Intramuscular injection of human chorionic gonadotropin prior to secretory transformation in patients undergoing frozen-thawed embryo transfer cycles

Ling Deng, Xin Chen, Christophe Blockeel, De-Sheng Ye, Shi-Ling Chen, Ling Deng, Xin Chen, Christophe Blockeel, De-Sheng Ye, Shi-Ling Chen

Abstract

Background: The major difference between a natural cycle and an artificially prepared cycle is the lack of luteinizing hormone (LH) peak in the latter. The LH/hCG receptors were identified to express in human endometrium and evidences of experiments also suggested the beneficial role of hCG in embryo implantation, indicating that the LH peak might be of clinical significance and the activation of LH/hCG receptors in the endometrium could improve embryo implantation. Hence, we postulated that the addition of hCG prior to secretory transformation in an artificial cycle might improve pregnancy outcomes.

Methods: This retrospective cohort study was conducted at a Reproductive Medicine Center between 2016 and 2018. Patients aged ≤43 years at the (index) oocyte retrieval and undergoing artificially prepared frozen-thawed embryo transfer (FET) with at least one good-quality embryo transferred were included. The cycles were divided into two groups: The hCG group (n = 337) received an intramuscular injection of 10,000 IU hCG before secretory transformation; the control group (n = 364) performed FET without hCG administration. The primary endpoint was live birth delivery rate (LBR), secondary outcomes included implantation rate, clinical pregnancy rate (CPR) and ongoing pregnancy rate (OPR).

Results: The LBR (49.9% vs 39.6%, P < 0.01), CPR (61.4% vs 50.5%, P < 0.01) and OPR (52.8% vs 43.1%, P < 0.05) were statistically significantly higher in the hCG group than the control group. The superiority in LBR after hCG administration remained significant after adjusting for confounding factors (OR 1.613, 95% CI 1.173-2.217; P < 0.01). In the subgroup analysis, the improvement in LBR was statistically significant after hCG administration for cleavage-stage embryo transfer cycles (51.2% vs 42.3%, P < 0.05), whereas for blastocyst transfer cycles, the improvement in LBR was not (45.7% vs 31.3%, P > 0.05).

Conclusions: Intramuscular hCG injection prior to secretory transformation may benefit LBR in patients undergoing artificially prepared FET cycles. But it should be noted that nonsignificant tendency towards higher LBR was observed after hCG administration in patients undergoing blastocyst transfer. So, future prospective randomized controlled studies are required to confirm, especially for blastocyst transfer cycles.

Keywords: Frozen-thawed embryo transfer; Human chorionic gonadotropin; Pregnancy outcome.

Conflict of interest statement

There were no conflicts of interests regarding the publication of this article.

References

    1. De Rycke M, Goossens V, Kokkali G, Meijer-Hoogeveen M, Coonen E, Moutou C. ESHRE PGD consortium data collection XIV-XV: cycles from January 2011 to December 2012 with pregnancy follow-up to October 2013. Hum Reprod. 2017;32:1974–1994. doi: 10.1093/humrep/dex265.
    1. Evans J, Salamonsen LA. Too much of a good thing? Experimental evidence suggests prolonged exposure to hCG is detrimental to endometrial receptivity. Hum Reprod. 2013;28:1610–1619. doi: 10.1093/humrep/det055.
    1. Makrigiannakis Antonis, Vrekoussis Thomas, Zoumakis Emmanouel, Kalantaridou Sophia, Jeschke Udo. The Role of HCG in Implantation: A Mini-Review of Molecular and Clinical Evidence. International Journal of Molecular Sciences. 2017;18(6):1305. doi: 10.3390/ijms18061305.
    1. Strug MR, Su R, Young JE, Dodds WG, Shavell VI, Díaz-Gimeno P, et al. Intrauterine human chorionic gonadotropin infusion in oocyte donors promotes endometrial synchrony and induction of early decidual markers for stromal survival: a randomized clinical trial. Hum Reprod. 2016;31:1552–1561. doi: 10.1093/humrep/dew080.
    1. Licht P, Losch A, Dittrich R, Neuwinger J, Siebzehnrubl E, Wildt L. Novel insights into human endometrial paracrinology and embryo-maternal communication by intrauterine microdialysis. Hum Reprod Update. 1998;4:532–538. doi: 10.1093/humupd/4.5.532.
    1. Bourdiec A, Shao R, Rao CV, Akoum A. Human chorionic gonadotropin triggers angiogenesis via the modulation of endometrial stromal cell responsiveness to interleukin 1: a new possible mechanism underlying embryo implantation. Biol Reprod. 2012;87:66. doi: 10.1095/biolreprod.112.100370.
    1. Fluhr H, Krenzer S, Deperschmidt M, Zwirner M, Wallwiener D, Licht P. Human chorionic gonadotropin inhibits insulin-like growth factor-binding protein-1 and prolactin in decidualized human endometrial stromal cells. Fertil Steril. 2006;86:236–238. doi: 10.1016/j.fertnstert.2005.12.031.
    1. Fluhr H, Bischof-Islami D, Krenzer S, Licht P, Bischof P, Zygmunt M. Human chorionic gonadotropin stimulates matrix metalloproteinases-2 and -9 in cytotrophoblastic cells and decreases tissue inhibitor of metalloproteinases-1, −2, and −3 in decidualized endometrial stromal cells. Fertil Steril. 2008;90:1390–1395. doi: 10.1016/j.fertnstert.2007.08.023.
    1. Berndt S, Blacher S, Munaut C, Detilleux J, Perrier d'Hauterive S, Huhtaniemi I, et al. Hyperglycosylated human chorionic gonadotropin stimulates angiogenesis through TGF-beta receptor activation. FASEB J. 2013;27:1309–1321. doi: 10.1096/fj.12-213686.
    1. Liu XM, Ma D, Wang WJ, Qu QL, Zhang N, Wang XR, et al. Intrauterine administration of human chorionic gonadotropin improves the live birth rates of patients with repeated implantation failure in frozen-thawed blastocyst transfer cycles by increasing the percentage of peripheral regulatory T cells. Arch Gynecol Obstet. 2019;299:1165–1172. doi: 10.1007/s00404-019-05047-6.
    1. Akoum A, Metz CN, Morin M. Marked increase in macrophage migration inhibitory factor synthesis and secretion in human endometrial cells in response to human chorionic gonadotropin hormone. J Clin Endocrinol Metab. 2005;90:2904–2910. doi: 10.1210/jc.2004-1900.
    1. Kane N, Kelly R, Saunders PTK, Critchley HOD. Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor. Endocrinology. 2009;150:2882–2888. doi: 10.1210/en.2008-1309.
    1. Slattery MM, Brennan C, O'Leary MJ, Morrison JJ. Human chorionic gonadotrophin inhibition of pregnant human myometrial contractility. BJOG. 2001;108:704–708.
    1. Angioni S, Spedicato M, Rizzo A, Cosola C, Mutinati M, Minoia G, et al. In vitro activity of human chorionic gonadotropin (hCG) on myometrium contractility. Gynecol Endocrinol. 2011;27:180–184. doi: 10.3109/09513590.2010.488780.
    1. Laokirkkiat P, Thanaboonyawat I, Boonsuk S, Petyim S, Prechapanich J, Choavaratana R. Increased implantation rate after intrauterine infusion of a small volume of human chorionic gonadotropin at the time of embryo transfer: a randomized, double-blind controlled study. Arch Gynecol Obstet. 2019;299:267–275. doi: 10.1007/s00404-018-4962-7.
    1. Aaleyasin A, Aghahosseini M, Rashidi M, Safdarian L, Sarvi F, Najmi Z, et al. In vitro fertilization outcome following embryo transfer with or without preinstillation of human chorionic gonadotropin into the uterine cavity: a randomized controlled trial. Gynecol Obstet Investig. 2015;79:201–205. doi: 10.1159/000363235.
    1. Santibanez A, Garcia J, Pashkova O, Colin O, Castellanos G, Sanchez AP, et al. Effect of intrauterine injection of human chorionic gonadotropin before embryo transfer on clinical pregnancy rates from in vitro fertilisation cycles: a prospective study. Reprod Biol Endocrinol. 2014;12:9. doi: 10.1186/1477-7827-12-9.
    1. Mansour R, Tawab N, Kamal O, El-Faissal Y, Serour A, Aboulghar M, et al. Intrauterine injection of human chorionic gonadotropin before embryo transfer significantly improves the implantation and pregnancy rates in in vitro fertilization/intracytoplasmic sperm injection: a prospective randomized study. Fertil Steril. 2011;96:1370–4.e1. doi: 10.1016/j.fertnstert.2011.09.044.
    1. Navali N, Gassemzadeh A, Farzadi L, Abdollahi S, Nouri M, Hamdi K, et al. Intrauterine administration of hCG immediately after oocyte retrieval and the outcome of ICSI: a randomized controlled trial. Hum Reprod. 2016;31:2520–2526. doi: 10.1093/humrep/dew236.
    1. Tesarik J, Hazout A, Mendoza C. Luteinizing hormone affects uterine receptivity independently of ovarian function. Reprod BioMed Online. 2003;7:59–64. doi: 10.1016/S1472-6483(10)61729-4.
    1. Zimmermann G, Ackermann W, Alexander H. Epithelial human chorionic gonadotropin is expressed and produced in human secretory endometrium during the normal menstrual cycle. Biol Reprod. 2009;80:1053–1065. doi: 10.1095/biolreprod.108.069575.
    1. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73:1155–1158. doi: 10.1016/S0015-0282(00)00518-5.
    1. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril. 2009;92:1520–1524. doi: 10.1016/j.fertnstert.2009.09.009.
    1. Kasahara Y, Kitahara Y, Nakamura K, Minegishi T. Downregulation of LH receptor mRNA in the rat uterus. Mol Med Rep. 2012;5:1146–1150.
    1. Wirleitner B, Schuff M, Vanderzwalmen P, Stecher A, Okhowat J, Hradecky L, et al. Intrauterine administration of human chorionic gonadotropin does not improve pregnancy and life birth rates independently of blastocyst quality: a randomised prospective study. Reprod Biol Endocrinol. 2015;13:70. doi: 10.1186/s12958-015-0069-1.
    1. Hong KH, Forman EJ, Werner MD, Upham KM, Gumeny CL, Winslow AD, et al. Endometrial infusion of human chorionic gonadotropin at the time of blastocyst embryo transfer does not impact clinical outcomes: a randomized, double-blind, placebo-controlled trial. Fertil Steril. 2014;102:1591–5.e2. doi: 10.1016/j.fertnstert.2014.08.006.
    1. Licht P, Fluhr H, Neuwinger J, Wallwiener D, Wildt L. Is human chorionic gonadotropin directly involved in the regulation of human implantation? Mol Cell Endocrinol. 2007;269:85–92. doi: 10.1016/j.mce.2006.09.016.
    1. Gao M, Jiang X, Li B, Li L, Duan M, Zhang X, et al. Intrauterine injection of human chorionic gonadotropin before embryo transfer can improve in vitro fertilization-embryo transfer outcomes: a meta-analysis of randomized controlled trials. Fertil Steril. 2019;112:89–97.e1. doi: 10.1016/j.fertnstert.2019.02.027.
    1. Chung CHS, Wong AWY, Chan CPS, Saravelos SH, Kong GWS, Cheung LP, et al. The changing pattern of uterine contractions before and after fresh embryo transfer and its relation to clinical outcome. Reprod BioMed Online. 2017;34:240–247. doi: 10.1016/j.rbmo.2016.12.011.
    1. Leeton J, Trounson A, Jessup D, Wood C. The technique for human embryo transfer. Fertil Steril. 1982;38:156–161. doi: 10.1016/S0015-0282(16)46451-4.
    1. Papanikolaou EG, D'haeseleer E, Verheyen G, Van de Velde H, Camus M, Van Steirteghem A, et al. Live birth rate is significantly higher after blastocyst transfer than after cleavage-stage embryo transfer when at least four embryos are available on day 3 of embryo culture. A randomized prospective study. Hum Reprod. 2005;20:3198–3203. doi: 10.1093/humrep/dei217.
    1. Lopata A, Hay DL. The potential of early human embryos to form blastocysts, hatch from their zona and secrete HCG in culture. Hum Reprod. 1989;4:87–94. doi: 10.1093/humrep/4.suppl_1.87.
    1. Bonduelle ML, Dodd R, Liebaers I, Van Steirteghem A, Williamson R, Akhurst R. Chorionic gonadotrophin-beta mRNA, a trophoblast marker, is expressed in human 8-cell embryos derived from tripronucleate zygotes. Hum Reprod. 1988;3:909–914. doi: 10.1093/oxfordjournals.humrep.a136808.
    1. Abbara A, Clarke SA, Dhillo WS. Novel concepts for inducing final oocyte maturation in in vitro fertilization treatment. Endocr Rev. 2018;39:593–628. doi: 10.1210/er.2017-00236.
    1. Schmidt DW, Maier DB, Nulsen JC, Benadiva CA. Reducing the dose of human chorionic gonadotropin in high responders does not affect the outcomes of in vitro fertilization. Fertil Steril. 2004;82:841–846. doi: 10.1016/j.fertnstert.2004.03.055.
    1. Lin H, Wang WJ, Li Y, Chen X, Yang D, Zhang Q. Triggering final oocyte maturation with reduced doses of hCG in IVF/ICSI: a prospective, randomized and controlled study. Eur J Obstet Gyn R B. 2011;159:143–147. doi: 10.1016/j.ejogrb.2011.07.009.
    1. Xu B, Li Z, Zhang H, Jin L, Li Y, Ai J, et al. Serum progesterone level effects on the outcome of in vitro fertilization in patients with different ovarian response: an analysis of more than 10,000 cycles. Fertil Steril. 2012;97:1321–7.e4. doi: 10.1016/j.fertnstert.2012.03.014.

Source: PubMed

3
Subscribe