Near-infrared spectroscopy for assessing tissue oxygenation and microvascular reactivity in critically ill patients: a prospective observational study

Abele Donati, Elisa Damiani, Roberta Domizi, Claudia Scorcella, Andrea Carsetti, Stefania Tondi, Valentina Monaldi, Erica Adrario, Rocco Romano, Paolo Pelaia, Mervyn Singer, Abele Donati, Elisa Damiani, Roberta Domizi, Claudia Scorcella, Andrea Carsetti, Stefania Tondi, Valentina Monaldi, Erica Adrario, Rocco Romano, Paolo Pelaia, Mervyn Singer

Abstract

Background: Impaired microcirculatory perfusion and tissue oxygenation during critical illness are associated with adverse outcome. The aim of this study was to detect alterations in tissue oxygenation or microvascular reactivity and their ability to predict outcome in critically ill patients using thenar near-infrared spectroscopy (NIRS) with a vascular occlusion test (VOT).

Methods: Prospective observational study in critically ill adults admitted to a 12-bed intensive care unit (ICU) of a University Hospital. NIRS with a VOT (using a 40 % tissue oxygen saturation (StO2) target) was applied daily until discharge from the ICU or death. A group of healthy volunteers were evaluated in a single session. During occlusion, StO2 downslope was measured separately for the first (downslope 1) and last part (downslope 2) of the desaturation curve. The difference between downslope 2 and 1 was calculated (delta-downslope). The upslope and area of the hyperaemic phase (receive operating characteristic (ROC) area under the curve (AUC) of StO2) were calculated, reflecting microvascular reactivity. Outcomes were ICU and 90-day mortality.

Results: Patients (n = 89) had altered downslopes and upslopes compared to healthy volunteers (n = 27). Mean delta-downslope was higher in ICU non-survivors (2.8 (0.4, 3.8) %/minute versus 0.4 (-0.8, 1.8) in survivors, p = 0.004) and discriminated 90-day mortality (ROC AUC 0.72 (95 % confidence interval 0.59, 0.84)). ICU non-survivors had lower mean upslope (141 (75, 193) %/minute versus 185 (143, 217) in survivors, p = 0.016) and AUC StO2 (7.9 (4.3, 12.6) versus 14.5 (11.2, 21.3), p = 0.001). Upslope and AUC StO2 on admission were significant although weak predictors of 90-day mortality (ROC AUC = 0.68 (0.54, 0.82) and 0.70 (0.58, 0.82), respectively). AUC StO2 ≤ 6.65 (1st quartile) on admission was independently associated with higher 90-day mortality (hazard ratio 7.964 (95 % CI 2.211, 28.686)). The lowest upslope in the ICU was independently associated with survival after ICU discharge (odds ratio 0.970 (95 % CI 0.945, 0.996)).

Conclusions: In critically ill patients, NIRS with a VOT enables identification of alterations in tissue oxygen extraction capacity and microvascular reactivity that can predict mortality.

Trial registration: NCT02649088, www.clinicaltrials.gov , date of registration 23rd December 2015, retrospectively registered.

Keywords: Critical illness; Microcirculation; Near-infrared spectroscopy; Tissue oxygenation; Vascular occlusion test.

Figures

Fig. 1
Fig. 1
Tissue O2 saturation (StO2) and tissue hemoglobin index (THI) in healthy volunteers, ICU survivors and ICU non-survivors (on the first 3 days and on the day of death/discharge). *p < 0.05, **p < 0.01, ***p < 0.001, versus healthy volunteers, Kruskal-Wallis test with Dunn’s test for multiple comparisons. ##p < 0.01, Mann–Whitney U test. Number of patients is indicated below the error bars
Fig. 2
Fig. 2
Downslope 1, downslope 2 and delta-downslope in healthy volunteers, ICU survivors and ICU non-survivors (on the first 3 days and on the day of death/discharge). *p < 0.05, **p < 0.01, ***p < 0.001, versus healthy volunteers, Kruskal-Wallis test with Dunn’s test for multiple comparisons. #p < 0.05, ##p < 0.01, Mann–Whitney U test. Number of patients is indicated below the error bars. StO2 tissue O2 saturation
Fig. 3
Fig. 3
Upslope and area under the curve of the hyperaemic response (AUC StO2) in healthy volunteers, ICU survivors and ICU non-survivors (on the first 3 days and on the day of death/discharge). *p < 0.05, **p < 0.01, ***p < 0.001, versus healthy volunteers, Kruskal-Wallis test with Dunn’s test for multiple comparisons. #p < 0.05, ##p < 0.01, Mann–Whitney U test. Number of patients is indicated below or above the error bars. StO2 tissue O2 saturation

References

    1. Donati A, Domizi R, Damiani E, Adrario E, Pelaia P, Ince C. From macrohemodynamic to the microcirculation. Crit Care Res Pract. 2013;2013:892710.
    1. De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41:791–799. doi: 10.1097/CCM.0b013e3182742e8b.
    1. Dubin A, Pozo MO, Casabella CA, Pàlizas F, Jr, Murias G, Museinco MC, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13:R92. doi: 10.1186/cc7922.
    1. Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC. Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med. 2013;39:612–619. doi: 10.1007/s00134-012-2793-8.
    1. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–1831. doi: 10.1097/01.CCM.0000138558.16257.3F.
    1. Mesquida J, Gruartmoner G, Espinal C. Skeletal muscle oxygen saturation (StO2) measured by near-infrared spectroscopy in the critically ill patients. Biomed Res Int. 2013;2013:502194. doi: 10.1155/2013/502194.
    1. Bazerbashi H, Merriman KW, Toale KM, Chaftari P, Cruz Carreras MT, Henderson JD, et al. Low tissue oxygen saturation at emergency center triage is predictive of intensive care unit admission. J Crit Care. 2014;29:775–779. doi: 10.1016/j.jcrc.2014.05.006.
    1. Iyegha UP, Conway T, Pokorney K, Mulier KE, Nelson TR, Beilman GJ. Low StO2 measurements in surgical intensive care unit patients is associated with poor outcomes. J Trauma Acute Care Surg. 2014;76:809–816. doi: 10.1097/TA.0b013e3182ab07a4.
    1. Shapiro NI, Arnold R, Sherwin R, O’Connor J, Najarro G, Singh S, et al. The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit Care. 2011;15:R223. doi: 10.1186/cc10463.
    1. Neto AS, Pereira VG, Manetta JA, Esposito DC, Schultz MJ. Association between static and dynamic thenar near-infrared spectroscopy and mortality in patients with sepsis: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2014;76:226–233. doi: 10.1097/TA.0b013e3182a9221f.
    1. Donati A, Romanelli M, Botticelli L, Valentini A, Gabbanelli V, Nataloni S, et al. Recombinant activated protein C treatment improves tissue perfusion and oxygenation in septic patients measured by near-infrared spectroscopy. Crit Care. 2009;13(Suppl 5):S12. doi: 10.1186/cc8010.
    1. Damiani E, Adrario E, Luchetti MM, Scorcella C, Carsetti A, Mininno N, et al. Plasma free hemoglobin and microcirculatory response to fresh or old blood transfusions in sepsis. PLoS One. 2015;10:e0122655. doi: 10.1371/journal.pone.0122655.
    1. Gómez H, Mesquida J, Simon P, Kim HK, Puyana JC, Ince C, et al. Characterization of tissue oxygen saturation and the vascular occlusion test: influence of measurement sites, probe sizes and deflation thresholds. Crit Care. 2009;13:S3. doi: 10.1186/cc8001.
    1. Myers D, McGraw M, George M, Mulier K, Beilman G. Tissue hemoglobin index: a non-invasive optical measure of total tissue hemoglobin. Crit Care. 2009;13:S2. doi: 10.1186/cc8000.
    1. Gómez H, Torres A, Polanco P, Kim HK, Zenker S, Puyana JC, et al. Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O2 saturation response. Intensive Care Med. 2008;34:1600–1607. doi: 10.1007/s00134-008-1145-1.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2001;2003:1250–1256.
    1. Cohn SM, Nathens AB, Moore FA, Rhee P, Puyana JC, Moore EE, et al. Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. J Trauma. 2007;62:44–54. doi: 10.1097/TA.0b013e31802eb817.
    1. Duret J, Pottecher J, Bouzat P, Brun J, Harrois A, Payen JF, et al. Skeletal muscle oxygenation in severe trauma patients during haemorrhagic shock resuscitation. Crit Care. 2015;19:141. doi: 10.1186/s13054-015-0854-4.
    1. Nicks BA, Campons KM, Bozeman WP. Association of low non-invasive near-infrared spectroscopic measurements during initial trauma resuscitation with future development of multiple organ dysfunction. World J Emerg Med. 2015;6:105–110. doi: 10.5847/wjem.j.1920-8642.2015.02.004.
    1. Carlile C, Wade CE, Baraniuk MS, Holcomb JB, Moore LJ. Evaluation of StO2 tissue perfusion monitoring as a tool to predict the need for lifesaving interventions in trauma patients. Am J Surg. 2015;210:1070–1075. doi: 10.1016/j.amjsurg.2015.08.006.
    1. Khasawneh MA, Zielinski MD, Jenkins DH, Zietlow SP, Schiller HJ, Rivera M. Low tissue oxygen saturation is associated with requirements for transfusion in the rural trauma population. World J Surg. 2014;38:1892–1897. doi: 10.1007/s00268-014-2505-3.
    1. Leichtle SW, Kaoutzanis C, Brandt MM, Welch KB, Purtill MA. Tissue oxygen saturation for the risk stratification of septic patients. J Crit Care. 2013;28:1111. doi: 10.1016/j.jcrc.2013.07.052.
    1. Park JS, Kim SJ, Lee SW, Lee EJ, Han KS, Moon SW, et al. Initial low oxygen extraction ratio is related to severe organ dysfunction and high in-hospital mortality in severe sepsis and septic shock patients. J Emerg Med. 2015;49:261–267. doi: 10.1016/j.jemermed.2015.02.038.
    1. Sair M, Etherington PJ, Winlove CP, Evans TW. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med. 2001;29:1343–1349. doi: 10.1097/00003246-200107000-00008.
    1. Kulandavelu S, Balkan W, Hare JM. Regulation of oxygen delivery to the body via hypoxic vasodilation. Proc Natl Acad Sci U S A. 2015;112:6254–6255. doi: 10.1073/pnas.1506523112.
    1. Bateman RM, Sharpe MD, Jagger JE, Ellis CG. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries. Crit Care. 2015;19:389. doi: 10.1186/s13054-015-1102-7.
    1. Pareznik R, Knezevic R, Voga G, Podbregar M. Changes in muscle tissue oxygenation during stagnant ischemia in septic patients. Intensive Care Med. 2006;32:87–92. doi: 10.1007/s00134-005-2841-8.
    1. Nanas S, Gerovasili V, Renieris P, Angelopoulos E, Poriazi M, Kritikos K, et al. Non-invasive assessment of the microcirculation in critically ill patients. Anaesth Intensive Care. 2009;37:733–739.
    1. Creteur J, Carollo T, Soldati G, Buchele G, De Backer D, Vincent JL. The prognostic value of muscle StO2 in septic patients. Intensive Care Med. 2007;33:1549–1556. doi: 10.1007/s00134-007-0739-3.
    1. Georger JF, Hamzaoui O, Chaari A, Maizel J, Richard C, Teboul JL. Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients. Intensive Care Med. 2010;36:1882–1889. doi: 10.1007/s00134-010-2013-3.
    1. Mesquida J, Espinal C, Gruartmoner G, Masip J, Sabatier C, Baigorri F, et al. Prognostic implications of tissue oxygen saturation in human septic shock. Intensive Care Med. 2012;38:592–597. doi: 10.1007/s00134-012-2491-6.
    1. Skarda DE, Mulier KE, Myers DE, Taylor JH, Beilman GJ. Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock. 2007;27:348–353. doi: 10.1097/01.shk.0000239779.25775.e4.

Source: PubMed

3
Subscribe