Kinect-based assessment of proximal arm non-use after a stroke

K K A Bakhti, I Laffont, M Muthalib, J Froger, D Mottet, K K A Bakhti, I Laffont, M Muthalib, J Froger, D Mottet

Abstract

Background: After a stroke, during seated reaching with their paretic upper limb, many patients spontaneously replace the use of their arm by trunk compensation movements, even though they are able to use their arm when forced to do so. We previously quantified this proximal arm non-use (PANU) with a motion capture system (Zebris, CMS20s). The aim of this study was to validate a low-cost Microsoft Kinect-based system against the CMS20s reference system to diagnose PANU.

Methods: In 19 hemiparetic stroke individuals, the PANU score, reach length, trunk length, and proximal arm use (PAU) were measured during seated reaching simultaneously by the Kinect (v2) and the CMS20s over two testing sessions separated by two hours.

Results: Intraclass correlation coefficients (ICC) and linear regression analysis showed that the PANU score (ICC = 0.96, r2 = 0.92), reach length (ICC = 0.81, r2 = 0.68), trunk length (ICC = 0.97, r2 = 0.94) and PAU (ICC = 0.97, r2 = 0.94) measured using the Kinect were strongly related to those measured using the CMS20s. The PANU scores showed good test-retest reliability for both the Kinect (ICC = 0.76) and CMS20s (ICC = 0.72). Bland and Altman plots showed slightly reduced PANU scores in the re-test session for both systems (Kinect: - 4.25 ± 6.76; CMS20s: - 4.71 ± 7.88), which suggests a practice effect.

Conclusion: We showed that the Kinect could accurately and reliably assess PANU, reach length, trunk length and PAU during seated reaching in post stroke individuals. We conclude that the Kinect can offer a low-cost and widely available solution to clinically assess PANU for individualised rehabilitation and to monitor the progress of paretic arm recovery.

Trial registration: The study was approved by The Ethics Committee of Montpellier, France (N°ID-RCB: 2014-A00395-42) and registered in Clinical Trial (N° NCT02326688, Registered on 15 December 2014, https://ichgcp.net/clinical-trials-registry/NCT02326688 ).

Keywords: Arm non-use; Kinect v2; Movement analysis; Rehabilitation; Stroke.

Conflict of interest statement

Ethics approval and consent to participate

The Ethics Committee of Montpellier, France, approved the study protocol (N°ID-RCB: 2014-A00395–42). Clinical trial registration number: NCT02326688.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Experimental setup. The quantification of the proximal arm non-use (PANU) score was simultaneously determined by the Kinect (blue encircled) and CMS20s (red encircled) movement recording systems. The CMS20s recorded the position of 3 markers placed on the manubrium, right dorsal hand, left dorsal hand (blue spots). The Kinect provided a skeleton of the person (orange) out of which we retained 3 “joints” corresponding best to the position of CMS20s markers on the body: Spine-Shoulder, WristRight, WristLeft
Fig. 2
Fig. 2
Comparison of PANU scores obtained with the Kinect and CMS20s systems. The left panel presents the Bland and Altman plot and the right panel presents the linear regression plot. PANU scores obtained with the Kinect and CMS20s were strongly correlated, yet with a small underestimate with the Kinect
Fig. 3
Fig. 3
Comparison of PANU components obtained with the Kinect and CMS20s systems. Panels in the first row illustrate proximal arm-use (PAU). Panels in the second row illustrate trunk movement amplitude (∆Trunk). Panels in the third row illustrate reach length (∆Hand). For each row, the left panel represents the Bland and Altman plot and the right panel represents the linear regression plot. The three components are adequately determined by the Kinect, yet with a small underestimate for ∆Hand (11 mm)
Fig. 4
Fig. 4
Comparison of movement kinematics obtained with the Kinect and CMS20s. Panels in the first row illustrate the movement time (MT). Panels in the second row illustrate the number of velocity peaks (NVP). For each row, the left panel represents the Bland and Altman plot and the right panel represents the linear regression plot. The movement time is adequately determined by the Kinect, but not the number of velocity peaks
Fig. 5
Fig. 5
Test-retest of PANU scores with the Kinect and CMS20s. Each panel compares the PANU scores in the test (R1) and retest (R2) sessions. Panels in the first row illustrate repeatability with the Kinect. Panels in the second row illustrate repeatability with the CMS20s. For each row, the left panel represents the Bland and Altman plot and the right panel represents the linear regression plot. The constant bias in the Bland and Altman plots (− 4.25 for Kinect; − 4.71 for CMS20s) indicates that the PANU scores decrease over repetitions, which was accurately determined by the Kinect and the CMS20s

References

    1. van Kordelaar J, van Wegen EEH, Nijland RHM, de Groot JH, Meskers CGM, Harlaar J, et al. Assessing longitudinal change in coordination of the paretic upper limb using on-site 3-dimensional kinematic measurements. Phys Ther. 2012;92:142–151. doi: 10.2522/ptj.20100341.
    1. Taub E, Uswatte G, Mark VW, Morris DMM. The learned nonuse phenomenon: implications for rehabilitation. Eura Medicophys. 2006;42:241–256.
    1. Bakhti KKA, Mottet D, Schweighofer N, Froger J, Laffont I. Proximal arm non-use when reaching after a stroke. Neurosci Lett. 2017;657:91–96. doi: 10.1016/j.neulet.2017.07.055.
    1. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51:S225–S239. doi: 10.1044/1092-4388(2008/018).
    1. Jones TA. Motor compensation and its effects on neural reorganization after stroke. Nat Rev Neurosci. 2017;18:267–280. doi: 10.1038/nrn.2017.26.
    1. Wee SK, Hughes A-M, Warner M, Burridge JH. Trunk restraint to promote upper extremity recovery in stroke patients: a systematic review and meta-analysis. Neurorehabil Neural Repair. 2014;28:660–677. doi: 10.1177/1545968314521011.
    1. Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci. 2016;10:442. doi: 10.3389/fnhum.2016.00442.
    1. Spasticity LS, Recovery M. Neural plasticity after stroke. Front Neurol. 2017;8:120.
    1. Bonnechère B, Jansen B, Salvia P, Bouzahouene H, Omelina L, Moiseev F, et al. Validity and reliability of the Kinect within functional assessment activities: comparison with standard stereophotogrammetry. Gait Posture. 2014;39:593–598. doi: 10.1016/j.gaitpost.2013.09.018.
    1. Butkiewicz T. Low-cost coastal mapping using Kinect v2 time-of-flight cameras. IEEE. 2014:1–9.
    1. Eltoukhy M, Oh J, Kuenze C, Signorile J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture. 2017;51:77–83. doi: 10.1016/j.gaitpost.2016.10.001.
    1. Knippenberg E, Verbrugghe J, Lamers I, Palmaers S, Timmermans A, Spooren A. Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application. target population and efficacy J Neuroeng Rehabil. 2017;14:61. doi: 10.1186/s12984-017-0270-x.
    1. Kurillo G, Han JJ, Obdržálek S, Yan P, Abresch RT, Nicorici A, et al. Upper extremity reachable workspace evaluation with Kinect. Stud Health Technol Inform. 2013;184:247–253.
    1. Pagliari D, Pinto L. Calibration of Kinect for Xbox one and comparison between the two generations of Microsoft sensors. Sensors (Basel) 2015;15:27569–27589. doi: 10.3390/s151127569.
    1. Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture. 2014;39:1062–1068. doi: 10.1016/j.gaitpost.2014.01.008.
    1. Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait & Posture. 2016;47:80–85. doi: 10.1016/j.gaitpost.2016.04.004.
    1. Zulkarnain RF, Kim G-Y, Adikrishna A, Hong HP, Kim YJ, Jeon I-H. Digital data acquisition of shoulder range of motion and arm motion smoothness using Kinect v2. J Shoulder Elb Surg. 2017;26:895–901. doi: 10.1016/j.jse.2016.10.026.
    1. Valdés Bulmaro Adolfo, Schneider Andrea Nicole, Van der Loos H.F. Machiel. Reducing Trunk Compensation in Stroke Survivors: A Randomized Crossover Trial Comparing Visual and Force Feedback Modalities. Archives of Physical Medicine and Rehabilitation. 2017;98(10):1932–1940. doi: 10.1016/j.apmr.2017.03.034.
    1. Michaelsen SM, Levin MF. Short-term effects of practice with trunk restraint on reaching movements in patients with chronic stroke: a controlled trial. Stroke. 2004;35:1914–1919. doi: 10.1161/01.STR.0000132569.33572.75.
    1. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:13–31.
    1. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985;39:386–391. doi: 10.5014/ajot.39.6.386.
    1. Levin MF, Michaelsen SM, Cirstea CM, Roby-Brami A. Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Exp Brain Res. 2002;143:171–180. doi: 10.1007/s00221-001-0976-6.
    1. Levin MF, Liebermann DG, Parmet Y, Berman S. Compensatory versus noncompensatory shoulder movements used for reaching in stroke. Neurorehabil Neural Repair. 2016;30:635–646. doi: 10.1177/1545968315613863.
    1. Subramanian SK, Lourenço CB, Chilingaryan G, Sveistrup H, Levin MF. Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil Neural Repair. 2013;27:13–23. doi: 10.1177/1545968312449695.
    1. Zhang Z. Microsoft Kinect sensor and its effect. IEEE Multimedia. 2012;19:4–10. doi: 10.1109/MMUL.2012.24.
    1. Corti A, Giancola S, Mainetti G. Sala R. a metrological characterization of the Kinect V2 time-of-flight camera. Robot Auton Syst. 2016;75:584–594. doi: 10.1016/j.robot.2015.09.024.
    1. Ozturk A, Tartar A, Ersoz Huseyinsinoglu B. Ertas AH. A clinically feasible kinematic assessment method of upper extremity motor function impairment after stroke. Measurement. 2016;80:207–216. doi: 10.1016/j.measurement.2015.11.026.
    1. Obdrzálek S, Kurillo G, Ofli F, Bajcsy R, Seto E, Jimison H, et al. Accuracy and robustness of Kinect pose estimation in the context of coaching of elderly population. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1188–1193.
    1. Mottet D, Guiard Y, Ferrand T, Bootsma RJ. Two-handed performance of a rhythmical fitts task by individuals and dyads. J Exp Psychol Hum Percept Perform. 2001;27:1275–1286. doi: 10.1037/0096-1523.27.6.1275.
    1. van Dokkum L, Hauret I, Mottet D, Froger J, Métrot J, Laffont I. The contribution of kinematics in the assessment of upper limb motor recovery early after stroke. Neurorehabil Neural Repair. 2014;28:4–12. doi: 10.1177/1545968313498514.
    1. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–428. doi: 10.1037/0033-2909.86.2.420.
    1. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. Gonzalez A, Hayashibe M, Fraisse P. Estimation of the center of mass with Kinect and Wii balance board. IEEE. 2012:1023–8.
    1. Bourbonnais D, Vanden Noven S, Carey KM, Rymer WZ. Abnormal spatial patterns of elbow muscle activation in hemiparetic human subjects. Brain. 1989;112(Pt 1):85–102. doi: 10.1093/brain/112.1.85.
    1. Cirstea MC, Levin MF. Compensatory strategies for reaching in stroke. Brain. 2000;123(Pt 5):940–953. doi: 10.1093/brain/123.5.940.
    1. Twitchell TE. The restoration of motor function following hemiplegia in man. Brain. 1951;74:443–480. doi: 10.1093/brain/74.4.443.
    1. Levin MF. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain. 1996;119(Pt 1):281–293. doi: 10.1093/brain/119.1.281.
    1. Roby-Brami A, Feydy A, Combeaud M, Biryukova EV, Bussel B, Levin MF. Motor compensation and recovery for reaching in stroke patients. Acta Neurol Scand. 2003;107:369–381. doi: 10.1034/j.1600-0404.2003.00021.x.
    1. Mündermann L, Corazza S, Andriacchi TP. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J Neuroeng Rehabil. 2006;3:6. doi: 10.1186/1743-0003-3-6.
    1. Da Gama A, Fallavollita P, Teichrieb V, Navab N. Motor rehabilitation using Kinect: a systematic review. Games for Health Journal. 2015;4:123–135. doi: 10.1089/g4h.2014.0047.
    1. Pastor I, Hayes HA. Bamberg SJM. A feasibility study of an upper limb rehabilitation system using Kinect and computer games. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1286–1289.
    1. Scano A, Caimmi M, Malosio M, Tosatti LM. Using Kinect for upper-limb functional evaluation in home rehabilitation: a comparison with a 3D stereoscopic passive marker system. IEEE. 2014:561–6.
    1. Scano A, Caimmi M, Chiavenna A, Malosio M, Tosatti LM. Kinect one-based biomechanical assessment of upper-limb performance compared to clinical scales in post-stroke patients. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:5720–5723.
    1. Yates M, Kelemen A, Sik Lanyi C. Virtual reality gaming in the rehabilitation of the upper extremities post-stroke. Brain Inj. 2016;30:855–863. doi: 10.3109/02699052.2016.1144146.
    1. Zheng H, Black ND, Harris ND. Position-sensing technologies for movement analysis in stroke rehabilitation. Med Biol Eng Comput. 2005;43:413–420. doi: 10.1007/BF02344720.
    1. Gregorij K, Alic C, Ruzena B. J HJ. Evaluation of upper extremity reachable workspace using Kinect camera. Technol Health Care. 2013:641–56.
    1. Han JJ, de Bie E, Nicorici A, Abresch RT, Anthonisen C, Bajcsy R, et al. Reachable workspace and performance of upper limb (PUL) in duchenne muscular dystrophy. Muscle Nerve. 2016;53:545–554. doi: 10.1002/mus.24894.
    1. Huber ME, Seitz AL, Leeser M, Sternad D. Validity and reliability of Kinect skeleton for measuring shoulder joint angles: a feasibility study. Physiotherapy. 2015;101:389–393. doi: 10.1016/j.physio.2015.02.002.
    1. Kim W-S, Cho S, Baek D, Bang H, Paik N-J. Upper extremity functional evaluation by Fugl-Meyer assessment scoring using depth-sensing camera in hemiplegic stroke patients. PLoS One. 2016;11:e0158640. doi: 10.1371/journal.pone.0158640.
    1. Lee SH, Yoon C, Chung SG, Kim HC, Kwak Y, Park H-W, et al. Measurement of shoulder range of motion in patients with adhesive capsulitis using a Kinect. PLoS One. 2015;10:e0129398. doi: 10.1371/journal.pone.0129398.
    1. Matsen FA, Lauder A, Rector K, Keeling P, Cherones AL. Measurement of active shoulder motion using the Kinect, a commercially available infrared position detection system. J Shoulder Elb Surg. 2016;25:216–223. doi: 10.1016/j.jse.2015.07.011.
    1. Metcalf CD, Robinson R, Malpass AJ, Bogle TP, Dell TA, Harris C, et al. Markerless motion capture and measurement of hand kinematics: validation and application to home-based upper limb rehabilitation. IEEE Trans Biomed Eng. 2013;60:2184–2192. doi: 10.1109/TBME.2013.2250286.
    1. Rammer JR, Krzak JJ, Riedel SA, Harris GF. Evaluation of upper extremity movement characteristics during standardized pediatric functional assessment with a Kinect®-based markerless motion analysis system. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2525–2528.
    1. Seo NJ, Fathi MF, Hur P, Crocher V. Modifying Kinect placement to improve upper limb joint angle measurement accuracy. J Hand Ther. 2016;29:465–473. doi: 10.1016/j.jht.2016.06.010.
    1. Sevick M, Eklund E, Mensch A, Foreman M, Standeven J, Engsberg J. Using free internet videogames in upper extremity motor training for children with cerebral palsy. Behavioral Sciences. 2016;6:10. doi: 10.3390/bs6020010.
    1. Macpherson TW, Taylor J, McBain T, Weston M, Spears IR. Real-time measurement of pelvis and trunk kinematics during treadmill locomotion using a low-cost depth-sensing camera: a concurrent validity study. J Biomech. 2016;49:474–478. doi: 10.1016/j.jbiomech.2015.12.008.
    1. Massie CL, Fritz S, Malcolm MP. Elbow extension predicts motor impairment and performance after stroke. Rehabilitation Research and Practice. 2011;2011:1–7. doi: 10.1155/2011/381978.
    1. Levin MF, Desrosiers J, Beauchemin D, Bergeron N, Rochette A. Development and validation of a scale for rating motor compensations used for reaching in patients with hemiparesis: the reaching performance scale. Phys Ther. 2004;84:8–22.
    1. Andrews K, Stewart J. Stroke recovery: he can but does he? Rheumatol Rehabil. 1979;18:43–48. doi: 10.1093/rheumatology/18.1.43.
    1. Han CE, Kim S, Chen S, Lai Y-H, Lee J-Y, Osu R, et al. Quantifying arm nonuse in individuals poststroke. Neurorehabil Neural Repair. 2013;27:439–447. doi: 10.1177/1545968312471904.
    1. Sterr A, Freivogel S, Schmalohr D. Neurobehavioral aspects of recovery: assessment of the learned nonuse phenomenon in hemiparetic adolescents. Arch Phys Med Rehabil. 2002;83:1726–1731. doi: 10.1053/apmr.2002.35660.
    1. Brokaw EB, Eckel E, Brewer BR. Usability evaluation of a kinematics focused Kinect therapy program for individuals with stroke. Technol Health Care. 2015:143–51.
    1. Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Stein J, Bever C, et al. Changing motor synergies in chronic stroke. J Neurophysiol. 2007;98:757–768. doi: 10.1152/jn.01295.2006.
    1. Johnson L, Bird M-L, Muthalib M, Teo W-P. Innovative STRoke interactive virtual thErapy (STRIVE) online platform for community-dwelling stroke survivors: a randomised controlled trial protocol. BMJ Open. 2018;8:e018388. doi: 10.1136/bmjopen-2017-018388.

Source: PubMed

3
Subscribe