Efficacy of different fibres and flour mixes in South-Asian flatbreads for reducing post-prandial glucose responses in healthy adults

Hanny M Boers, Katrina MacAulay, Peter Murray, Jack Seijen Ten Hoorn, Anne-Roos Hoogenraad, Harry P F Peters, Maria A M Vente-Spreeuwenberg, David J Mela, Hanny M Boers, Katrina MacAulay, Peter Murray, Jack Seijen Ten Hoorn, Anne-Roos Hoogenraad, Harry P F Peters, Maria A M Vente-Spreeuwenberg, David J Mela

Abstract

Purpose: Type 2 diabetes (T2DM) is increasing, particularly in South-East Asia. Intake of high-glycaemic foods has been positively associated with T2DM, and feasible routes to reduce the glycaemic response to carbohydrate-rich staple foods are needed. The research question was whether different fibre and legume flour mixes in flatbreads lower postprandial glucose (PPG) responses.

Methods: Using a balanced incomplete block design, we tested the inclusion of guar gum (GG), konjac mannan (KM) and chickpea flour (CPF) in 10 combinations (2/4/6 g GG; 2/4 g KM; 15 g CPF, and 10 or 15 g CPF plus 2 or 4 g GG) in 100 g total of a control commercial high-fibre flatbread flour mix ("atta") on PPG in 38 normal-weight adults. Self-reported appetite was an additional exploratory outcome. An in vitro digestion assay was adapted for flatbreads and assessed for prediction of in vivo PPG.

Results: Flatbreads with 6 g GG, 4 g KM, and 15 g CPF plus 2 or 4 g GG reduced PPG ≥30 % (p < 0.01), while no other combinations differed significantly from the control. A statistical model with four in vitro parameters (rate of digestion, %RDS, AUC, carbohydrate level) was highly predictive of PPG results (adjusted R 2 = 0.89). Test products were similar to the control for appetite-related measures.

Conclusions: The results confirm the efficacy of specific additions to flatbread flour mixes for reducing PPG and the value of the in vitro model as a predictive tool with these ingredients and product format. This trial is registered at ClinicalTrials.gov with identifier NCT02671214.

Keywords: Appetite; Atta; Glycaemic response; In vitro digestion; Viscous fibre.

Conflict of interest statement

Conflict of interest

All authors are employees of Unilever, which manufactures and markets consumer food products, including the flour used for the flatbreads in this study.

Ethical standards

This human study has been approved by the East Kent Local Research Committee (UK), and therefore, the study was conducted according to the principles of Good Clinical Practice, the Declaration of Helsinki (2008) and applicable local laws and regulations concerning studies conducted on human subjects, not testing a medical product or device. Each participant provided written informed consent prior to his/her inclusion in the study.

Figures

Fig. 1
Fig. 1
Flow diagram of participants throughout the study
Fig. 2
Fig. 2
Effect of flatbreads consumption with different amounts of viscous fibres and legume flour on postprandial glucose (mean ± SEM) (HFF high-fibre flatbread control). a Effect of flatbread consumption with different amounts of guar gum on postprandial plasma glucose (mean ± SEM) (HFF high-fibre flatbread control). b Effect of flatbread consumption with different amounts of chickpea flour (15 g) without or with guar gum on postprandial plasma glucose (mean ± SEM) (HFF high-fibre flatbread control). c Effect of flatbread consumption with different amounts of konjac mannan on postprandial plasma glucose (mean ± SEM) (HFF high-fibre flatbread control). d Effect of flatbread consumption with chickpea flour (10 g) and different amounts of guar gum on postprandial plasma glucose (mean ± SEM) (HFF high-fibre flatbread control)
Fig. 3
Fig. 3
Percentage change (mean ± SEM) in PPG (+iAUC2hr) of flatbreads with different amounts of viscous fibres and/or legume flour and p value for change relative to the control flatbread without additions of viscous fibres or legume flour
Fig. 4
Fig. 4
Observed in vivo response (+iAUC) for postprandial plasma glucose response versus the value predicted based on in vitro data (statistical model as described in text and Online Resource). HFF high-fibre flour (control), CPF chickpea flour, GG guar gum and KM konjac mannan

References

    1. Kaveeshwar SA, Cornwall J. The current state of diabetes mellitus in India. Australas Med J. 2014;7:45–48. doi: 10.4066/AMJ.2014.1979.
    1. Tabak AG, Herder C, Rathmann W, Brunner EJ, Kavimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379:2279–2290. doi: 10.1016/S0140-6736(12)60283-9.
    1. Monnier L, Colette C, Dunseath GJ, Owens DR. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care. 2007;30:263–269. doi: 10.2337/dc06-1612.
    1. Schnell O, Mertes G, Standl E. Acarbose and metabolic control in patients with type 2 diabetes with newly initiated insulin therapy. Diabetes Obes Metab. 2007;9:853–858. doi: 10.1111/j.1463-1326.2006.00666.x.
    1. Van De Laar FA, Lucassen PLBJ, Akkermans RP, Van De Lisdonk EH, De Grauw WJC (2006) Alpha-glucosidase inhibitors for people with impaired glucose tolerance or impaired fasting blood glucose. Cochrane Database Syst Rev
    1. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359:2072–2077. doi: 10.1016/S0140-6736(02)08905-5.
    1. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ianne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–1350. doi: 10.1056/NEJM200105033441801.
    1. International Diabetes Federation: Guideline for Management of Postmeal Glucose (2007)
    1. International Diabetes Federation: Guideline for Management of Postmeal Glucose (2011)
    1. Lafiandra D, Riccardi G, Shewry PR. Improving cereal grain carbohydrates for diet and health. J Cereal Sci. 2014;59:312–326. doi: 10.1016/j.jcs.2014.01.001.
    1. Henry CJK, Kaur B. Diet-based management and treatment of diabetes. In: Mohan V, Unnikrishnan R, editors. World clinics—Diabetologia—Type 2 diabetes mellitus. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd; 2014. pp. 1–19.
    1. Jenkins DJA, Kendall CWC, Axelsen M, Augustin LSA, Vuksan V. Viscous and nonviscous fibres, nonabsorbable and low glycaemic index carbohydrates, blood lipids and coronary heart disease. Curr Opin Lipidol. 2000;11:49–56. doi: 10.1097/00041433-200002000-00008.
    1. Goni I, Valentin-Gamazo C. Chickpea flour ingredient slows glycemic response to pasta in healthy volunteers. Food Chem. 2003;81:511–515. doi: 10.1016/S0308-8146(02)00480-6.
    1. Khawaja KI, Fatima A, Mian SA, Mumtaz U, Moazzum A, Ghias M, Masud F. Glycaemic, insulin and ghrelin responses to traditional South Asian flatbreads in diabetic and healthy subjects. Br J Nutr. 2012;108:1810–1817. doi: 10.1017/S0007114511007264.
    1. Radhika G, Sumathi C, Ganesan A, Sudha V, Henry CJK. Glycaemic index of Indian flatbreads (rotis) prepared using whole wheat flour and atta mix-added whole wheat flour. Br J Nutr. 2010;103:1642–1647. doi: 10.1017/S0007114509993680.
    1. Thondre PS, Henry CJK. High-molecular-weight barley beta-glucan in chapatis (unleavened Indian flatbread) lowers glycemic index. Nutr Res. 2009;29:480–486. doi: 10.1016/j.nutres.2009.07.003.
    1. Butt MS, Shahzadi N, Suleria HAR, Sultan T, Chohan MI. Effect of dietary fiber in lowering serum glucose and body weight in sprague dawley rats. Functional Foods in Health and Disease. 2011;8:261–278.
    1. Doi K. Effect of konjac fibre (glucomannan) on glucose and lipids. Eur J Clin Nutr. 1995;49:S190–S197.
    1. Ekstrom LM, Bjorck IM, Ostman EM. On the possibility to affect the course of glycaemia, insulinaemia, and perceived hunger/satiety to bread meals in healthy volunteers. Food Funct. 2013;4:522–529. doi: 10.1039/c2fo30251a.
    1. Wolf BW, Wolever TMS, Lai CS, Bolognesi C, Radmard R, Maharry KS, Garleb KA, Hertzler SR, Firkins JL. Effects of a beverage containing an enzymatically induced-viscosity dietary fiber, with or without fructose, on the postprandial glycemic response to a high glycemic index food in humans. Eur J Clin Nutr. 2003;57:1120–1127. doi: 10.1038/sj.ejcn.1601652.
    1. Zafar TA, Al-Hassawi F, Al-Khulaifi F, Al-Rayyes G, Waslien C, Huffman FG. Organoleptic and glycemic properties of chickpea–wheat composite breads. J Food Sci Technol. 2015;52:2256–2263. doi: 10.1007/s13197-013-1192-7.
    1. Li SS, Kendall CWC, De Souza RJ, Jayalath VH, Cozma AI, Ha V, Mirrahimi A, Chiavaroli L, Augustin LSA, Blanco Mejia S, Leiter LA, Beyene J, Jenkins DJA, Sievenpiper JL. Dietary pulses, satiety and food intake: a systematic review and meta-analysis of acute feeding trials. Obesity. 2014;22:1773–1780. doi: 10.1002/oby.20782.
    1. Wanders AJ, van den Borne JJGC, De GC, Hulshof T, Jonathan MC, Kristensen M, Mars M, Schols HA, Feskens EJM. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev. 2011;12:724–739.
    1. Stratton RJ, Stubbs RJ, Hughes D, King N, Blundell JE, Elia M. Comparison of the traditional paper visual analogue scale questionnaire with an Apple Newton electronic appetite rating system (EARS) in free living subjects feeding ad libitum. Eur J Clin Nutr. 1998;52:37–74. doi: 10.1038/sj.ejcn.1600636.
    1. Blundell J, De GC, Hulshof T, Jebb S, Livingstone B, Lluch A, Mela D, Salah S, Schuring E, Van Der Knaap H, Westerterp M. Appetite control: methodological aspects of the evaluation of foods. Obes Rev. 2010;11:251–270. doi: 10.1111/j.1467-789X.2010.00714.x.
    1. Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr. 1992;46:S33–S50.
    1. Englyst HN, Veenstra J, Hudson GJ. Measurement of rapidly available glucose (RAG) in plant foods: A potential in vitro predictor of the glycaemic response. Br J Nutr. 1996;75:327–337. doi: 10.1079/BJN19960137.
    1. Englyst KN, Englyst HN, Hudson GJ, Cole TJ, Cummings JH. Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. Am J Clin Nutr. 1999;69:448–454.
    1. Sopade PA, Gidley MJ. A rapid in vitro digestibillity assay based on glucometry for investigating kinetics of starch digestion. Starch. 2009;61:245–255. doi: 10.1002/star.200800102.
    1. Van Kempen TATG, Regmi PR, Matte JJ, Zijlstra RT. In vitro starch digestion kinetics, corrected for estimated gastric emptying, predict portal glucose appearance in pigs. J Nutr. 2010;140:1227–1233. doi: 10.3945/jn.109.120584.
    1. Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TMS. Glycaemic index methodology. Nutr Res Rev. 2005;18:145–171. doi: 10.1079/NRR2005100.
    1. Le Floch JP, Escuyer P, Baudin E, Baudon D, Perlemuter L. Blood glucose area under the curve: methodological aspects. Diabetes Care. 1990;13:172–175. doi: 10.2337/diacare.13.2.172.
    1. Abdul-Ghani MA, Lyssenko V, Tuomi T, DeFronzo RA, Groop L. The shape of plasma glucose concentration curve during OGTT predicts future risk of type 2 diabetes. Diabete Metab Res Rev. 2010;26:280–286. doi: 10.1002/dmrr.1084.
    1. Ellis PR, Dawoud FM, Morris ER. Blood glucose, plasma insulin and sensory responses to guar-containing wheat breads: effects of molecular weight and particle size of guar gum. Br J Nutr. 1991;66:363–379. doi: 10.1079/BJN19910041.
    1. Gatenby SJ, Ellis PR, Morgan LM, Judd PA. Effect of partially depolymerized guar gum on acute metabolic variables in patients with non-insulin-dependent diabetes. Diabetes Med. 1996;13:358–364. doi: 10.1002/(SICI)1096-9136(199604)13:4<358::AID-DIA24>;2-#.
    1. Wolever TMS, Jenkins DJA, Nineham R, Alberti KGMM. Guar gum and reduction of post-prandial glycaemia: Effect of incorporation into solid food, liquid food and both. Br J Nutr. 1979;41:505–510. doi: 10.1079/BJN19790065.
    1. Wood PJ, Beer MU, Butler G. Evaluation of role of concentration and molecular weight of oat beta-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose load. Br J Nutr. 2000;84:19–23.
    1. Dall’Alba V, Silva FM, Antonio JP, Steemburgo T, Royer CP, Almeida JC, Gross JL, Azevedo MJ. Improvement of the metabolic syndrome profile by soluble fibre—guar gum—in patients with type 2 diabetes: a randomised clinical trial. Br J Nutr. 2013;110:1601–1610. doi: 10.1017/S0007114513001025.
    1. Uusitupa M, Siitonen O, Savolainen K, Silvasti M, Penttila I, Parviainen M. Metabolic and nutritional effects of long-term use of guar gum in the treatment of noninsulin-dependent diabetes of poor metabolic control. Am J Clin Nutr. 1989;49:345–351.
    1. Slaughter SL, Ellis PR, Jackson EC, Butterworth PJ. The effect of guar galactomannan and water availability during hydrothermal processing on the hydrolysis of starch catalysed by pancreatic alpha-amylase. Biochim Biophys Acta. 2002;1571:55–63. doi: 10.1016/S0304-4165(02)00209-X.
    1. Symons LJ, Brennan CS. The influence of (1-3) (1-4)-beta-d-glucan-rich fractions from barley on the physicochemical properties and in vitro reducing sugar release of white wheat breads. J Food Sci. 2004;69:C463–C467. doi: 10.1111/j.1365-2621.2004.tb10989.x.
    1. Tester RF, Sommerville MD. The effects of non-starch polysaccharides on the extent of gelatinisation, swelling and alpha-amylase hydrolysis of maize and wheat starches. Food Hydrocoll. 2003;17:41–54. doi: 10.1016/S0268-005X(02)00032-2.
    1. Brennan CS, Blake DE, Ellis PR, Schofield JD. Effects of guar galactomannan on wheat bread microstructure and on the in vitro and in vivo digestibility of starch in bread. J Cereal Sci. 1996;24:151–160. doi: 10.1006/jcrs.1996.0048.
    1. Chearskul S, Sangurai S, Nitiyanant W, Kriengsinyos W, Kooptiwut S, Harindhanavudhi T. Glycemic and lipid responses to glucomannan in Thais with type 2 diabetes mellitus. Med Assoc Thai. 2007;90:2150–2157.
    1. Chua M, Baldwin TC, Hocking TJ, Chan K. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E. Br J Ethnopharmacol. 2010;128:268–278. doi: 10.1016/j.jep.2010.01.021.
    1. Wood PJ, Braaten JT, Scott FW, Riedel KD, Wolynetz MS, Collins MW. Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose load. Br J Nutr. 1994;72:731–743. doi: 10.1079/BJN19940075.
    1. Jukanti AK, Gaur PM, Gowda CLL, Chibbar RN. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr. 2012;108:S11–S26. doi: 10.1017/S0007114512000797.
    1. Nestel P, Cehun M, Chronopoulos A. Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. Am J Clin Nutr. 2004;79:390–395.
    1. Johnson SK, Thomas SJ, Hall RS. Palatability and glucose, insulin and satiety responses of chickpea flour and extruded chickpea flour bread eaten as part of a breakfast. Eur J Clin Nutr. 2005;59:169–176. doi: 10.1038/sj.ejcn.1602054.
    1. Jarvi AE, Karlstrom BE, Granfeldt YE, Bjorck IME, Vessby BOH, Asp NGL. The influence of food structure on postprandial metabolism in patients with non-insulin-dependent diabetes mellitus. Am J Clin Nutr. 1995;61:837–842.
    1. Aston LM, Stokes CS, Jebb SA. No effect of a diet with a reduced glycaemic index on satiety, energy intake and body weight in overweight and obese women. In J Obes. 2008;32:160–165. doi: 10.1038/sj.ijo.0803717.
    1. Peters HPF, Ravestein P, Van Der Hijden HTWM, Boers HM, Mela DJ. Effect of carbohydrate digestibility on appetite and its relationship to postprandial blood glucose and insulin levels. Eur J Clin Nutr. 2011;65:47–54. doi: 10.1038/ejcn.2010.189.
    1. Clark MJ, Slavin JL. The effect of fiber on satiety and food intake: a systematic review. J Am Coll Nutr. 2013;32:200–211. doi: 10.1080/07315724.2013.791194.
    1. Keithley JK, Swanson B, Mikolaitis SL, Demeo M, Zeller JM, Fogg L, Adamji J. Safety and efficacy of glucomannan for weight loss in overweight and moderately obese adults. J Obes. 2013
    1. Vuksan V, Panahi S, Lyon M, Rogovik AL, Jenkins AL, Leiter LA. Viscosity of fiber preloads affects food intake in adolescents. Nutr Metab Cardiovasc Dis. 2009;19:498–503. doi: 10.1016/j.numecd.2008.09.006.
    1. Dickinson S, Colagiuri S, Faramus E, Petocz P, Brand-Miller JC. Postprandial hyperglycemia and insulin sensitivity differ among lean young adults of different ethnicities. J Nutr. 2002;132:2574–2579.
    1. Livesey G, Taylor R, Hulshof T, Howlett J. Glycemic response and health—a systematic review and meta-analysis: Relations between dietary glycemic properties and health outcomes. Am J Clin Nutr. 2008;87:258S–268S.
    1. Ferrer-Mairal A, Penalva-Lapuente C, Iglesia I, Urtasun L, De Miguel-Etayo P, Remon S, Cortes E, Moreno LA. In vitro and in vivo assessment of the glycemic index of bakery products: influence of the reformulation of ingredients. Eur J Nutr. 2012;51:947–954. doi: 10.1007/s00394-011-0272-6.
    1. Lau E, Soong YY, Zhou W, Henry J. Can bread processing conditions alter glycaemic response? Food Chem. 2015;173:250–256. doi: 10.1016/j.foodchem.2014.10.040.
    1. Thondre PS, Monro JA, Mishra S, Henry CJK. High molecular weight barley beta-glucan decreases particle breakdown in chapattis (Indian flat breads) during in vitro digestion. Food Res Int. 2010;43:1476–1481. doi: 10.1016/j.foodres.2010.04.012.
    1. Wolever TMS, Vorster HH, Bjorck I, Brand-Miller JC, Brighenti F, Mann JI, Ramdath DD, Granfeldt Y, Holt S, Perry TL, Venter C, Wu X. Determination of the glycemic index of foods: interlaboratory study. Eur J Clin Nutr. 2003;57:475–482. doi: 10.1038/sj.ejcn.1601551.

Source: PubMed

3
Subscribe