473:398–402. doi:10.1038/nature10008.
    1. Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J. et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell. 2011;42:451–64. doi:10.1016/j.molcel.2011.04.005.
    1. Wu H, D'Alessio AC, Ito S, Wang Z, Cui K, Zhao K. et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 2011;25:679–84. doi:10.1101/gad.2036011.
    1. Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M. et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011;473:394–7. doi:10.1038/nature10102.
    1. Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988;78:151–5.
    1. Rideout WM 3rd, Coetzee GA, Olumi AF, Jones PA. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 1990;249:1288–90.
    1. Duncan BK, Miller JH. Mutagenic deamination of cytosine residues in DNA. Nature. 1980;287:560–1.
    1. Campbell CD, Chong JX, Malig M, Ko A, Dumont BL, Han L. et al. Estimating the human mutation rate using autozygosity in a founder population. Nat Genet. 2012;44:1277–81. doi:10.1038/ng.2418.
    1. Campbell CD, Eichler EE. Properties and rates of germline mutations in humans. Trends Genet. 2013;29:575–84. doi:10.1016/j.tig.2013.04.005.
    1. Kondrashov AS. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum Mutat. 2003;21:12–27. doi:10.1002/humu.10147.
    1. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature. 2012;488:471–5. doi:10.1038/nature11396.
    1. Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U S A. 2010;107:961–8. doi:10.1073/pnas.0912629107.
    1. Sousa MM, Krokan HE, Slupphaug G. DNA-uracil and human pathology. Mol Aspects Med. 2007;28:276–306. doi:10.1016/j.mam.2007.04.006.
    1. De Bont R, van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004;19:169–85.
    1. Kleihues P, Schauble B, zur Hausen A, Esteve J, Ohgaki H. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol. 1997;150:1–13.
    1. Caputo S, Benboudjema L, Sinilnikova O, Rouleau E, Beroud C, Lidereau R. et al. Description and analysis of genetic variants in French hereditary breast and ovarian cancer families recorded in the UMD-BRCA1/BRCA2 databases. Nucleic Acids Res. 2012;40:D992–1002. doi:10.1093/nar/gkr1160.

Source: PubMed

3
Subscribe