Ablation energies for focal treatment of prostate cancer

Olivia Lodeizen, Martijn de Bruin, Scott Eggener, Sébastien Crouzet, Sangeet Ghai, Ioannis Varkarakis, Aaron Katz, Jose Luis Dominguez-Escrig, Sascha Pahernik, Theo de Reijke, Jean de la Rosette, Olivia Lodeizen, Martijn de Bruin, Scott Eggener, Sébastien Crouzet, Sangeet Ghai, Ioannis Varkarakis, Aaron Katz, Jose Luis Dominguez-Escrig, Sascha Pahernik, Theo de Reijke, Jean de la Rosette

Abstract

Context: In recent years, focal therapy has emerged as a treatment option for a selected group of men with localized prostate cancer. Cryotherapy and high-intensity focused ultrasound (HIFU) are the most investigated types of focal treatment with other options currently under evaluation.

Objective: The objective of the study was to give a comprehensive overview of six available focal treatment options for prostate cancer with their rationale, delivery mechanism, and outcomes.

Information acquisition: The SIU ICUD chapter on available Energies to Treat Prostate Cancer was used as a guide to describe the different technologies. For outcomes, a literature search was conducted using PubMed key words including focal therapy, HIFU, cryotherapy, irreversible electroporation, vascular-targeted photodynamic therapy, laser interstitial therapy, radiofrequency ablation, microwave therapy, and their synonyms in MeSH terms.

Conclusion: Focal therapy appears to have encouraging outcomes on quality of life and urinary and erectile function. For oncological outcomes, it is challenging to fully interpret the outcomes due to heterogeneity in patient selection and short-term follow-up.

Keywords: Ablation; Focal therapy; Localized; Prostate cancer.

Conflict of interest statement

Conflicts of interest

OLodeizen, Th de Reijke, M de Bruin, S Pahernik, I Varkarakis, S Crouzet and A Katz have no conflict of interest to declare. S Eggener is a consultant and advisor for Profound Medical, NxThera. J Dominguez-Escrig is principal investigator for the CROES Phase III IRE Trial. S Ghai is principal investigator for MR-guided focused ultrasound, a study sponsored by Insightec. J de la Rosette is a consultant for Angiodynamics.

Informed consent

Due to the nature of this article, acquisition of informed consent is not applicable.

Figures

Fig. 1
Fig. 1
HIFU causes vascular damage at high-intensity and cavitation at ultrahigh intensity
Fig. 2
Fig. 2
Cryotherapy causes tissue damage and vascular injury around the cryoneedle
Fig. 3
Fig. 3
Cryoneedle placement and critical distances
Fig. 4
Fig. 4
Cryotherapy stages
Fig. 5
Fig. 5
Radical oxygen causing vascular occlusion upon illumination around the fiber tips
Fig. 6
Fig. 6
Irreversible electroporation between needles causing cell death
Fig. 7
Fig. 7
Laser therapy causing thermal damage and cavitational stress, both resulting in cellular damage

References

    1. Sanda MG, Dunn RL, Michalaski J, et al. Quality of life and satisfaction with outcome among prostate cancer survivors. N Engl J Med. 2008;358:1250–1261. doi: 10.1056/NEJMoa074311.
    1. Resnick MJ, et al. Long-term functional outcomes after treatment for localized prostate cancer. N Engl J Med. 2013;368:436–445. doi: 10.1056/NEJMoa1209978.
    1. Bokhorst LP, et al. Complications after prostate biopsies in men on active surveillance and its effects on receiving further biopsies in the Prostate cancer Research International: active surveillance (PRIAS) study. BJU Int. 2016;118:366–371. doi: 10.1111/bju.13410.
    1. Leapman MS, Carroll PR. What is the best way not to treat prostate cancer? Urol Oncol Semin Orig Investig. 2017;35:42–50. doi: 10.1016/j.urolonc.2016.09.003.
    1. Hoffman RM, et al. Treatment decision regret among long-term survivors of localized prostate cancer: results from the prostate cancer outcomes study. J Clin Oncol. 2017;35:2306–2314. doi: 10.1200/JCO.2016.70.6317.
    1. Ratcliff CG, Cohen L, Pettaway CA, Parker PA. Treatment regret and quality of life following radical prostatectomy. Support care cancer. 2013;21:3337–3343. doi: 10.1007/s00520-013-1906-4.
    1. Kennedy JE, Ter Haar GR, Cranston D. High intensity focused ultrasound: surgery of the future? Br J Radiol. 2003;76:590–599. doi: 10.1259/bjr/17150274.
    1. Al-Bataineh O, Jenne J, Huber P. Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat Rev. 2012;38:346–353. doi: 10.1016/j.ctrv.2011.08.004.
    1. ter Haar GT. C. C. High-intensity focused ultrasound: physical principles and devices. Int J Hyperth. 2007;23:89–104. doi: 10.1080/02656730601186138.
    1. de Senneville BD, Mougenot C. M. C. Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound. Magn Reson Med. 2007;57:319–330. doi: 10.1002/mrm.21124.
    1. Local treatment of prostate cancer Azzouz H, de la R. J. HIFU. Eur Urol. 2006;2006:62–70.
    1. Golan R, et al. Partial gland treatment of prostate cancer utilizing high-intensity focused ultrasound in the primary and salvage setting: a systematic review. J Urol. 2017
    1. Cordeiro ER, et al. High-intensity focused ultrasound (HIFU) for definitive treatment of prostate cancer. BJU Int. 2012;110:1228–1242. doi: 10.1111/j.1464-410X.2012.11262.x.
    1. Albisinni S, et al. Comparing high-intensity focal ultrasound hemiablation to robotic radical prostatectomy in the management of unilateral prostate cancer: a matched-pair analysis. J Endourol. 2017;31:14–19. doi: 10.1089/end.2016.0702.
    1. McCulloch P, et al. No surgical innovation without evaluation: the IDEAL recommendations. Lancet. 2009;374:1105–1112. doi: 10.1016/S0140-6736(09)61116-8.
    1. Roy BN. Fundamentals of classical and statistical thermodynamics. Hoboken: John Wiley; 2002.
    1. Hoffmann NE, Bischof JC. The cryobiology of cryosurgical injury. Urology. 2002;60:40–49. doi: 10.1016/S0090-4295(02)01683-7.
    1. Gangi A, et al. Percutaneous MR-guided cryoablation of prostate cancer: initial experience. Eur Radiol. 2012;22:1829–1835. doi: 10.1007/s00330-012-2411-8.
    1. Nguyen HD, Allen BJ, Pow-Sang JM. Focal cryotherapy in the treatment of localized prostate cancer. Cancer Control. 2013;20:177–180. doi: 10.1177/107327481302000305.
    1. Ward JF, Jones JS. Focal cryotherapy for localized prostate cancer: a report from the national cryo on-line database (COLD) registry. BJU Int. 2012;109:1648–1654. doi: 10.1111/j.1464-410X.2011.10578.x.
    1. Tay KJ, Polascik TJ, Elshafei A, Tsivian E, Jones JS. Propensity score-matched comparison of partial to whole-gland cryotherapy for intermediate-risk prostate cancer: an analysis of the cryo on-line data registry data. J Endourol. 2017;31:564–571. doi: 10.1089/end.2016.0830.
    1. Valerio M, et al. New and established technology in focal ablation of the prostate: a systematic review [figure presented] Eur Urol. 2017;71:17–34. doi: 10.1016/j.eururo.2016.08.044.
    1. Windahl T, Andersson SO, Lofgren L. Photodynamic therapy of localised prostatic cancer. Lancet. 1990;336:1139. doi: 10.1016/0140-6736(90)92626-S.
    1. Azzouzi AR, et al. TOOKAD® Soluble vascular-targeted photodynamic (VTP) therapy: determination of optimal treatment conditions and assessment of effects in patients with localised prostate cancer. BJU Int. 2013;112:766–774. doi: 10.1111/bju.12265.
    1. Moore CM, et al. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy. BJU Int. 2015;116:888–896. doi: 10.1111/bju.12816.
    1. Azzouzi A, Vincendeau S, Barret E, Cicco A, Kleinclauss F, Van der Poel HG, Stief CG, Rassweiler J, Salomon G, Solsona E, Alcaraz A, Tammela TT, Rosario DJ, Gomez-Veiga F, Ahlgren G, Benzaghou F, Gaillac B, Amzal B, Debruyne FM, Fromont G, Gratzke C. E. M. P. S. G. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol. 2017;2:181–191. doi: 10.1016/S1470-2045(16)30661-1.
    1. Mir L. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry. 2001;53:1–10. doi: 10.1016/S0302-4598(00)00112-4.
    1. Al-Sakere B, et al. Tumor ablation with irreversible electroporation. PLoS One. 2007;2:1–8. doi: 10.1371/journal.pone.0001135.
    1. Ting F, Tran M, Böhm M, Siriwardana A, Van Leeuwen PJ, Haynes AM, Delprado W, Shnier R, Stricker PD. Focal irreversible electroporation for prostate cancer: functional outcomes and short-term oncological control. Prostate Cancer Prostatic Dis. 2016;1:46–52. doi: 10.1038/pcan.2015.47.
    1. Valerio M, et al. Initial assessment of safety and clinical feasibility of irreversible electroporation in the focal treatment of prostate cancer. Prostate Cancer Prostatic Dis. 2014;17:343–347. doi: 10.1038/pcan.2014.33.
    1. van den Bos W, et al. Focal irreversible electroporation as primary treatment for localized prostate cancer. BJU Int. 2017
    1. Welch A, van GM. Optical-thermal response of laser-irradiated tissue. Netherlands: Springer; 2011.
    1. Lindner U, Weersink RA, Haider MA, Gertner MR, Davidson SR, Atri M, Wilson BC, Fenster A, Trachtenberg J. Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J Urol. 2009;4:1371–1377. doi: 10.1016/j.juro.2009.06.035.
    1. Lepor H, Llukani E, Sperling D, Fütterer JJ. Complications, recovery, and early functional outcomes and oncologic control following in-bore focal laser ablation of prostate cancer. Eur Urol. 2015;68:924–926. doi: 10.1016/j.eururo.2015.04.029.
    1. Eggener SE, Yousuf A, Watson S, Wang S, Oto A. Phase II evaluation of magnetic resonance imaging guided focal laser ablation of prostate cancer. J Urol. 2016;196:1670–1675. doi: 10.1016/j.juro.2016.07.074.
    1. Health Policy Advisory Committee on Technology (HealthPACT) (2014) Technology brief: ablative techniques for the treatment of localised prostate cancer, pp 1–20. Available: . Accessed 11 July 2016
    1. Zlotta AR, et al. Percutaneous transperineal radiofrequency ablation of prostate tumour: safety, feasibility and pathological effects on human prostate cancer. Br J Urol. 1998;81:265–275. doi: 10.1046/j.1464-410X.1998.00504.x.
    1. Tay KJ, Scheltema MJ, Ahmed HU, Barret E, Coleman JA, Dominguez-Escrig J, Ghai S, Huang J, Jones JS, Klotz LH, Robertson CN, Sanchez-Salas R, Scionti S, Sivaraman A, de la Rosette J. P. T. Patient selection for prostate focal therapy in the era of active surveillance: an International Delphi consensus project. Prostate Cancer Prostatic Dis. 2017;20:294–299. doi: 10.1038/pcan.2017.8.
    1. de la Rosette J, et al. Focal therapy in prostate cancer—report from a consensus panel. J Endourol. 2010;24:775–780. doi: 10.1089/end.2009.0596.
    1. Liu W, et al. copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Cancer. 2010;15:559–565.
    1. Haffner MC, et al. Tracking the clonal origin of lethal prostate cancer. J Clin Invest. 2013;123:4918–4922. doi: 10.1172/JCI70354.
    1. Ahmed HU, Dickinson L, Charman S, Weir S, McCartan N, Hindley RG, Freeman A, Kirkham AP, Sahu M, Scott R, Allen C, Van der Meulen J. E. M. Focal ablation targeted to the index lesion in multifocal localised prostate cancer: a prospective development study. Eur Urol. 2015;68:927–936. doi: 10.1016/j.eururo.2015.01.030.

Source: PubMed

3
Subscribe