Ecological HPLC method for analyzing an antidiabetic drug in real rat plasma samples and studying the effects of concurrently administered fenugreek extract on its pharmacokinetics

Nada S Abdelwahab, Amani Morsi, Yasmine M Ahmed, Hossam M Hassan, Asmaa M AboulMagd, Nada S Abdelwahab, Amani Morsi, Yasmine M Ahmed, Hossam M Hassan, Asmaa M AboulMagd

Abstract

Currently, the total number of diabetic people worldwide is constantly increasing. Metformin (MET) is known to be a first-line antidiabetic drug with varied, wide-reaching applications. Concurrent administration of phytomedicines such as fenugreek extract with synthetic drugs is very common. It is reported that concomitant administration of fenugreek extract with metformin maintains lower blood glucose levels than metformin alone. In this work, an ecofriendly RP-HPLC method was established to study and compare the pharmacokinetics of metformin with and without the contemporary administration of fenugreek extract using rat as an animal model. In the developed method, a solvent mixture of 0.5 mM KH2PO4 solution : methanol (65 : 35, v/v) was used as a mobile phase and guaiphenesin was used as an internal standard. The plasma concentration-time curve was plotted, and non-compartmental pharmacokinetic analysis was performed using PKSolver. The results of the pharmacokinetic study showed that concurrent administration of fenugreek significantly increased the bioavailability of metformin and doubled the time required to reach the peak plasma concentration (T max). Moreover, the volume of drug distribution decreased by about 70%, while its rate of clearance decreased by about 55.96%. Accordingly, the administration of fenugreek in combination with metformin significantly affected the pharmacokinetics of metformin, and this combination will be very useful in controlling blood glucose levels in diabetic patients. The greenness of the method was assessed using the Analytical Eco-Scale, Analytical Method Volume Intensity (AMVI), and National Environmental Method Index (NEMI), and all results affirmed that the method can be considered to be ecological.

Conflict of interest statement

Authors declare that they have no conflict of interest.

This journal is © The Royal Society of Chemistry.

Figures

Fig. 1. HPLC chromatograms of (A) blank…
Fig. 1. HPLC chromatograms of (A) blank plasma, (B) plasma spiked with 15 μg mL−1 metformin and 50 μg mL−1 guaiphenesin, and (C) a rat plasma sample after 2 hours (from group III) spiked with 50 μg mL−1 guaiphenesin.
Fig. 2. Mean plasma concentration–time curves of…
Fig. 2. Mean plasma concentration–time curves of metformin after oral administration of 300 mg kg−1 metformin (A) and after oral administration of 300 mg kg−1 metformin + 500 mg kg−1 fenugreek extract.
Fig. 3. The NEMI pictogram of the…
Fig. 3. The NEMI pictogram of the developed RP-HPLC method.

References

    1. George V. Sudhesh K. Insulin action enhancers for the management of Type 2 diabetes mellitus. Expert Opin. Pharmacother. 2000;1:1413–1421. doi: 10.1517/14656566.1.7.1413.
    1. Lemke T. L., Williams D. A., Roche V. F. and Zito S. W., Foye's Principles of Medicinal Chemistry, Lippincott Williams & Wilkins, 6th edn, 2008, p. 855
    1. Patel B. Jivani N. P. Khodakiya A. Drug interaction: Can we make them advantageous for a human being. Int. J. Pharm. Res. Dev. 2012;4:8–15.
    1. Ningrum V. D. A. Wibowo A. Fuaida I. Ikawati Z. Sadewa A. H. Robikhul Ikhsan M. Validation of an HPLC-UV method for the determination of metformin hydrochloride in spiked-human plasma for the application of therapeutic drug monitoring. Res. J. Pharm. Technol. 2018;11:2197–2202. doi: 10.5958/0974-360X.2018.00406.7.
    1. Harahap Y. Dianpratami K. Wulandari M. Rahmawati R. Validation of metformin hydrochloride in human plasma by HPLC-photo diode array (PDA) for application of bioequivalence study. J. Life Sci. 2012;6:20–27.
    1. Porta V. et al., HPLC-UV determination of metformin in human plasma for application in pharmacokinetics and bioequivalence studies. J. Pharm. Biomed. Anal. 2008;46:143–147. doi: 10.1016/j.jpba.2007.10.007.
    1. Chhetri H. P. Thapa P. Van Schepdael A. Simple HPLC-UV method for the quantification of metformin in human plasma with one step protein precipitation. Saudi Pharm. J. 2014;22:483–487. doi: 10.1016/j.jsps.2013.12.011.
    1. Rebecca Y. M. Sudha V. Kumar A. K. H. Validated high performance liquid chromatography method for the determination of metformin in human plasma and its application to pharmacokinetic study. J. Chromatogr. Sep. Tech. 2019;2:119–124.
    1. Sher N. Fatima N. Perveen S. Siddiqui F. A. Simultaneous determination of anti-diabetic drugs. Braz. J. Pharm. Sci. 2019;55:e17394. doi: 10.1590/s2175-97902019000217394.
    1. Liu A. Coleman S. P. Determination of metformin in human plasma using hydrophilic interaction liquid chromatography-tandem mass spectrometry. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2009;877:3695–3700. doi: 10.1016/j.jchromb.2009.09.020.
    1. Koseki N. Kawashita H. Niina M. Nagae Y. Masuda N. Development and validation of high selective quantitative determination of metformin in human plasma by cation exchanging with normal-phase LC/MS/MS. J. Pharm. Biomed. Anal. 2005;36:1063–1072. doi: 10.1016/j.jpba.2004.09.007.
    1. Michel D. Casey Gaunt M. Arnason T. El-Aneed A. Development and validation of fast and simple flow injection analysis-tandem mass spectrometry (FIA-MS/MS) for the determination of metformin in dog serum. J. Pharm. Biomed. Anal. 2015;107:229–235. doi: 10.1016/j.jpba.2014.12.012.
    1. Swales J. G. Gallagher R. Peter R. M. Determination of metformin in mouse, rat, dog and human plasma samples by laser diode thermal desorption/atmospheric pressure chemical ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2010;53:740–744. doi: 10.1016/j.jpba.2010.04.033.
    1. Kiran C. Jianmei W. Yong X. Ali W. Linshu W. Xiaowei D. Eric Y. C. Ran L. Shao-Hua Y. Determination of metformin bio-distribution by LC-MS/MS in mice treated with a clinically relevant paradigm. PLoS One. 2020;15(6):e0234571. doi: 10.1371/journal.pone.0234571.
    1. Zhang W. Han F. Zhao H. Lin Z. J. Huang Q. M. Weng N. Determination of metformin in rat plasma by HILIC-MS/MS combined with Tecan automation and direct injection. Biomed. Chromatogr. 2012;26:1163–1169. doi: 10.1002/bmc.2673.
    1. Liu A. Coleman S. P. Determination of metformin in human plasma using hydrophilic interaction liquid chromatography–tandem mass spectrometry. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2009;877:3695–3700. doi: 10.1016/j.jchromb.2009.09.020.
    1. Uçaktürk E. The development and validation of a gas chromatography-mass spectrometry method for the determination of metformin in human plasma. Anal. Methods. 2013;5:4723–4730. doi: 10.1039/C3AY40507A.
    1. Balamurugan K. Kirtimaya M. Suresh R. Simultaneous estimation of linagliptin and metformin HCl in human plasma by RP-HPLC method. Int. Res. J. Pharm. 2019;10:167–170.
    1. Shakoor A. Adnan A. Ahmed M. Simultaneous determination of metformin and vildagliptin by HPLC in human plasma: application to pharmacokinetic studies. Lat. Am. J. Pharm. 2019;38:1416–1423.
    1. Sebaiy M. M. El-Adl S. M. Baraka M. M. Hassan A. A. Rapid RP-HPLC method for simultaneous estimation of metformin, pioglitazone, and glimepiride in human plasma. Acta Chromatogr. 2020;32:16–21.
    1. Ranetti M. C. Ionescu M. Hinescu L. Ionică E. Anuţa V. Ranetti A. E. Stecoza C. E. Mircioiu C. Validation of a HPLC method for the simultaneous analysis of metformin and gliclazide in human plasma. Farmacia. 2009;57:728–735.
    1. Yardimci C. Ozaltin N. Gurlek A. Simultaneous determination of rosiglitazone and metformin in plasma by gradient liquid chromatography with UV detection. Talanta. 2007;72:1416–1422. doi: 10.1016/j.talanta.2007.01.042.
    1. Shakoora A. Ahmedb M. Ikramc R. Hussaina S. Tahird A. Janc B. M. Adnan A. Stability-indicating RP-HPLC method for simultaneous determination of metformin hydrochloride and vildagliptin in tablet and biological samples. Acta Chromatogr. 2020;32:39–43.
    1. Elgawish M. S. Nasser S. Salama I. Abbasc A. M. Mostafaa S. M. Liquid chromatography tandem mass spectrometry for the simultaneous determination of metformin and pioglitazone in rat plasma: Application to pharmacokinetic and drug–drug interaction studies. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2019;1124:47–57. doi: 10.1016/j.jchromb.2019.05.036.
    1. Zhang X. Y. Peng Y. Wan P. Yin L. Wang G. J. Sun J. G. Simultaneous determination and pharmacokinetic study of metformin and pioglitazone in dog plasma by LC-MS-MS. J. Chromatogr. Sci. 2014;52:52–58. doi: 10.1016/j.jchromb.2014.03.038.
    1. Jagadeesh B. Bharathi D. V. Pankaj C. Narayana V. S. Venkateswarulu V. Development and validation of highly selective and robust method for simultaneous estimation of pioglitazone, hydroxypioglitazone and metformin in human plasma by LC-MS/MS: application to a pharmacokinetic study. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2013;930:136–145. doi: 10.1016/j.jchromb.2013.04.024.
    1. Polagani S. R. Pilli N. R. Gajula R. Gandu V. Simultaneous determination of atorvastatin, metformin and glimepiride in human plasma by LC-MS/MS and its application to a human pharmacokinetic study. J. Pharm. Anal. 2013;3:9–19. doi: 10.1016/j.jpha.2012.09.002.
    1. Li N. Deng Y. Qin F. Yu J. Li F. Simultaneous quantification of metformin and glipizide in human plasma by high-performance liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study. Biomed. Chromatogr. 2013;27:191–196. doi: 10.1002/bmc.2768.
    1. Mowaka S. Elkady E. F. Elmazar M. M. Ayoub B. Enhanced LC-MS/MS determination of alogliptin and metformin in plasma: application to a pharmacokinetic study. Microchem. J. 2017;130:360–365. doi: 10.1016/j.microc.2016.10.002.
    1. Mohamed D. Elshahed M. S. Aboutaleb T. N. Zakaria N. O. Novel LC–MS/MS method for analysis of metformin and canagliflozin in human plasma: application to a pharmacokinetic study. BMC Chem. 2019;13:82–92. doi: 10.1186/s13065-019-0597-4.
    1. Wattamwar T. Mungantiwar A. Halde S. Pandita N. Development of simultaneous determination of empagliflozin and metformin in human plasma using liquid chromatography–mass spectrometry and application to pharmacokinetics. Eur. J. Mass Spectrom. 2020;26:117–130. doi: 10.1177/1469066719879297.
    1. Mohamed A. M. I. Mohamed F. A. Ahmed S. Mohamed Y. A. An efficient hydrophilic interaction liquid chromatographic method for the simultaneous determination of metformin and pioglitazone using high-purity silica column. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2015;997:16–22. doi: 10.1016/j.jchromb.2015.05.032.
    1. Pontarolo R. Gimenez A. C. Francisco T. M. G. Ribeiro R. P. Pontes F. L. D. Gasparetto J. C. Simultaneous determination of metformin and vildagliptin in human plasma by a HILIC-MS/MS method. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2014;965:133–141. doi: 10.1016/j.jchromb.2014.06.023.
    1. Gałuszka A. Konieczka P. Migaszewski Z. M. Namieśnik J. Analytical Eco-Scale for assessing the greenness of analytical procedures. Trends Anal. Chem. 2012;37:60–72. doi: 10.1016/j.trac.2012.03.013.
    1. Hartman R. Helmy R. Al-Sayah M. Welch C. J. Analytical Method Volume Intensity (AMVI): A green chemistry metric for HPLC methodology in the pharmaceutical industry. Green Chem. 2011;13:934–939. doi: 10.1039/C0GC00524J.
    1. Abdelaleem E. A. Abdelwahab N. S. Green chromatographic method for analysis of some anti-cough drugs and their toxic impurities with comparison to conventional methods. Saudi Pharm. J. 2018;26:1185–1191. doi: 10.1016/j.jsps.2018.07.007.
    1. Jain S. K., Ethnobotanical uses of plants, in dictionary of Indian folk medicine and ethnobotany, Deep Publications, India, 1991, p. 182
    1. Wani S. A. Kumar P. Fenugreek: A review on its nutraceutical properties and utilization in various food products. J. Saudi Soc. Agric. Sci. 2018;17:97–106.
    1. Ali L. Azad Khan A. K. Hassan Z. Mosihuzzaman M. Nahar N. et al., Characterization of the hypoglycemic effects of Trigonella foenum graecum seed. Planta Med. 1995;61:358–360. doi: 10.1055/s-2006-958100.
    1. Sharma R. D. Effect of fenugreek seeds and leaves on blood glucose and serum insulin responses in human subjects. Nutr. Res. 1986;6:1353–1364. doi: 10.1016/S0271-5317(86)80020-3.
    1. Sharma R. D. Raghuram T. C. Rao N. S. Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. Eur. J. Clin. Nutr. 1990;44:301–306.
    1. Sharma R. D. Sarkar A. Hazra D. K. Use of fenugreek seed powder in the management of non-insulin dependent diabetes mellitus. Nutr. Rep. 1996;16:1331–1339.
    1. Raju J. Gupta D. Rao A. R. Yadava P. K. Baquer N. Z. Trigonella Foenum Graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Mol. Cell. Biochem. 2001;224:45–51. doi: 10.1023/A:1011974630828.
    1. Petit P. R. Sauvaire Y. D. Hillaire-Buys D. M. Leconte O. M. Baissac Y. G. et al., Steroid saponins from fenugreek seeds, Extraction, purification and pharmacological investigation on feeding behavior and plasma cholesterol. Steroids. 1995;60:674–680. doi: 10.1016/0039-128X(95)00090-D.
    1. Moorthy R. Prabhu K. M. Murthy P. S. Studies on the isolation and effect of orally active hypoglycemic principle from the seeds of fenugreek (Trigonella Foenum Graecum) Diabetes Bull. 1989;9:69–72.
    1. Sauvaire Y. Baissac Y. Leconte O. Petit P. Ribes G. Steroid saponins from fenugreek and some of their biological properties. Adv. Exp. Med. Biol. 1996;405:37–46. doi: 10.1007/978-1-4613-0413-5_4.
    1. Yoshikawa M. Murakami T. Komatsu H. Murakami N. Yamahara J. Matsuda H. Medicinal Foodstuffs. IV. Fenugreek Seed. (1): Structures of trigoneosides Ia, Ib, IIa, IIb, IIIa and IIIb, new furostanol saponins from the seeds of Indian Trigonella Foenum Graecum L. Chem. Pharm. Bull. 1997;45:81–97. doi: 10.1248/cpb.45.81.
    1. Taylor W. G. Elder J. L. Chang P. R. Richards K. W. Micro determination of diosgenin from fenugreek (Trigonella Foenum Graecum) seeds. J. Agric. Food Chem. 2000;48:5206–5210. doi: 10.1021/jf000467t.
    1. Sridevi P. Lakshmi G. A. Vunutha K. Akshitha K. Mahesh K. Bhagavan Raju M. Dipeptide synthesis and evaluation of antidiabetic activity of 4-hydroxyisoleucine from fenugreek seeds. Pharm. Bioprocess. 2017;5:44–53.
    1. Srinivasan K. Plant foods in the management of diabetes mellitus: Spices as potential antidiabetic agents. Int. J. Food Sci. Nutr. 2005;56:399–414. doi: 10.1080/09637480500512872.
    1. FDA, Guidance for Industry Bio-analytical Method Validation Guidance for Industry Bio-analytical Method Validation, 2013
    1. Akahane K. Ojima K. Yokoyama A. Inoue T. Kiguchi S. Tatemichi S. Takeda H. Imai Y. Effects of combination of mitiglinide with various oral antidiabetic drugs in streptozotocin-nicotinamide-induced type 2 diabetic rats and Zucker fatty rats. Clin. Exp. Pharmacol. Physiol. 2017;44:1263–1271. doi: 10.1111/1440-1681.12823.
    1. Sureshkumar D. Begum S. Johannah N. M. Maliakel B. Krishnakumar I. M. Toxicological evaluation of a saponin-rich standardized extract of fenugreek seeds (FenuSMART®): Acute, sub-chronic and genotoxicity studies. Toxicol. Rep. 2018;5:1060–1068. doi: 10.1016/j.toxrep.2018.10.008.
    1. Zhang Y. Huo M. Zhou J. Xie S. An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Meth. Prog. Biomed. 2010;99:306–314. doi: 10.1016/j.cmpb.2010.01.007.

Source: PubMed

3
Subscribe