Understanding Diabetic Neuropathy: Focus on Oxidative Stress

Lei Pang, Xin Lian, Huanqiu Liu, Yuan Zhang, Qian Li, Yin Cai, Haichun Ma, Xin Yu, Lei Pang, Xin Lian, Huanqiu Liu, Yuan Zhang, Qian Li, Yin Cai, Haichun Ma, Xin Yu

Abstract

Diabetic neuropathy is one of the clinical syndromes characterized by pain and substantial morbidity primarily due to a lesion of the somatosensory nervous system. The burden of diabetic neuropathy is related not only to the complexity of diabetes but also to the poor outcomes and difficult treatment options. There is no specific treatment for diabetic neuropathy other than glycemic control and diligent foot care. Although various metabolic pathways are impaired in diabetic neuropathy, enhanced cellular oxidative stress is proposed as a common initiator. A mechanism-based treatment of diabetic neuropathy is challenging; a better understanding of the pathophysiology of diabetic neuropathy will help to develop strategies for the new and correct diagnostic procedures and personalized interventions. Thus, we review the current knowledge of the pathophysiology in diabetic neuropathy. We focus on discussing how the defects in metabolic and vascular pathways converge to enhance oxidative stress and how they produce the onset and progression of nerve injury present in diabetic neuropathy. We discuss if the mechanisms underlying neuropathy are similarly operated in type I and type II diabetes and the progression of antioxidants in treating diabetic neuropathy.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2020 Lei Pang et al.

Figures

Figure 1
Figure 1
Components of oxidative stress and working mechanism of antioxidative system. (a) Oxidative stress consists of two components as the free radicals and the antioxidative system. The term of oxidative stress describes a condition when the generation of free radicals and the antioxidative system is imbalanced. Free radicals can be the radicals with or without reactivity of oxygen. Antioxidative system consist of antioxidants, that are derived either endogenous or exogenous, and antioxidative enzymes, such as superoxide dismutase, glutathione reductase/peroxidise, and catalase. (b) Antioxidative system works through mechanisms suppressing and scavenging not only free radicals but also de novo antioxidant. Superoxide (O2•−) is the major ROS produced in the mitochondria with increased oxidative stress. However, conversion of O2•− to H2O by coupled reactions of superoxide dismutase (SOD), catalase, and glutathione reductase/peroxidise is accompanied by the formation of GSH and elimination of the detrimental effect of O2•− on damage the cells.
Figure 2
Figure 2
Major glucose metabolism pathway under physiological condition and diabetic condition. (a) Under a physiological condition, intracellular glucose is converted to glucose-6-phosphate, via hexokinase, then following isomerization to fructose-6-phosphate. Along glycolysis pathway, glyceraldehyde-3-phosphate travels down to pyruvate and acetyl CoA via pyruvate dehydrogenase, which then enters tricarboxylic acid (TCA) cycle. NADH, as electron carrier and generated during the process of glycolysis and glucose oxidation, can donate reducing equivalents to the mitochondrial electron transport chain (ETC), thereby creating a proton gradient that is used by ATP synthase to produce ATP and converting O2 to H2O. (b) Under diabetic condition, glucose metabolism is impaired, causing accumulation of glucose and the glycolytic intermediates, resulting mitochondrial injury, thereby converting O2 to superoxide radical (O2•−) instead of H2O. As a result, ATP production is reduced.
Figure 3
Figure 3
Four damaging pathways that can explain the detrimental effects of ROS in hyperglycaemia-induced diabetic neuropathy. The impaired glucose metabolism in diabetic condition causes an accumulation of glucose and glycolytic intermediates, which, instead of travel along glycolysis pathway, shunts to other metabolic or nonmetabolic pathways, resulting activation of the polyol pathway, hexosamine pathway, and AGE and PKC pathway. Superoxide inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, which is proposed to be a reason causing accumulation of all the glycolytic intermediates. Pentose phosphate pathway (PPP pathway) is to generate NADPH, which is used in polyol pathway. GFAT: glutamine-fructose-6-phosphate aminotransferase; GAPDH: glyceraldehyde-3 phosphate dehydrogenase; PDH: pyruvate dehydrogenase.
Figure 4
Figure 4
Strategies of antioxidative drugs in treating diabetic neuropathy include directly against ROS and against individual oxidative stress pathways. The listed drugs showed effect on improving symptoms of diabetic neuropathy. However, none of them have been FDA-approved due to the lack of clinical significance.
Figure 5
Figure 5
Summary of the major contributors to diabetic neuropathy. Diabetes-induced impairment of glucose metabolism causes hypoxia and acidosis, which contributes to and exacerbates the nerve injury. As a result, both glycolytic capacity and activity of electron transport chain are reduced, leading to overproduction of ROS, which, not only reducing ATP production but also initiating various modifications on protein/lipid and DNA. Thus, mitochondrial and bioenergetic dysfunction leads to neuropathy.

References

    1. Callaghan B. C., Cheng H. T., Stables C. L., Smith A. L., Feldman E. L. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurology. 2012;11(6):521–534. doi: 10.1016/S1474-4422(12)70065-0.
    1. Boulton A. J., Vinik A. I., Arezzo J. C., et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–962. doi: 10.2337/diacare.28.4.956.
    1. Little A. A., Edwards J. L., Feldman E. L. Diabetic neuropathies. Practical Neurology. 2007;7(2):82–92.
    1. Vinik A. I., Maser R. E., Mitchell B. D., Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–1579. doi: 10.2337/diacare.26.5.1553.
    1. Vinik A. I., Mehrabyan A. Diabetic neuropathies. The Medical Clinics of North America. 2004;88(4):947–999. doi: 10.1016/j.mcna.2004.04.009. xi.
    1. Tesfaye S., Chaturvedi N., Eaton S. E., et al. Vascular risk factors and diabetic neuropathy. The New England Journal of Medicine. 2005;352(4):341–350. doi: 10.1056/NEJMoa032782.
    1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–820. doi: 10.1038/414813a.
    1. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–1625. doi: 10.2337/diabetes.54.6.1615.
    1. Feldman E. L., Callaghan B. C., Pop-Busui R., et al. Diabetic neuropathy. Nature Reviews Disease Primers. 2019;5(1) doi: 10.1038/s41572-019-0092-1.
    1. Feldman E. L., Nave K. A., Jensen T. S., Bennett D. L. H. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron. 2017;93(6):1296–1313. doi: 10.1016/j.neuron.2017.02.005.
    1. Fernyhough P., McGavock J. Mechanisms of disease: mitochondrial dysfunction in sensory neuropathy and other complications in diabetes. Handbook of Clinical Neurology. 2014;126:353–377. doi: 10.1016/B978-0-444-53480-4.00027-8.
    1. Ott M., Gogvadze V., Orrenius S., Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12(5):913–922. doi: 10.1007/s10495-007-0756-2.
    1. Vincent A. M., Hayes J. M., McLean L. L., Vivekanandan-Giri A., Pennathur S., Feldman E. L. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes. 2009;58(10):2376–2385. doi: 10.2337/db09-0047.
    1. Guo K., Elzinga S., Eid S., et al. Genome-wide DNA methylation profiling of human diabetic peripheral neuropathy in subjects with type 2 diabetes mellitus. Epigenetics. 2019;14(8):766–779. doi: 10.1080/15592294.2019.1615352.
    1. Chowdhury S. K. R., Smith D. R., Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiology of Disease. 2013;51:56–65. doi: 10.1016/j.nbd.2012.03.016.
    1. Fernyhough P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Current Diabetes Reports. 2015;15(11) doi: 10.1007/s11892-015-0671-9.
    1. Rumora A. E., Lentz S. I., Hinder L. M., et al. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. The FASEB Journal. 2017;32(1):195–207. doi: 10.1096/fj.201700206r.
    1. Vincent A. M., Edwards J. L., Sadidi M., Feldman E. L. The antioxidant response as a drug target in diabetic neuropathy. Current Drug Targets. 2008;9(1):94–100. doi: 10.2174/138945008783431754.
    1. Vincent A. M., Feldman E. L. New insights into the mechanisms of diabetic neuropathy. Reviews in Endocrine & Metabolic Disorders. 2004;5(3):227–236. doi: 10.1023/B:REMD.0000032411.11422.e0.
    1. Vincent A. M., Russell J. W., Low P., Feldman E. L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocrine Reviews. 2004;25(4):612–628. doi: 10.1210/er.2003-0019.
    1. Rock C. L., Jacob R. A., Bowen P. E. Update on the biological characteristics of the antioxidant Micronutrients. Journal of the American Dietetic Association. 1996;96(7):693–702. doi: 10.1016/S0002-8223(96)00190-3. quiz 703-704.
    1. Cheeseman K. H., Slater T. F. An introduction to free radical biochemistry. British Medical Bulletin. 1993;49(3):481–493. doi: 10.1093/oxfordjournals.bmb.a072625.
    1. Halliwell B., Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? British Journal of Pharmacology. 2004;142(2):231–255. doi: 10.1038/sj.bjp.0705776.
    1. Shi H., Noguchi N., Niki E. Comparative study on dynamics of antioxidative action of alpha-tocopheryl hydroquinone, ubiquinol, and alpha-tocopherol against lipid peroxidation. Free Radical Biology & Medicine. 1999;27(3-4):334–346. doi: 10.1016/S0891-5849(99)00053-2.
    1. Levine M., Rumsey S. C., Daruwala R., Park J. B., Wang Y. Criteria and recommendations for vitamin C intake. JAMA. 1999;281(15):1415–1423. doi: 10.1001/jama.281.15.1415.
    1. Maritim A. C., Sanders R. A., Watkins J. B. Diabetes, oxidative stress, and antioxidants: a review. Journal of Biochemical and Molecular Toxicology. 2003;17(1):24–38. doi: 10.1002/jbt.10058.
    1. Sloan G., Shillo P., Selvarajah D., et al. A new look at painful diabetic neuropathy. Diabetes Research and Clinical Practice. 2018;144:177–191. doi: 10.1016/j.diabres.2018.08.020.
    1. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The New England Journal of Medicine. 1993;329(14):977–986. doi: 10.1056/NEJM199309303291401.
    1. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) Lancet. 1998;352(9131):837–853. doi: 10.1016/S0140-6736(98)07019-6.
    1. Nathan D. M. Long-term complications of diabetes mellitus. The New England Journal of Medicine. 1993;328(23):1676–1685. doi: 10.1056/NEJM199306103282306.
    1. Ruderman N. B., Williamson J. R., Brownlee M. Glucose and diabetic vascular disease1. The FASEB Journal. 1992;6(11):2905–2914. doi: 10.1096/fasebj.6.11.1644256.
    1. Clark C. M., Jr., Lee D. A. Prevention and treatment of the complications of diabetes mellitus. The New England Journal of Medicine. 1995;332(18):1210–1217. doi: 10.1056/NEJM199505043321807.
    1. Ziyadeh F. N. The extracellular matrix in diabetic nephropathy. American Journal of Kidney Diseases. 1993;22(5):736–744. doi: 10.1016/S0272-6386(12)80440-9.
    1. Callaghan B. C., Kerber K. A., Lisabeth L. L., et al. Role of neurologists and diagnostic tests on the management of distal symmetric polyneuropathy. JAMA Neurology. 2014;71(9):1143–1149. doi: 10.1001/jamaneurol.2014.1279.
    1. Rosenberger D. C., Blechschmidt V., Timmerman H., Wolff A., Treede R. D. Challenges of neuropathic pain: focus on diabetic neuropathy. Journal of Neural Transmission (Vienna) 2020;127(4):589–624. doi: 10.1007/s00702-020-02145-7.
    1. Scholz J., Broom D. C., Youn D. H., et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. The Journal of Neuroscience. 2005;25(32):7317–7323. doi: 10.1523/JNEUROSCI.1526-05.2005.
    1. Campbell J. N., Meyer R. A. Mechanisms of neuropathic pain. Neuron. 2006;52(1):77–92. doi: 10.1016/j.neuron.2006.09.021.
    1. May A. Chronic pain may change the structure of the brain. Pain. 2008;137(1):7–15. doi: 10.1016/j.pain.2008.02.034.
    1. Dunnigan S. K., Ebadi H., Breiner A., et al. Conduction slowing in diabetic sensorimotor polyneuropathy. Diabetes Care. 2013;36(11):3684–3690. doi: 10.2337/dc13-0746.
    1. Lupachyk S., Watcho P., Stavniichuk R., Shevalye H., Obrosova I. G. Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy. Diabetes. 2013;62(3):944–952. doi: 10.2337/db12-0716.
    1. Clements R. S., Jr., Vourganti B., Kuba T., Oh S. J., Darnell B. Dietary myo-inositol intake and peripheral nerve function in diabetic neuropathy. Metabolism. 1979;28(4):477–483. doi: 10.1016/0026-0495(79)90060-X.
    1. Salway J. G., Whitehead L., Finnegan J. A., Karunanayaka A., Barnett D., Payne R. B. Effect of myo-inositol on peripheral-nerve function in diabetes. Lancet. 1978;2(8103):1282–1284. doi: 10.1016/s0140-6736(78)92043-3.
    1. Trachootham D., Lu W., Ogasawara M. A., Valle N. R. D., Huang P. Redox regulation of cell survival. Antioxidants & Redox Signaling. 2008;10(8):1343–1374. doi: 10.1089/ars.2007.1957.
    1. Poulsen H. E., Specht E., Broedbaek K., et al. RNA modifications by oxidation: a novel disease mechanism? Free Radical Biology & Medicine. 2012;52(8):1353–1361. doi: 10.1016/j.freeradbiomed.2012.01.009.
    1. Giacco F., Brownlee M. Oxidative stress and diabetic complications. Circulation Research. 2010;107(9):1058–1070. doi: 10.1161/CIRCRESAHA.110.223545.
    1. Williams B. Angiotensin II, VEGF, and diabetic retinopathy. Lancet. 1998;351(9105):837–838. doi: 10.1016/S0140-6736(05)78974-1.
    1. Callaghan B. C., Little A. A., Feldman E. L., Hughes R. A. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database of Systematic Reviews. 2012;6(6, article CD007543) doi: 10.1002/14651858.cd007543.pub2.
    1. Gibbons C. H., Freeman R. Treatment-induced diabetic neuropathy: a reversible painful autonomic neuropathy. Annals of Neurology. 2010;67(4):534–541. doi: 10.1002/ana.21952.
    1. Gibbons C. H. Treatment-induced neuropathy of diabetes. Current Diabetes Reports. 2017;17(12):p. 127. doi: 10.1007/s11892-017-0960-6.
    1. Hwang Y. T., Davies G. 'Insulin neuritis' to 'treatment-induced neuropathy of diabetes': new name, same mystery. Practical Neurology. 2016;16(1):53–55. doi: 10.1136/practneurol-2015-001215.
    1. Pop-Busui R., Boulton A. J. M., Feldman E. L., et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2016;40(1):136–154. doi: 10.2337/dc16-2042.
    1. Ang L., Jaiswal M., Martin C., Pop-Busui R. Glucose control and diabetic neuropathy: lessons from recent large clinical trials. Current Diabetes Reports. 2014;14(9):p. 528. doi: 10.1007/s11892-014-0528-7.
    1. Martin C. L., Albers J. W., Pop-Busui R., for the DCCT/EDIC Research Group Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2013;37(1):31–38. doi: 10.2337/dc13-2114.
    1. Pop-Busui R., Lu J., Brooks M. M., et al. Impact of glycemic control strategies on the progression of diabetic peripheral neuropathy in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Cohort. Diabetes Care. 2013;36(10):3208–3215. doi: 10.2337/dc13-0012.
    1. Franklin G. M., Kahn L. B., Baxter J., Marshall J. A., Hamman R. F. Sensory neuropathy in non-insulin-dependent diabetes mellitus. The San Luis Valley Diabetes Study. American Journal of Epidemiology. 1990;131(4):633–643. doi: 10.1093/oxfordjournals.aje.a115547.
    1. Partanen J., Niskanen L., Lehtinen J., Mervaala E., Siitonen O., Uusitupa M. Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. The New England Journal of Medicine. 1995;333(2):89–94. doi: 10.1056/NEJM199507133330203.
    1. Dyck P. J., Kratz K. M., Karnes J. L., et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology. 1993;43(4):817–824. doi: 10.1212/WNL.43.4.817.
    1. Boulton A. J. M., Knight G., Drury J., Ward J. D. The prevalence of symptomatic, diabetic neuropathy in an insulin-treated population. Diabetes Care. 1985;8(2):125–128. doi: 10.2337/diacare.8.2.125.
    1. Fullerton B., Jeitler K., Seitz M., Horvath K., Berghold A., Siebenhofer A. Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. Cochrane Database of Systematic Reviews. 2014;2014(2, article CD009122)
    1. Albers J. W., Herman W. H., Pop-Busui R., et al. Effect of prior intensive insulin treatment during the Diabetes Control and Complications Trial (DCCT) on peripheral neuropathy in type 1 diabetes during the Epidemiology of Diabetes Interventions and Complications (EDIC) Study. Diabetes Care. 2010;33(5):1090–1096. doi: 10.2337/dc09-1941.
    1. Pantalone K. M., Misra-Hebert A. D., Hobbs T. M., et al. Effect of glycemic control on the Diabetes Complications Severity Index score and development of complications in people with newly diagnosed type 2 diabetes. Journal of Diabetes. 2018;10(3):192–199. doi: 10.1111/1753-0407.12613.
    1. Ismail-Beigi F., Craven T., Banerji M. A., et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–430. doi: 10.1016/S0140-6736(10)60576-4.
    1. Calles-Escandon J., Lovato L. C., Simons-Morton D. G., et al. Effect of intensive compared with standard glycemia treatment strategies on mortality by baseline subgroup characteristics: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care. 2010;33(4):721–727. doi: 10.2337/dc09-1471.
    1. The Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. The New England Journal of Medicine. 2008;358(24):2545–2559. doi: 10.1056/NEJMoa0802743.
    1. Tesfaye S., Boulton A. J. M., Dyck P. J., et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33(10):2285–2293. doi: 10.2337/dc10-1303.
    1. Roshandel D., DCCT/EDIC Research Group, Chen Z., et al. DNA methylation age calculators reveal association with diabetic neuropathy in type 1 diabetes. Clinical Epigenetics. 2020;12(1):p. 52. doi: 10.1186/s13148-020-00840-6.
    1. Kobayashi M., Zochodne D. W. Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications. Journal of Diabetes Investigation. 2018;9(6):1239–1254. doi: 10.1111/jdi.12833.
    1. Girard C., Will C. L., Peng J., et al. Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nature Communications. 2012;3(1, article 994) doi: 10.1038/ncomms1998.
    1. Qaseem A., Wilt T. J., Kansagara D., et al. Hemoglobin A1cTargets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: a guidance statement update from the American College of Physicians. Annals of Internal Medicine. 2018;168(8):569–576. doi: 10.7326/M17-0939.
    1. Cameron N. E., Cotter M. A., Archibald V., Dines K. C., Maxfield E. K. Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats. Diabetologia. 1994;37(5):449–459. doi: 10.1007/s001250050131.
    1. Turrens J. F. Mitochondrial formation of reactive oxygen species. The Journal of Physiology. 2003;552(2):335–344. doi: 10.1113/jphysiol.2003.049478.
    1. Nishikawa T., Edelstein D., du X. L., et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–790. doi: 10.1038/35008121.
    1. Greene D. A., Arezzo J. C., Brown M. B. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Neurology. 1999;53(3):580–591. doi: 10.1212/WNL.53.3.580.
    1. Behl T., Kaur I., Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy. Survey of Ophthalmology. 2016;61(2):187–196. doi: 10.1016/j.survophthal.2015.06.001.
    1. Forbes J. M., Coughlan M. T., Cooper M. E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57(6):1446–1454. doi: 10.2337/db08-0057.
    1. Javed S., Petropoulos I. N., Alam U., Malik R. A. Treatment of painful diabetic neuropathy. Therapeutic Advances in Chronic Disease. 2014;6(1):15–28. doi: 10.1177/2040622314552071.
    1. Wolff S. P., Dean R. T. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. The Biochemical Journal. 1987;245(1):243–250. doi: 10.1042/bj2450243.
    1. Wells-Knecht K. J., Zyzak D. V., Litchfield J. E., Thorpe S. R., Baynes J. W. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry. 2002;34:3702–3709.
    1. Fu M. X., Wells-Knecht K. J., Blackledge J. A., Lyons T. J., Thorpe S. R., Baynes J. W. Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes. 1994;43(5):676–683. doi: 10.2337/diab.43.5.676.
    1. Chetyrkin S., Mathis M., Pedchenko V., et al. Glucose autoxidation induces functional damage to proteins via modification of critical arginine residues. Biochemistry. 2011;50(27):6102–6112. doi: 10.1021/bi200757d.
    1. Stitt A. W., Li Y. M., Gardiner T. A., Bucala R., Archer D. B., Vlassara H. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. The American Journal of Pathology. 1997;150(2):523–531.
    1. Horie K., Miyata T., Maeda K., et al. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. The Journal of Clinical Investigation. 1997;100(12):2995–3004. doi: 10.1172/JCI119853.
    1. Ramasamy R., Goldberg I. J. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circulation Research. 2010;106(9):1449–1458. doi: 10.1161/CIRCRESAHA.109.213447.
    1. Hers H. G. The mechanism of the transformation of glucose in fructose in the seminal vesicles. Biochimica et Biophysica Acta. 1956;22(1):202–203. doi: 10.1016/0006-3002(56)90247-5.
    1. Bohren K. M., Grimshaw C. E., Gabbay K. H. Catalytic effectiveness of human aldose reductase. Critical role of C-terminal domain. The Journal of Biological Chemistry. 1992;267(29):20965–20970.
    1. Vikramadithyan R. K., Hu Y., Noh H. L., et al. Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice. The Journal of Clinical Investigation. 2005;115(9):2434–2443. doi: 10.1172/JCI24819.
    1. Stewart M. A., Sherman W. R., Kurien M. M., Moonsammy G. I., Wisgerhof M. Polyol accumulations in nervous tissue of rats with experimental diabetes and galactosaemia. Journal of Neurochemistry. 1967;14(11):1057–1066. doi: 10.1111/j.1471-4159.1967.tb09516.x.
    1. Uehara K., Yamagishi S. I., Otsuki S., Chin S., Yagihashi S. Effects of polyol pathway hyperactivity on protein kinase C activity, nociceptive peptide expression, and neuronal structure in dorsal root ganglia in diabetic mice. Diabetes. 2004;53(12):3239–3247. doi: 10.2337/diabetes.53.12.3239.
    1. Mayer J. H., Tomlinson D. R. Prevention of defects of axonal transport and nerve conduction velocity by oral administration of myo-inositol or an aldose reductase inhibitor in streptozotocin-diabetic rats. Diabetologia. 1983;25(5):433–438. doi: 10.1007/BF00282524.
    1. Finegold D., Lattimer S. A., Nolle S., Bernstein M., Greene D. A. Polyol pathway activity and myo-inositol metabolism. A suggested relationship in the pathogenesis of diabetic neuropathy. Diabetes. 1983;32(11):988–992. doi: 10.2337/diab.32.11.988.
    1. Engerman R. L., Kern T. S., Larson M. E. Nerve conduction and aldose reductase inhibition during 5 years of diabetes or galactosaemia in dogs. Diabetologia. 1994;37(2):141–144. doi: 10.1007/s001250050084.
    1. Demaine A. G. Polymorphisms of the aldose reductase gene and susceptibility to diabetic microvascular complications. Current Medicinal Chemistry. 2003;10(15):1389–1398. doi: 10.2174/0929867033457359.
    1. Thamotharampillai K., Chan A. K. F., Bennetts B., et al. Decline in neurophysiological function after 7 years in an adolescent diabetic cohort and the role of aldose reductase gene polymorphisms. Diabetes Care. 2006;29(9):2053–2057. doi: 10.2337/dc06-0678.
    1. McClain D. A. Hexosamines as mediators of nutrient sensing and regulation in diabetes. Journal of Diabetes and its Complications. 2002;16(1):72–80. doi: 10.1016/S1056-8727(01)00188-X.
    1. McClain D. A., Lubas W. A., Cooksey R. C., et al. Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(16):10695–10699. doi: 10.1073/pnas.152346899.
    1. Buse M. G. Hexosamines, insulin resistance, and the complications of diabetes: current status. American Journal of Physiology. Endocrinology and Metabolism. 2006;290(1):E1–E8. doi: 10.1152/ajpendo.00329.2005.
    1. Marshall S., Bacote V., Traxinger R. R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. The Journal of Biological Chemistry. 1991;266:4706–4712.
    1. Du X.-L., Edelstein D., Rossetti L., et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(22):12222–12226. doi: 10.1073/pnas.97.22.12222.
    1. Kreppel L. K., Blomberg M. A., Hart G. W. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. The Journal of Biological Chemistry. 1997;272(14):9308–9315. doi: 10.1074/jbc.272.14.9308.
    1. Lubas W. A., Frank D. W., Krause M., Hanover J. A. O-linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. The Journal of Biological Chemistry. 1997;272(14):9316–9324. doi: 10.1074/jbc.272.14.9316.
    1. Andreozzi F., D’Alessandris C., Federici M., et al. Activation of the hexosamine pathway leads to phosphorylation of insulin receptor substrate-1 on Ser307 and Ser612 and impairs the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin insulin biosynthetic pathway in RIN pancreatic beta-cells. Endocrinology. 2004;145(6):2845–2857. doi: 10.1210/en.2003-0939.
    1. Federici M., Menghini R., Mauriello A., et al. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation. 2002;106(4):466–472. doi: 10.1161/01.CIR.0000023043.02648.51.
    1. Buse M. G., Robinson K. A., Marshall B. A., Hresko R. C., Mueckler M. M. Enhanced O-GlcNAc protein modification is associated with insulin resistance in GLUT1-overexpressing muscles. American Journal of Physiology. Endocrinology and Metabolism. 2002;283(2):E241–E250. doi: 10.1152/ajpendo.00060.2002.
    1. Buse M. G., Robinson K. A., Gettys T. W., McMahon E. G., Gulve E. A. Increased activity of the hexosamine synthesis pathway in muscles of insulin-resistant ob/ob mice. The American Journal of Physiology. 1997;272, 6 Part 1:E1080–E1088. doi: 10.1152/ajpendo.1997.272.6.E1080.
    1. Yki-Jarvinen H., Daniels M. C., Virkamaki A., Makimattila S., DeFronzo R. A., McClain D. Increased glutamine:fructose-6-phosphate amidotransferase activity in skeletal muscle of patients with NIDDM. Diabetes. 1996;45(3):302–307. doi: 10.2337/diab.45.3.302.
    1. Pouwels M. J. J., Span P. N., Tack C. J., et al. Muscle uridine diphosphate-hexosamines do not decrease despite correction of hyperglycemia-induced insulin resistance in type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism. 2002;87(11):5179–5184. doi: 10.1210/jc.2002-020440.
    1. Pouwels M. J. J., Tack C. J., Span P. N., et al. Role of hexosamines in insulin resistance and nutrient sensing in human adipose and muscle tissue. The Journal of Clinical Endocrinology and Metabolism. 2004;89(10):5132–5137. doi: 10.1210/jc.2004-0291.
    1. Kolm-Litty V., Sauer U., Nerlich A., Lehmann R., Schleicher E. D. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. The Journal of Clinical Investigation. 1998;101(1):160–169. doi: 10.1172/JCI119875.
    1. Inoguchi T., Battan R., Handler E., Sportsman J. R., Heath W., King G. L. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(22):11059–11063. doi: 10.1073/pnas.89.22.11059.
    1. Shiba T., Inoguchi T., Sportsman J. R., Heath W. F., Bursell S., King G. L. Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. American Journal of Physiology-Endocrinology and Metabolism. 1993;265(5):E783–E793. doi: 10.1152/ajpendo.1993.265.5.e783.
    1. Ahmed N. Advanced glycation endproducts--role in pathology of diabetic complications. Diabetes Research and Clinical Practice. 2005;67(1):3–21. doi: 10.1016/j.diabres.2004.09.004.
    1. Toth C., Rong L. L., Yang C., et al. Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes. 2008;57(4):1002–1017. doi: 10.2337/db07-0339.
    1. Gallet X., Charloteaux B., Thomas A., Brasseur R. A fast method to predict protein interaction sites from sequences. Journal of Molecular Biology. 2000;302(4):917–926. doi: 10.1006/jmbi.2000.4092.
    1. Yao D., Taguchi T., Matsumura T., et al. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. The Journal of Biological Chemistry. 2007;282(42):31038–31045. doi: 10.1074/jbc.M704703200.
    1. Ramasamy R., Yan S. F., Schmidt A. M. Arguing for the motion: yes, RAGE is a receptor for advanced glycation endproducts. Molecular Nutrition & Food Research. 2007;51(9):1111–1115. doi: 10.1002/mnfr.200700008.
    1. Goldin A., Beckman J. A., Schmidt A. M., Creager M. A. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597–605. doi: 10.1161/CIRCULATIONAHA.106.621854.
    1. Bierhaus A., Haslbeck K. M., Humpert P. M., et al. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. The Journal of Clinical Investigation. 2004;114(12):1741–1751. doi: 10.1172/JCI18058.
    1. Abaci A., Oguzhan A., Kahraman S., et al. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation. 1999;99(17):2239–2242. doi: 10.1161/01.CIR.99.17.2239.
    1. Geraldes P., King G. L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circulation Research. 2010;106(8):1319–1331. doi: 10.1161/CIRCRESAHA.110.217117.
    1. Pugliese G., Pricci F., Pugliese F., et al. Mechanisms of glucose-enhanced extracellular matrix accumulation in rat glomerular mesangial cells. Diabetes. 1994;43(3):478–490. doi: 10.2337/diab.43.3.478.
    1. Yerneni K. K., Bai W., Khan B. V., Medford R. M., Natarajan R. Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes. 1999;48(4):855–864. doi: 10.2337/diabetes.48.4.855.
    1. Craven P. A., Studer R. K., Felder J., Phillips S., DeRubertis F. R. Nitric oxide inhibition of transforming growth factor-beta and collagen synthesis in mesangial cells. Diabetes. 1997;46(4):671–681. doi: 10.2337/diab.46.4.671.
    1. Christiansen J. S., Gammelgaard J., Frandsen M., Parving H. H. Increased kidney size, glomerular filtration rate and renal plasma flow in short-term insulin-dependent diabetics. Diabetologia. 1981;20(4):451–456. doi: 10.1007/BF00253406.
    1. Hostetter T. H., Troy J. L., Brenner B. M. Glomerular hemodynamics in experimental diabetes mellitus. Kidney International. 1981;19(3):410–415. doi: 10.1038/ki.1981.33.
    1. Nakamura J., Kato K., Hamada Y., et al. A protein kinase C-beta-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats. Diabetes. 1999;48(10):2090–2095. doi: 10.2337/diabetes.48.10.2090.
    1. Cameron N. E., Cotter M. A., Jack A. M., Basso M. D., Hohman T. C. Protein kinase C effects on nerve function, perfusion, Na(+), K(+)-ATPase activity and glutathione content in diabetic rats. Diabetologia. 1999;42(9):1120–1130. doi: 10.1007/s001250051280.
    1. Vinik A. I., Bril V., Kempler P., et al. Treatment of symptomatic diabetic peripheral neuropathy with the protein kinase C β-inhibitor ruboxistaurin mesylate during a 1-year, randomized, placebo-controlled, double-blind clinical trial. Clinical Therapeutics. 2005;27(8):1164–1180. doi: 10.1016/j.clinthera.2005.08.001.
    1. Bansal D., Badhan Y., Gudala K., Schifano F. Ruboxistaurin for the treatment of diabetic peripheral neuropathy: a systematic review of randomized clinical trials. Diabetes and Metabolism Journal. 2013;37(5):375–384. doi: 10.4093/dmj.2013.37.5.375.
    1. Tavakoli M., Petropoulos I. N., Malik R. A. Corneal confocal microscopy to assess diabetic neuropathy: an eye on the foot. Journal of Diabetes Science and Technology. 2013;7(5):1179–1189. doi: 10.1177/193229681300700509.
    1. Lauria G., Cornblath D. R., Johansson O., et al. EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. European Journal of Neurology. 2005;12(10):747–758. doi: 10.1111/j.1468-1331.2005.01260.x.
    1. Dabiri B., Kampusch S., Geyer S. H., et al. High-resolution episcopic imaging for visualization of dermal arteries and nerves of the auricular cymba conchae in humans. Frontiers in Neuroanatomy. 2020;14 doi: 10.3389/fnana.2020.00022.
    1. Technology VUo. Novel electric impulses relieve the pain. ScienceDaily; 2020.
    1. Sanchez-Ramirez G. M., Caram-Salas N. L., Rocha-Gonzalez H. I., et al. Benfotiamine relieves inflammatory and neuropathic pain in rats. European Journal of Pharmacology. 2006;530(1-2):48–53. doi: 10.1016/j.ejphar.2005.11.016.
    1. Stracke H., Gaus W., Achenbach U., Federlin K., Bretzel R. G. Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Experimental and Clinical Endocrinology & Diabetes. 2008;116(10):600–605. doi: 10.1055/s-2008-1065351.
    1. Ziegler D., Ametov A., Barinov A., et al. Oral treatment With -Lipoic Acid Improves Symptomatic Diabetic Polyneuropathy: The SYDNEY 2 trial. Diabetes Care. 2006;29(11):2365–2370. doi: 10.2337/dc06-1216.
    1. Ziegler D., Movsesyan L., Mankovsky B., Gurieva I., Abylaiuly Z., Strokov I. Treatment of symptomatic polyneuropathy with actovegin in type 2 diabetic patients. Diabetes Care. 2009;32(8):1479–1484. doi: 10.2337/dc09-0545.
    1. Ametov A. S., Barinov A., Dyck P. J., et al. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care. 2003;26(3):770–776. doi: 10.2337/diacare.26.3.770.
    1. Papanas N., Ziegler D. Efficacy of α-lipoic acid in diabetic neuropathy. Expert Opinion on Pharmacotherapy. 2014;15(18):2721–2731. doi: 10.1517/14656566.2014.972935.
    1. Negre-Salvayre A., Coatrieux C., Ingueneau C., Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. British Journal of Pharmacology. 2008;153(1):6–20. doi: 10.1038/sj.bjp.0707395.
    1. Du X., Edelstein D., Brownlee M. Oral benfotiamine plus alpha-lipoic acid normalises complication-causing pathways in type 1 diabetes. Diabetologia. 2008;51(10):1930–1932. doi: 10.1007/s00125-008-1100-2.
    1. Bertolotto F., Massone A. Combination of alpha lipoic acid and superoxide dismutase leads to physiological and symptomatic improvements in diabetic neuropathy. Drugs in R&D. 2012;12(1):29–34. doi: 10.2165/11599200-000000000-00000.
    1. Shakher J., Stevens M. J. Update on the management of diabetic polyneuropathies. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2011;4:289–305. doi: 10.2147/DMSO.S11324.
    1. Yagihashi S., Yamagishi S. I., Wada Ri R., et al. Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain. 2001;124(12):2448–2458. doi: 10.1093/brain/124.12.2448.
    1. Kawai T., Takei I., Tokui M., et al. Effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy in patients with type 2 diabetes, in relation to suppression of Nɛ-carboxymethyl lysine. Journal of Diabetes and its Complications. 2010;24(6):424–432. doi: 10.1016/j.jdiacomp.2008.10.005.
    1. Boulton A. J. M., Kempler P., Ametov A., Ziegler D. Whither pathogenetic treatments for diabetic polyneuropathy? Diabetes/Metabolism Research and Reviews. 2013;29(5):327–333. doi: 10.1002/dmrr.2397.
    1. Winkler G., Pal B., Nagybeganyi E., Ory I., Porochnavec M., Kempler P. Effectiveness of different benfotiamine dosage regimens in the treatment of painful diabetic neuropathy. Arzneimittel-Forschung. 1999;49(3):220–224. doi: 10.1055/s-0031-1300405.
    1. Haupt E., Ledermann H., Kopcke W. Benfotiamine in the treatment of diabetic polyneuropathy--a three-week randomized, controlled pilot study (BEDIP study) International Journal of Clinical Pharmacology and Therapeutics. 2005;43(2):71–77. doi: 10.5414/CPP43071.
    1. Dewanjee S., Das S., Das A. K., et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. European Journal of Pharmacology. 2018;833:472–523. doi: 10.1016/j.ejphar.2018.06.034.
    1. Grewal A. S., Bhardwaj S., Pandita D., Lather V., Sekhon B. S. Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Reviews in Medicinal Chemistry. 2015;16(2):120–162. doi: 10.2174/1389557515666150909143737.
    1. Cameron N. E., Tuck Z., McCabe L., Cotter M. A. Effect of the hydroxyl radical scavenger, dimethylthiourea, on peripheral nerve tissue perfusion, conduction velocity and nociception in experimental diabetes. Diabetologia. 2001;44(9):1161–1169. doi: 10.1007/s001250100626.
    1. Edwards J. L., Vincent A. M., Cheng H. T., Feldman E. L. Diabetic neuropathy: mechanisms to management. Pharmacology & Therapeutics. 2008;120(1):1–34. doi: 10.1016/j.pharmthera.2008.05.005.
    1. Sima A. A. F., Bril V., Nathaniel V., et al. Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. The New England Journal of Medicine. 1988;319(9):548–555. doi: 10.1056/NEJM198809013190905.
    1. O'Brien P. D., Sakowski S. A., Feldman E. L. Mouse models of diabetic neuropathy. ILAR Journal. 2014;54(3):259–272. doi: 10.1093/ilar/ilt052.
    1. Tappe-Theodor A., Kuner R. Studying ongoing and spontaneous pain in rodents--challenges and opportunities. The European Journal of Neuroscience. 2014;39(11):1881–1890. doi: 10.1111/ejn.12643.

Source: PubMed

3
Subscribe