ARDS Clinical Practice Guideline 2021

Sadatomo Tasaka, Shinichiro Ohshimo, Muneyuki Takeuchi, Hideto Yasuda, Kazuya Ichikado, Kenji Tsushima, Moritoki Egi, Satoru Hashimoto, Nobuaki Shime, Osamu Saito, Shotaro Matsumoto, Eishu Nango, Yohei Okada, Kenichiro Hayashi, Masaaki Sakuraya, Mikio Nakajima, Satoshi Okamori, Shinya Miura, Tatsuma Fukuda, Tadashi Ishihara, Tetsuro Kamo, Tomoaki Yatabe, Yasuhiro Norisue, Yoshitaka Aoki, Yusuke Iizuka, Yutaka Kondo, Chihiro Narita, Daisuke Kawakami, Hiromu Okano, Jun Takeshita, Keisuke Anan, Satoru Robert Okazaki, Shunsuke Taito, Takuya Hayashi, Takuya Mayumi, Takero Terayama, Yoshifumi Kubota, Yoshinobu Abe, Yudai Iwasaki, Yuki Kishihara, Jun Kataoka, Tetsuro Nishimura, Hiroshi Yonekura, Koichi Ando, Takuo Yoshida, Tomoyuki Masuyama, Masamitsu Sanui, ARDS Clinical Practice Guideline 2021 committee from the Japanese Society of Intensive Care Medicine, the Japanese Respiratory Society, and the Japanese Society of Respiratory Care Medicine, Takuro Nakashima, Aiko Masunaga, Aiko Tanaka, Akihiko Inoue, Akiko Higashi, Atsushi Tanikawa, Atsushi Ujiro, Chihiro Takayama, Daisuke Kasugai, Daisuke Kawakami, Daisuke Ueno, Daizoh Satoh, Shinichi Kai, Kohei Ota, Yoshihiro Hagiwara, Jun Hamaguchi, Ryo Fujii, Takashi Hongo, Yuki Kishihara, Naohisa Masunaga, Ryohei Yamamoto, Satoru Robert Okazaki, Ryo Uchimido, Tetsuro Terayama, Satoshi Hokari, Hitoshi Sakamoto, Dongli, Emiko Nakataki, Erina Tabata, Seisuke Okazawa, Futoshi Kotajima, Go Ishimaru, Haruhiko Hoshino, Hideki Yoshida, Hidetaka Iwai, Hiroaki Nakagawa, Hiroko Sugimura, Hiromichi Narumiya, Hiromu Okano, Hiroshi Nakamura, Hiroshi Sugimoto, Hiroyuki Hashimoto, Hiroyuki Ito, Hisashi Dote, Hisashi Imahase, Hitoshi Sato, Masahiro Katsurada, Ichiro Osawa, Jun Kamei, Jun Maki, Jun Sugihara, Jun Takeshita, Junichi Fujimoto, Junichi Ishikawa, Junko Kosaka, Junpei Shibata, Katsuhiko Hashimoto, Yasushi Nakano, Kazuki Kikuyama, Kazushige Shimizu, Kazuya Okada, Keishi Kawano, Keisuke Anan, Keisuke Ota, Ken-Ichi Kano, Kengo Asano, Kenichi Hondo, Kenji Ishii, Kensuke Fujita, Kenta Ogawa, Kentaro Ito, Kentaro Tokunaga, Kenzo Ishii, Kohei Kusumoto, Kohei Takimoto, Kohei Yamada, Koichi Naito, Koichi Yamashita, Koichi Yoshinaga, Kota Yamauchi, Maki Murata, Makiko Konda, Manabu Hamamoto, Masaharu Aga, Masahiro Kashiura, Masami Ishikawa, Masayuki Ozaki, Michihiko Kono, Michihito Kyo, Minoru Hayashi, Mitsuhiro Abe, Mitsunori Sato, Mizu Sakai, Motoshi Kainuma, Naoki Tominaga, Naoya Iguchi, Natsuki Nakagawa, Nobumasa Aoki, Norihiro Nishioka, Norihisa Miyashita, Nozomu Seki, Ryo Ikebe, Ryosuke Imai, Ryota Tate, Ryuhei Sato, Sachiko Miyakawa, Satoshi Kazuma, Satoshi Nakano, Satoshi Tetsumoto, Satoshi Yoshimura, Shigenori Yoshitake, Shin-Etsu Hoshi, Shingo Ohki, Shintaro Sato, Shodai Yoshihiro, Shoichi Ihara, Shota Yamamoto, Shunichi Koide, Shunsuke Kimata, Shunsuke Saito, Shunsuke Yasuo, Shusuke Sekine, Soichiro Mimuro, Soichiro Wada, Sosuke Sugimura, Tadashi Ishihara, Tadashi Kaneko, Tadashi Nagato, Takaaki Maruhashi, Takahiro Tamura, Takanori Ohno, Takashi Ichiyama, Takashi Niwa, Takashi Ueji, Takayuki Ogura, Takeshi Kawasaki, Takeshi Tanaka, Takeshi Umegaki, Taku Furukawa, Taku Omura, Takumi Nagao, Takuya Mayumi, Takuya Taniguchi, Takuya Yoshida, Tatsutoshi Shimatani, Teppei Murata, Tetsuya Sato, Tohru Sawamoto, Yoshifumi Koukei, Tomohiro Takehara, Tomomi Ueda, Tomoya Katsuta, Tomoya Nishino, Toshiki Yokoyama, Ushio Higashijima, Wataru Iwanaga, Yasushi Inoue, Yoshiaki Iwashita, Yoshie Yamada, Yoshifumi Kubota, Yoshihiro Suido, Yoshihiro Tomioka, Yoshihisa Fujimoto, Yoshihito Fujita, Yoshikazu Yamaguchi, Yoshimi Nakamura, Yoshinobu Abe, Yoshitomo Eguchi, Yoshiyasu Oshima, Yosuke Fukuda, Yudai Iwasaki, Yuichi Yasufuku, Yuji Shono, Yuka Nakatani, Yuki Nakamori, Yukie Ito, Yuko Tanabe, Yusuke Nagamine, Yuta Nakamura, Yutaro Kurihara, Sadatomo Tasaka, Shinichiro Ohshimo, Muneyuki Takeuchi, Hideto Yasuda, Kazuya Ichikado, Kenji Tsushima, Moritoki Egi, Satoru Hashimoto, Nobuaki Shime, Osamu Saito, Shotaro Matsumoto, Eishu Nango, Yohei Okada, Kenichiro Hayashi, Masaaki Sakuraya, Mikio Nakajima, Satoshi Okamori, Shinya Miura, Tatsuma Fukuda, Tadashi Ishihara, Tetsuro Kamo, Tomoaki Yatabe, Yasuhiro Norisue, Yoshitaka Aoki, Yusuke Iizuka, Yutaka Kondo, Chihiro Narita, Daisuke Kawakami, Hiromu Okano, Jun Takeshita, Keisuke Anan, Satoru Robert Okazaki, Shunsuke Taito, Takuya Hayashi, Takuya Mayumi, Takero Terayama, Yoshifumi Kubota, Yoshinobu Abe, Yudai Iwasaki, Yuki Kishihara, Jun Kataoka, Tetsuro Nishimura, Hiroshi Yonekura, Koichi Ando, Takuo Yoshida, Tomoyuki Masuyama, Masamitsu Sanui, ARDS Clinical Practice Guideline 2021 committee from the Japanese Society of Intensive Care Medicine, the Japanese Respiratory Society, and the Japanese Society of Respiratory Care Medicine, Takuro Nakashima, Aiko Masunaga, Aiko Tanaka, Akihiko Inoue, Akiko Higashi, Atsushi Tanikawa, Atsushi Ujiro, Chihiro Takayama, Daisuke Kasugai, Daisuke Kawakami, Daisuke Ueno, Daizoh Satoh, Shinichi Kai, Kohei Ota, Yoshihiro Hagiwara, Jun Hamaguchi, Ryo Fujii, Takashi Hongo, Yuki Kishihara, Naohisa Masunaga, Ryohei Yamamoto, Satoru Robert Okazaki, Ryo Uchimido, Tetsuro Terayama, Satoshi Hokari, Hitoshi Sakamoto, Dongli, Emiko Nakataki, Erina Tabata, Seisuke Okazawa, Futoshi Kotajima, Go Ishimaru, Haruhiko Hoshino, Hideki Yoshida, Hidetaka Iwai, Hiroaki Nakagawa, Hiroko Sugimura, Hiromichi Narumiya, Hiromu Okano, Hiroshi Nakamura, Hiroshi Sugimoto, Hiroyuki Hashimoto, Hiroyuki Ito, Hisashi Dote, Hisashi Imahase, Hitoshi Sato, Masahiro Katsurada, Ichiro Osawa, Jun Kamei, Jun Maki, Jun Sugihara, Jun Takeshita, Junichi Fujimoto, Junichi Ishikawa, Junko Kosaka, Junpei Shibata, Katsuhiko Hashimoto, Yasushi Nakano, Kazuki Kikuyama, Kazushige Shimizu, Kazuya Okada, Keishi Kawano, Keisuke Anan, Keisuke Ota, Ken-Ichi Kano, Kengo Asano, Kenichi Hondo, Kenji Ishii, Kensuke Fujita, Kenta Ogawa, Kentaro Ito, Kentaro Tokunaga, Kenzo Ishii, Kohei Kusumoto, Kohei Takimoto, Kohei Yamada, Koichi Naito, Koichi Yamashita, Koichi Yoshinaga, Kota Yamauchi, Maki Murata, Makiko Konda, Manabu Hamamoto, Masaharu Aga, Masahiro Kashiura, Masami Ishikawa, Masayuki Ozaki, Michihiko Kono, Michihito Kyo, Minoru Hayashi, Mitsuhiro Abe, Mitsunori Sato, Mizu Sakai, Motoshi Kainuma, Naoki Tominaga, Naoya Iguchi, Natsuki Nakagawa, Nobumasa Aoki, Norihiro Nishioka, Norihisa Miyashita, Nozomu Seki, Ryo Ikebe, Ryosuke Imai, Ryota Tate, Ryuhei Sato, Sachiko Miyakawa, Satoshi Kazuma, Satoshi Nakano, Satoshi Tetsumoto, Satoshi Yoshimura, Shigenori Yoshitake, Shin-Etsu Hoshi, Shingo Ohki, Shintaro Sato, Shodai Yoshihiro, Shoichi Ihara, Shota Yamamoto, Shunichi Koide, Shunsuke Kimata, Shunsuke Saito, Shunsuke Yasuo, Shusuke Sekine, Soichiro Mimuro, Soichiro Wada, Sosuke Sugimura, Tadashi Ishihara, Tadashi Kaneko, Tadashi Nagato, Takaaki Maruhashi, Takahiro Tamura, Takanori Ohno, Takashi Ichiyama, Takashi Niwa, Takashi Ueji, Takayuki Ogura, Takeshi Kawasaki, Takeshi Tanaka, Takeshi Umegaki, Taku Furukawa, Taku Omura, Takumi Nagao, Takuya Mayumi, Takuya Taniguchi, Takuya Yoshida, Tatsutoshi Shimatani, Teppei Murata, Tetsuya Sato, Tohru Sawamoto, Yoshifumi Koukei, Tomohiro Takehara, Tomomi Ueda, Tomoya Katsuta, Tomoya Nishino, Toshiki Yokoyama, Ushio Higashijima, Wataru Iwanaga, Yasushi Inoue, Yoshiaki Iwashita, Yoshie Yamada, Yoshifumi Kubota, Yoshihiro Suido, Yoshihiro Tomioka, Yoshihisa Fujimoto, Yoshihito Fujita, Yoshikazu Yamaguchi, Yoshimi Nakamura, Yoshinobu Abe, Yoshitomo Eguchi, Yoshiyasu Oshima, Yosuke Fukuda, Yudai Iwasaki, Yuichi Yasufuku, Yuji Shono, Yuka Nakatani, Yuki Nakamori, Yukie Ito, Yuko Tanabe, Yusuke Nagamine, Yuta Nakamura, Yutaro Kurihara

Abstract

Background: The joint committee of the Japanese Society of Intensive Care Medicine/Japanese Respiratory Society/Japanese Society of Respiratory Care Medicine on ARDS Clinical Practice Guideline has created and released the ARDS Clinical Practice Guideline 2021.

Methods: The 2016 edition of the Clinical Practice Guideline covered clinical questions (CQs) that targeted only adults, but the present guideline includes 15 CQs for children in addition to 46 CQs for adults. As with the previous edition, we used a systematic review method with the Grading of Recommendations Assessment Development and Evaluation (GRADE) system as well as a degree of recommendation determination method. We also conducted systematic reviews that used meta-analyses of diagnostic accuracy and network meta-analyses as a new method.

Results: Recommendations for adult patients with ARDS are described: we suggest against using serum C-reactive protein and procalcitonin levels to identify bacterial pneumonia as the underlying disease (GRADE 2D); we recommend limiting tidal volume to 4-8 mL/kg for mechanical ventilation (GRADE 1D); we recommend against managements targeting an excessively low SpO2 (PaO2) (GRADE 2D); we suggest against using transpulmonary pressure as a routine basis in positive end-expiratory pressure settings (GRADE 2B); we suggest implementing extracorporeal membrane oxygenation for those with severe ARDS (GRADE 2B); we suggest against using high-dose steroids (GRADE 2C); and we recommend using low-dose steroids (GRADE 1B). The recommendations for pediatric patients with ARDS are as follows: we suggest against using non-invasive respiratory support (non-invasive positive pressure ventilation/high-flow nasal cannula oxygen therapy) (GRADE 2D), we suggest placing pediatric patients with moderate ARDS in the prone position (GRADE 2D), we suggest against routinely implementing NO inhalation therapy (GRADE 2C), and we suggest against implementing daily sedation interruption for pediatric patients with respiratory failure (GRADE 2D).

Conclusions: This article is a translated summary of the full version of the ARDS Clinical Practice Guideline 2021 published in Japanese (URL: https://www.jsicm.org/publication/guideline.html ). The original text, which was written for Japanese healthcare professionals, may include different perspectives from healthcare professionals of other countries.

Keywords: ARDS; Acute lung injury; Clinical practice guideline; Systematic review.

Conflict of interest statement

All committee members and panelists submitted disclosure forms of financial and academic conflict of interest (COI) prior to being requested to participate in individual activities. If panelists have any COI concerning each CQ, other panelists were assigned to replace the vacancy. All COI were collected according to the guideline written by Japanese Society of Intensive Care Medicine. Detailed information of COI and the roles in creating this clinical guideline are summarized in Additional file 7.

© 2022. The Author(s).

References

    1. Japanese Society of Respiratory Care Medicine ARDS clinical practice guidelines 1st edition. Jpn J Respir Care. 1999;16:95–115.
    1. Japanese Society of Respiratory Care Medicine ARDS clinical practice guidelines 2nd edition. Jpn J Respir Care. 1999;21:44–61.
    1. Japanese Respiratory Society ARDS Guideline Committee. Clinical practical guideline for acute lung injury and acute respiratory distress syndrome; 2005. (In Japanese)
    1. Japanese Respiratory Society ARDS Guideline Committee. Clinical practical guideline for acute lung injury and acute respiratory distress syndrome 2nd edition. 2010. (In Japanese).
    1. Hashimoto S, Sanui M, Egi M, et al. The clinical practice guideline for the management of ARDS in Japan. J Intensive Care. 2017 doi: 10.1186/s40560-017-0222-3.
    1. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. doi: 10.1001/jama.2016.0291.
    1. Japan Council for Quarity Health Care. The Minds guideline creation manual 2017. .
    1. Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21(2):e52–e106. doi: 10.1097/PCC.0000000000002198.
    1. Guyatt GH, Alonso-Coello P, Schünemann HJ, et al. Guideline panels should seldom make good practice statements: guidance from the GRADE Working Group. J Clin Epidemiol. 2016;80:3–7. doi: 10.1016/j.jclinepi.2016.07.006.
    1. Komiya K, Ishii H, Teramoto S, et al. Diagnostic utility of C-reactive protein combined with brain natriuretic peptide in acute pulmonary edema: a cross sectional study. Respir Res. 2011;12(1):83. doi: 10.1186/1465-9921-12-83.
    1. Levitt JE, Vinayak AG, Gehlbach BK, et al. Diagnostic utility of B-type natriuretic peptide in critically ill patients with pulmonary edema: a prospective cohort study. Crit Care. 2008;12(1):R3. doi: 10.1186/cc6764.
    1. Karmpaliotis D, Kirtane AJ, Ruisi CP, et al. Diagnostic and prognostic utility of brain natriuretic Peptide in subjects admitted to the ICU with hypoxic respiratory failure due to noncardiogenic and cardiogenic pulmonary edema. Chest. 2007;131(4):964–971. doi: 10.1378/chest.06-1247.
    1. Lin Q, Fu F, Chen H, Zhu B. Copeptin in the assessment of acute lung injury and cardiogenic pulmonary edema. Respir Med. 2012;106(9):1268–1277. doi: 10.1016/j.rmed.2012.05.010.
    1. Wussler D, Kozhuharov N, Tavares Oliveira M, et al. Clinical utility of procalcitonin in the diagnosis of pneumonia. Clin Chem. 2019;65(12):1532–1542. doi: 10.1373/clinchem.2019.306787.
    1. Titova E, Christensen A, Henriksen AH, Steinshamn S, Åsberg A. Comparison of procalcitonin, C-reactive protein, white blood cell count and clinical status in diagnosing pneumonia in patients hospitalized with acute exacerbations of COPD: a prospective observational study. Chron Respir Dis Jan-Dec. 2019;16:1479972318769762.
    1. Legriel S, Grigoresco B, Martel P, et al. Diagnostic accuracy of procalcitonin for early aspiration pneumonia in critically ill patients with coma: a prospective study. Neurocrit Care. 2019;30(2):440–448. doi: 10.1007/s12028-018-0623-8.
    1. Ding HG, Zhou HF, Diao MY, Xu Y, Pan QM, Shen XH. A novel biomarker of serum Histidine-Rich Glycoprotein (HRG) for diagnosing and predicting prognosis of ventilator-associated pneumonia (VAP): a pilot study. Eur Rev Med Pharmacol Sci. 2018;22(22):7920–7927.
    1. Chen C, Yan M, Hu C, Lv X, Zhang H, Chen S. Diagnostic efficacy of serum procalcitonin, C-reactive protein concentration and clinical pulmonary infection score in Ventilator-Associated Pneumonia. Med Sci (Paris) 2018;34(Focus issue F1):26–32. doi: 10.1051/medsci/201834f105.
    1. Berge K, Lyngbakken MN, Einvik G, et al. Diagnostic and prognostic properties of procalcitonin in patients with acute dyspnea: data from the ACE 2 Study. Clin Biochem. 2018;59:62–68. doi: 10.1016/j.clinbiochem.2018.07.006.
    1. Habib SF, Mukhtar AM, Abdelreheem HM, et al. Diagnostic values of CD64, C-reactive protein and procalcitonin in ventilator-associated pneumonia in adult trauma patients: a pilot study. Clin Chem Lab Med. 2016;54(5):889–895. doi: 10.1515/cclm-2015-0656.
    1. Le Bel J, Hausfater P, Chenevier-Gobeaux C, et al. Diagnostic accuracy of C-reactive protein and procalcitonin in suspected community-acquired pneumonia adults visiting emergency department and having a systematic thoracic CT scan. Crit Care. 2015;19:366. doi: 10.1186/s13054-015-1083-6.
    1. Porfyridis I, Georgiadis G, Vogazianos P, Mitis G, Georgiou A. C-reactive protein, procalcitonin, clinical pulmonary infection score, and pneumonia severity scores in nursing home acquired pneumonia. Respir Care. 2014;59(4):574–581. doi: 10.4187/respcare.02741.
    1. Bafadhel M, Clark TW, Reid C, et al. Procalcitonin and C-reactive protein in hospitalized adult patients with community-acquired pneumonia or exacerbation of asthma or COPD. Chest. 2011;139(6):1410–1418. doi: 10.1378/chest.10-1747.
    1. Ramirez P, Garcia MA, Ferrer M, et al. Sequential measurements of procalcitonin levels in diagnosing ventilator-associated pneumonia. Eur Respir J. 2008;31(2):356–362. doi: 10.1183/09031936.00086707.
    1. Müller B, Harbarth S, Stolz D, et al. Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia. BMC Infect Dis. 2007;7:10.
    1. Holm A, Pedersen SS, Nexoe J, et al. Procalcitonin versus C-reactive protein for predicting pneumonia in adults with lower respiratory tract infection in primary care. Br J Gen Pract. 2007;57(540):555–560.
    1. Adnet F, Borron SW, Vicaut E, et al. Value of C-reactive protein in the detection of bacterial contamination at the time of presentation in drug-induced aspiration pneumonia. Chest. 1997;112(2):466–471. doi: 10.1378/chest.112.2.466.
    1. Shokri M, Ghasemian R, Bayani M, et al. Serum and alveolar procalcitonin had a weak diagnostic value for ventilator-associated pneumonia in patients with pulmonary infection score ≥ 6. Rom J Intern Med. 2018;56(1):9–14.
    1. Self WH, Balk RA, Grijalva CG, et al. Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia. Clin Infect Dis. 2017;65(2):183–190. doi: 10.1093/cid/cix317.
    1. Heining L, Giesa C, Ewig S. MR-proANP, MR-proADM, and PCT in patients presenting with acute dyspnea in a medical emergency unit. Lung. 2016;194(2):185–191. doi: 10.1007/s00408-015-9837-0.
    1. Alba GA, Truong QA, Gaggin HK, et al. Diagnostic and prognostic utility of procalcitonin in patients presenting to the emergency department with dyspnea. Am J Med. 2016;129(1):96–104.e107. doi: 10.1016/j.amjmed.2015.06.037.
    1. Dallas J, Brown SM, Hock K, et al. Diagnostic utility of plasma procalcitonin for nosocomial pneumonia in the intensive care unit setting. Respir Care. 2011;56(4):412–419. doi: 10.4187/respcare.00979.
    1. Luyt CE, Combes A, Reynaud C, et al. Usefulness of procalcitonin for the diagnosis of ventilator-associated pneumonia. Intensive Care Med. 2008;34(8):1434–1440. doi: 10.1007/s00134-008-1112-x.
    1. Boussekey N, Leroy O, Georges H, Devos P, d'Escrivan T, Guery B. Diagnostic and prognostic values of admission procalcitonin levels in community-acquired pneumonia in an intensive care unit. Infection. 2005;33(4):257–263. doi: 10.1007/s15010-005-4096-2.
    1. Duflo F, Debon R, Monneret G, Bienvenu J, Chassard D, Allaouchiche B. Alveolar and serum procalcitonin: diagnostic and prognostic value in ventilator-associated pneumonia. Anesthesiology. 2002;96(1):74–79. doi: 10.1097/00000542-200201000-00018.
    1. Lee J, Song JU. Performance of pneumococcal urinary antigen test in patients with community-onset pneumonia: a propensity score-matching study. Korean J Intern Med. 2020;35(3):630–640. doi: 10.3904/kjim.2018.463.
    1. Zhou F, Gu L, Qu JX, Liu YM, Cao B. Evaluating the utility of Binax NOW Streptococcus pneumoniae urinary antigen test in adults with community acquired pneumonia in China. Clin Respir J. 2018;12(2):425–432. doi: 10.1111/crj.12533.
    1. Burgos J, Garcia-Pérez JN, di Lauro SG, et al. Usefulness of Sofia Pneumococcal FIA® test in comparison with BinaxNOW® Pneumococcal test in urine samples for the diagnosis of pneumococcal pneumonia. Eur J Clin Microbiol Infect Dis. 2018;37(7):1289–1295. doi: 10.1007/s10096-018-3248-0.
    1. Laijen W, Snijders D, Boersma WG. Pneumococcal urinary antigen test: diagnostic yield and impact on antibiotic treatment. Clin Respir J. 2017;11(6):999–1005. doi: 10.1111/crj.12453.
    1. Ikegame S, Nakano T, Otsuka J, et al. The evaluation of the sputum antigen kit in the diagnosis of pneumococcal pneumonia. Intern Med. 2017;56(10):1141–1146. doi: 10.2169/internalmedicine.56.7935.
    1. Athlin S, Iversen A, Özenci V. Comparison of the ImmuView and the BinaxNOW antigen tests in detection of Streptococcus pneumoniae and Legionella pneumophila in urine. Eur J Clin Microbiol Infect Dis. 2017;36(10):1933–1938. doi: 10.1007/s10096-017-3016-6.
    1. Molinos L, Zalacain R, Menéndez R, et al. Sensitivity, specificity, and positivity predictors of the pneumococcal urinary antigen test in community-acquired pneumonia. Ann Am Thorac Soc. 2015;12(10):1482–1489. doi: 10.1513/AnnalsATS.201505-304OC.
    1. Fukushima K, Nakamura S, Inoue Y, et al. Utility of a sputum antigen detection test in pneumococcal pneumonia and lower respiratory infectious disease in adults. Intern Med. 2015;54(22):2843–2850. doi: 10.2169/internalmedicine.54.4082.
    1. Sordé R, Falcó V, Lowak M, et al. Current and potential usefulness of pneumococcal urinary antigen detection in hospitalized patients with community-acquired pneumonia to guide antimicrobial therapy. Arch Intern Med. 2011;171(2):166–172. doi: 10.1001/archinternmed.2010.347.
    1. Abdeldaim G, Herrmann B, Korsgaard J, Olcén P, Blomberg J, Strålin K. Is quantitative PCR for the pneumolysin (ply) gene useful for detection of pneumococcal lower respiratory tract infection? Clin Microbiol Infect. 2009;15(6):565–570. doi: 10.1111/j.1469-0691.2009.02714.x.
    1. Weatherall C, Paoloni R, Gottlieb T. Point-of-care urinary pneumococcal antigen test in the emergency department for community acquired pneumonia. Emerg Med J. 2008;25(3):144–148. doi: 10.1136/emj.2007.050179.
    1. Tzeng DH, Lee YL, Lin YH, Tsai CA, Shi ZY. Diagnostic value of the Binax NOW assay for identifying a pneumococcal etiology in patients with respiratory tract infection. J Microbiol Immunol Infect. 2006;39(1):39–44.
    1. Lasocki S, Scanvic A, Le Turdu F, et al. Evaluation of the Binax NOW Streptococcus pneumoniae urinary antigen assay in intensive care patients hospitalized for pneumonia. Intensive Care Med. 2006;32(11):1766–1772. doi: 10.1007/s00134-006-0329-9.
    1. Genné D, Siegrist HH, Lienhard R. Enhancing the etiologic diagnosis of community-acquired pneumonia in adults using the urinary antigen assay (Binax NOW) Int J Infect Dis. 2006;10(2):124–128. doi: 10.1016/j.ijid.2005.03.006.
    1. Briones ML, Blanquer J, Ferrando D, Blasco ML, Gimeno C, Marín J. Assessment of analysis of urinary pneumococcal antigen by immunochromatography for etiologic diagnosis of community-acquired pneumonia in adults. Clin Vaccine Immunol. 2006;13(10):1092–1097. doi: 10.1128/CVI.00090-06.
    1. Strålin K, Kaltoft MS, Konradsen HB, Olcén P, Holmberg H. Comparison of two urinary antigen tests for establishment of pneumococcal etiology of adult community-acquired pneumonia. J Clin Microbiol. 2004;42(8):3620–3625. doi: 10.1128/JCM.42.8.3620-3625.2004.
    1. Ishida T, Hashimoto T, Arita M, Tojo Y, Tachibana H, Jinnai M. A 3-year prospective study of a urinary antigen-detection test for Streptococcus pneumoniae in community-acquired pneumonia: utility and clinical impact on the reported etiology. J Infect Chemother. 2004;10(6):359–363. doi: 10.1007/s10156-004-0351-1.
    1. Marcos MA, Jiménez de Anta MT, de la Bellacasa JP, et al. Rapid urinary antigen test for diagnosis of pneumococcal community-acquired pneumonia in adults. Eur Respir J. 2003;21(2):209–214. doi: 10.1183/09031936.03.00058802.
    1. Gutiérrez F, Masiá M, Rodríguez JC, et al. Evaluation of the immunochromatographic Binax NOW assay for detection of Streptococcus pneumoniae urinary antigen in a prospective study of community-acquired pneumonia in Spain. Clin Infect Dis. 2003;36(3):286–292. doi: 10.1086/345852.
    1. Butler JC, Bosshardt SC, Phelan M, et al. Classical and latent class analysis evaluation of sputum polymerase chain reaction and urine antigen testing for diagnosis of pneumococcal pneumonia in adults. J Infect Dis. 2003;187(9):1416–1423. doi: 10.1086/374623.
    1. Farina C, Arosio M, Vailati F, Moioli F, Goglio A. Urinary detection of Streptococcus pneumoniae antigen for diagnosis of pneumonia. New Microbiol. 2002;25(2):259–263.
    1. Murdoch DR, Laing RT, Mills GD, et al. Evaluation of a rapid immunochromatographic test for detection of Streptococcus pneumoniae antigen in urine samples from adults with community-acquired pneumonia. J Clin Microbiol. 2001;39(10):3495–3498. doi: 10.1128/JCM.39.10.3495-3498.2001.
    1. Burel E, Dufour P, Gauduchon V, Jarraud S, Etienne J. Evaluation of a rapid immunochromatographic assay for detection of Streptococcus pneumoniae antigen in urine samples. Eur J Clin Microbiol Infect Dis. 2001;20(11):840–841. doi: 10.1007/s100960100614.
    1. Fukuyama H, Yamashiro S, Kinjo K, Tamaki H, Kishaba T. Validation of sputum Gram stain for treatment of community-acquired pneumonia and healthcare-associated pneumonia: a prospective observational study. BMC Infect Dis. 2014;14:534. doi: 10.1186/1471-2334-14-534.
    1. Akter S, Shamsuzzaman SM, Jahan F. Community acquired bacterial pneumonia: aetiology, laboratory detection and antibiotic susceptibility pattern. Malays J Pathol. 2014;36(2):97–103.
    1. Ferré L, Llopis R, Jacob J, et al. Is sputum Gram staining useful in the emergency department’s management of pneumonia. Emergencias. 2011;23(2):108–111.
    1. Miyashita N, Shimizu H, Ouchi K, et al. Assessment of the usefulness of sputum Gram stain and culture for diagnosis of community-acquired pneumonia requiring hospitalization. Med Sci Monit. 2008;14(4):Cr171–Cr176.
    1. Yang S, Lin S, Khalil A, et al. Quantitative PCR assay using sputum samples for rapid diagnosis of pneumococcal pneumonia in adult emergency department patients. J Clin Microbiol. 2005;43(7):3221–3226. doi: 10.1128/JCM.43.7.3221-3226.2005.
    1. García-Vázquez E, Marcos MA, Mensa J, et al. Assessment of the usefulness of sputum culture for diagnosis of community-acquired pneumonia using the PORT predictive scoring system. Arch Intern Med. 2004;164(16):1807–1811. doi: 10.1001/archinte.164.16.1807.
    1. Rosón B, Carratalà J, Verdaguer R, Dorca J, Manresa F, Gudiol F. Prospective study of the usefulness of sputum Gram stain in the initial approach to community-acquired pneumonia requiring hospitalization. Clin Infect Dis. 2000;31(4):869–874. doi: 10.1086/318151.
    1. Fine MJ, Orloff JJ, Rihs JD, et al. Evaluation of housestaff physicians' preparation and interpretation of sputum Gram stains for community-acquired pneumonia. J Gen Intern Med. 1991;6(3):189–198. doi: 10.1007/BF02598958.
    1. Zhang XP, Deng KE, Ye YQ, Luo WT. Rapid detection of pneumococcal antigens in sputa in patients with community-acquired pneumonia by coagglutination. Med Microbiol Immunol. 1988;177(6):333–338. doi: 10.1007/BF02389905.
    1. Rein MF, Gwaltney JM, Jr, O'Brien WM, Jennings RH, Mandell GL. Accuracy of Gram's stain in identifying pneumococci in sputum. JAMA. 1978;239(25):2671–2673. doi: 10.1001/jama.239.25.2671.
    1. Peci A, Winter AL, Gubbay JB. Evaluation and comparison of multiple test methods, including real-time PCR, for Legionella detection in clinical specimens. Front Public Health. 2016;4:175. doi: 10.3389/fpubh.2016.00175.
    1. Gadsby NJ, Helgason KO, Dickson EM, et al. Molecular diagnosis of Legionella infections—clinical utility of front-line screening as part of a pneumonia diagnostic algorithm J. Infect. 2016;72(2):161–170.
    1. Jørgensen CS, Uldum SA, Sørensen JF, Skovsted IC, Otte S, Elverdal PL. Evaluation of a new lateral flow test for detection of Streptococcus pneumoniae and Legionella pneumophila urinary antigen. J Microbiol Methods. 2015;116:33–36. doi: 10.1016/j.mimet.2015.06.014.
    1. Svarrer CW, Lück C, Elverdal PL, Uldum SA. Immunochromatic kits Xpect Legionella and BinaxNOW Legionella for detection of Legionella pneumophila urinary antigen have low sensitivities for the diagnosis of Legionnaires' disease. J Med Microbiol. 2012;61(Pt 2):213–217. doi: 10.1099/jmm.0.035014-0.
    1. Diederen BM, Bruin JP, Scopes E, Peeters MF, EP IJ. Evaluation of the Oxoid Xpect Legionella test kit for detection of Legionella pneumophila serogroup 1 antigen in urine. J Clin Microbiol. 2009;47(7):2272–2274.
    1. Diederen BM, Peeters MF. Evaluation of the SAS Legionella Test, a new immunochromatographic assay for the detection of Legionella pneumophila serogroup 1 antigen in urine. Clin Microbiol Infect. 2007;13(1):86–88. doi: 10.1111/j.1469-0691.2006.01587.x.
    1. Koide M, Higa F, Tateyama M, Nakasone I, Yamane N, Fujita J. Detection of legionella species in clinical samples: comparison of polymerase chain reaction and urinary antigen detection kits. Infection. 2006;34(5):264–268. doi: 10.1007/s15010-006-6639-6.
    1. Diederen BM, Peeters MF. Evaluation of two new immunochromatographic assays (Rapid U Legionella antigen test and SD Bioline Legionella antigen test) for detection of Legionella pneumophila serogroup 1 antigen in urine. J Clin Microbiol. 2006;44(8):2991–2993. doi: 10.1128/JCM.00799-06.
    1. Diederen BM, Peeters MF. Evaluation of Rapid U Legionella Plus Test, a new immunochromatographic assay for detection of Legionella pneumophila serogroup 1 antigen in urine. Eur J Clin Microbiol Infect Dis. 2006;25(11):733–735. doi: 10.1007/s10096-006-0213-0.
    1. Helbig JH, Uldum SA, Lück PC, Harrison TG. Detection of Legionella pneumophila antigen in urine samples by the BinaxNOW immunochromatographic assay and comparison with both Binax Legionella Urinary Enzyme Immunoassay (EIA) and Biotest Legionella Urin Antigen EIA. J Med Microbiol. 2001;50(6):509–516. doi: 10.1099/0022-1317-50-6-509.
    1. Domínguez J, Galí N, Blanco S, et al. Assessment of a new test to detect Legionella urinary antigen for the diagnosis of Legionnaires' Disease. Diagn Microbiol Infect Dis. 2001;41(4):199–203. doi: 10.1016/S0732-8893(01)00308-X.
    1. Kazandjian D, Chiew R, Gilbert GL. Rapid diagnosis of Legionella pneumophila serogroup 1 infection with the Binax enzyme immunoassay urinary antigen test. J Clin Microbiol. 1997;35(4):954–956. doi: 10.1128/jcm.35.4.954-956.1997.
    1. Plouffe JF, File TM, Jr, Breiman RF, et al. Reevaluation of the definition of Legionnaires' disease: use of the urinary antigen assay community based pneumonia incidence study group. Clin Infect Dis. 1995;20(5):1286–1291. doi: 10.1093/clinids/20.5.1286.
    1. Leland DS, Kohler RB. Evaluation of the L-CLONE Legionella pneumophila Serogroup 1 Urine Antigen Latex Test. J Clin Microbiol. 1991;29(10):2220–2223. doi: 10.1128/jcm.29.10.2220-2223.1991.
    1. Samuel D, Harrison TG, Taylor AG. Detection of Legionella pneumophila serogroup 1 urinary antigen using an enhanced chemiluminescence ELISA. J Biolumin Chemilumin. 1990;5(3):183–185. doi: 10.1002/bio.1170050307.
    1. Birtles RJ, Harrison TG, Samuel D, Taylor AG. Evaluation of urinary antigen ELISA for diagnosing Legionella pneumophila serogroup 1 infection. J Clin Pathol. 1990;43(8):685–690. doi: 10.1136/jcp.43.8.685.
    1. Aguero-Rosenfeld ME, Edelstein PH. Retrospective evaluation of the Du Pont radioimmunoassay kit for detection of Legionella pneumophila serogroup 1 antigenuria in humans. J Clin Microbiol. 1988;26(9):1775–1778. doi: 10.1128/jcm.26.9.1775-1778.1988.
    1. Tang PW, Toma S. Broad-spectrum enzyme-linked immunosorbent assay for detection of Legionella soluble antigens. J Clin Microbiol. 1986;24(4):556–558. doi: 10.1128/jcm.24.4.556-558.1986.
    1. White A, Kohler RB, Wheat LJ, et al. Rapid diagnosis of Legionnaires' disease. Trans Am Clin Climatol Assoc. 1982;93:50–62.
    1. Sathapatayavongs B, Kohler RB, Wheat LJ, et al. Rapid diagnosis of Legionnaires' disease by urinary antigen detection. Comparison of ELISA and radioimmunoassay. Am J Med. 1982;72(4):576–582. doi: 10.1016/0002-9343(82)90451-X.
    1. Honda J, Yonemitsu J, Kitajima H, Yosida N, Fumirori T, Oizumi K. Clinical utility of capillary polymerase chain reaction for diagnosis of Cytomegalovirus pneumonia. Scand J Infect Dis. 2001;33(9):702–705. doi: 10.1080/00365540110026908.
    1. de la Hoz RE, Byrne SK, Hayashi S, Sherlock C, Cook D, Hogg JC. Diagnosis of cytomegalovirus infection in HIV-infected patients with respiratory disease. Clin Diagn Virol. 1998;10(1):1–7. doi: 10.1016/S0928-0197(98)00020-8.
    1. Hansen KK, Vestbo J, Benfield T, Lundgren JD, Mathiesen LR. Rapid detection of cytomegalovirus in bronchoalveolar lavage fluid and serum samples by polymerase chain reaction: correlation of virus isolation and clinical outcome for patients with human immunodeficiency virus infection. Clin Infect Dis. 1997;24(5):878–883. doi: 10.1093/clinids/24.5.878.
    1. Liesnard C, De Wit L, Motte S, Brancart F, Content J. Rapid diagnosis of cytomegalovirus lung infection by DNA amplification in bronchoalveolar lavages. Mol Cell Probes. 1994;8(4):273–283. doi: 10.1006/mcpr.1994.1039.
    1. Eriksson BM, Brytting M, Zweygberg-Wirgart B, Hillerdal G, Olding-Stenkvist E, Linde A. Diagnosis of cytomegalovirus in bronchoalveolar lavage by polymerase chain reaction, in comparison with virus isolation and detection of viral antigen. Scand J Infect Dis. 1993;25(4):421–427. doi: 10.3109/00365549309008522.
    1. Moon SM, Sung H, Kim MN, et al. Diagnostic yield of the cytomegalovirus (CMV) antigenemia assay and clinical features in solid organ transplant recipients and hematopoietic stem cell transplant recipients with CMV pneumonia. Transpl Infect Dis. 2012;14(2):192–197. doi: 10.1111/j.1399-3062.2011.00703.x.
    1. Uberti-Foppa C, Lillo F, Terreni MR, et al. Cytomegalovirus pneumonia in AIDS patients: value of cytomegalovirus culture from BAL fluid and correlation with lung disease. Chest. 1998;113(4):919–923. doi: 10.1378/chest.113.4.919.
    1. Angelici E, Contini C, Sebastiani G, et al. Cytomegalovirus in bronchoalveolar lavage specimens from patients with AIDS: comparison with antigenaemia and viraemia. J Med Microbiol. 1996;45(2):149–152. doi: 10.1099/00222615-45-2-149.
    1. Engsbro AL, Najat S, Jørgensen KM, Kurtzhals JAL, Arendrup MC. Diagnostic accuracy of the 1,3-β-D-glucan test for pneumocystis pneumonia in a tertiary university hospital in Denmark: a retrospective study. Med Mycol. 2019;57(6):710–717. doi: 10.1093/mmy/myy129.
    1. Passos AIM, Dertkigil RP, Ramos MC, et al. Serum markers as an aid in the diagnosis of pulmonary fungal infections in AIDS patients. Braz J Infect Dis. 2017;21(6):606–612. doi: 10.1016/j.bjid.2017.07.002.
    1. Lahmer T, da Costa CP, Held J, et al. Usefulness of 1,3 beta-d-glucan detection in non-HIV immunocompromised mechanical ventilated critically ill patients with ARDS and suspected Pneumocystis jirovecii Pneumonia. Mycopathologia. 2017;182(7–8):701–708. doi: 10.1007/s11046-017-0132-x.
    1. Garnham K, Halliday CL, Joshi Rai N, et al. Introducing 1,3-beta-D-glucan for screening and diagnosis of invasive fungal diseases in Australian high risk haematology patients: is there a clinical benefit? Intern Med J. 2020 doi: 10.1111/imj.15046.
    1. Chang E, Kim TS, Kang CK, et al. Limited positive predictive value of β-d-glucan in hematologic patients receiving antimold prophylaxis. Open Forum Infect Dis. 2020;7(3):ofaa048. doi: 10.1093/ofid/ofaa048.
    1. Heldt S, Prattes J, Eigl S, et al. Diagnosis of invasive aspergillosis in hematological malignancy patients: performance of cytokines, Asp LFD, and Aspergillus PCR in same day blood and bronchoalveolar lavage samples. J Infect. 2018;77(3):235–241. doi: 10.1016/j.jinf.2018.05.001.
    1. Furfaro E, Giacobbe DR, Del Bono V, et al. Performance of serum (1,3)-ß-d-glucan screening for the diagnosis of invasive aspergillosis in neutropenic patients with haematological malignancies. Mycoses. 2018;61(9):650–655. doi: 10.1111/myc.12787.
    1. Dobias R, Jaworska P, Tomaskova H, et al. Diagnostic value of serum galactomannan, (1,3)-β-d-glucan, and Aspergillus fumigatus-specific IgA and IgG assays for invasive pulmonary aspergillosis in non-neutropenic patients. Mycoses. 2018;61(8):576–586. doi: 10.1111/myc.12765.
    1. Boch T, Reinwald M, Spiess B, et al. Detection of invasive pulmonary aspergillosis in critically ill patients by combined use of conventional culture, galactomannan, 1-3-beta-D-glucan and Aspergillus specific nested polymerase chain reaction in a prospective pilot study. J Crit Care. 2018;47:198–203. doi: 10.1016/j.jcrc.2018.07.001.
    1. Lahmer T, Rasch S, Schnappauf C, Beitz A, Schmid RM, Huber W. Comparison of serum galactomannan and 1,3-beta-D-glucan determination for early detection of invasive pulmonary aspergillosis in critically ill patients with hematological malignancies and septic shock. Mycopathologia. 2016;181(7–8):505–511. doi: 10.1007/s11046-016-0011-x.
    1. Bölük G, Kazak E, Özkalemkaş F, et al. Comparison of galactomannan, beta-D-glucan, and Aspergillus DNA in sera of high-risk adult patients with hematological malignancies for the diagnosis of invasive aspergillosis. Turk J Med Sci. 2016;46(2):335–342. doi: 10.3906/sag-1408-100.
    1. Metan G, Koç AN, Kaynar LG, et al. What is the role of the (1→3)-β-D-glucan assay in the screening of patients undergoing autologous haematopoietic stem-cell transplantation? Mycoses. 2013;56(1):34–38. doi: 10.1111/j.1439-0507.2012.02195.x.
    1. Sun YQ, Ji Y, Xu LP, Liu DH, Liu KY, Huang XJ. Combination of real-time polymerase chain reaction assay and serum galactomannan in the diagnosis of invasive aspergillosis in patients with hematological malignancies and recipients of hematopoietic stem cell transplantation. Zhonghua Yi Xue Za Zhi. 2010;90(6):375–378.
    1. Busca A, Locatelli F, Barbui A, et al. Usefulness of sequential Aspergillus galactomannan antigen detection combined with early radiologic evaluation for diagnosis of invasive pulmonary aspergillosis in patients undergoing allogeneic stem cell transplantation. Transplant Proc. 2006;38(5):1610–1613. doi: 10.1016/j.transproceed.2006.02.072.
    1. Marr KA, Balajee SA, McLaughlin L, Tabouret M, Bentsen C, Walsh TJ. Detection of galactomannan antigenemia by enzyme immunoassay for the diagnosis of invasive aspergillosis: variables that affect performance. J Infect Dis. 2004;190(3):641–649. doi: 10.1086/422009.
    1. Pinel C, Fricker-Hidalgo H, Lebeau B, et al. Detection of circulating Aspergillus fumigatus galactomannan: value and limits of the Platelia test for diagnosing invasive aspergillosis. J Clin Microbiol. 2003;41(5):2184–2186. doi: 10.1128/JCM.41.5.2184-2186.2003.
    1. Becker MJ, Lugtenburg EJ, Cornelissen JJ, Van Der Schee C, Hoogsteden HC, De Marie S. Galactomannan detection in computerized tomography-based broncho-alveolar lavage fluid and serum in haematological patients at risk for invasive pulmonary aspergillosis. Br J Haematol. 2003;121(3):448–457. doi: 10.1046/j.1365-2141.2003.04308.x.
    1. Maertens J, Van Eldere J, Verhaegen J, Verbeken E, Verschakelen J, Boogaerts M. Use of circulating galactomannan screening for early diagnosis of invasive aspergillosis in allogeneic stem cell transplant recipients. J Infect Dis. 2002;186(9):1297–1306. doi: 10.1086/343804.
    1. Ulusakarya A, Chachaty E, Vantelon JM, et al. Surveillance of Aspergillus galactomannan antigenemia for invasive aspergillosis by enzyme-linked immunosorbent assay in neutropenic patients treated for hematological malignancies. Hematol J. 2000;1(2):111–116. doi: 10.1038/sj.thj.6200009.
    1. Bretagne S, Costa JM, Bart-Delabesse E, Dhédin N, Rieux C, Cordonnier C. Comparison of serum galactomannan antigen detection and competitive polymerase chain reaction for diagnosing invasive aspergillosis. Clin Infect Dis. 1998;26(6):1407–1412. doi: 10.1086/516343.
    1. Arrieta E, Sangiovanni S, Garcia-Robledo JE, Velásquez M, Sua LF, Fernández-Trujillo L. Video-assisted thoracoscopic lung biopsy in critically ill patients with hematologic malignancy and acute respiratory distress syndrome: a case series report. J Investig Med High Impact Case Rep. 2020;8:2324709620912101.
    1. Lipps KM, Bharat A, Walter JM. Lung biopsy in patients with acute respiratory distress syndrome supported on extracorporeal membrane oxygenation: a 2 year experience. Asaio J. 2019;65(8):e92–e94. doi: 10.1097/MAT.0000000000000909.
    1. Cardinal-Fernandez P, Ortiz G, Chang CH, et al. Predicting the impact of diffuse alveolar damage through open lung biopsy in acute respiratory distress syndrome—the PREDATOR Study. J Clin Med. 2019 doi: 10.3390/jcm8060829.
    1. Park J, Lee YJ, Lee J, et al. Histopathologic heterogeneity of acute respiratory distress syndrome revealed by surgical lung biopsy and its clinical implications. Korean J Intern Med. 2018;33(3):532–540. doi: 10.3904/kjim.2016.346.
    1. Willetts L, Parker K, Wesselius LJ, et al. Immunodetection of occult eosinophils in lung tissue biopsies may help predict survival in acute lung injury. Respir Res. 2011;12(1):116. doi: 10.1186/1465-9921-12-116.
    1. Charbonney E, Robert J, Pache JC, Chevrolet JC, Eggimann P. Impact of bedside open lung biopsies on the management of mechanically ventilated immunocompromised patients with acute respiratory distress syndrome of unknown etiology. J Crit Care. 2009;24(1):122–128. doi: 10.1016/j.jcrc.2008.01.008.
    1. Baumann HJ, Kluge S, Balke L, et al. Yield and safety of bedside open lung biopsy in mechanically ventilated patients with acute lung injury or acute respiratory distress syndrome. Surgery. 2008;143(3):426–433. doi: 10.1016/j.surg.2007.06.003.
    1. Papazian L, Doddoli C, Chetaille B, et al. A contributive result of open-lung biopsy improves survival in acute respiratory distress syndrome patients. Crit Care Med. 2007;35(3):755–762. doi: 10.1097/01.CCM.0000257325.88144.30.
    1. Canzian M, Soeiro Ade M, Taga MF, Barbas CS, Capelozzi VL. Correlation between surgical lung biopsy and autopsy findings and clinical data in patients with diffuse pulmonary infiltrates and acute respiratory failure. Clinics (Sao Paulo) 2006;61(5):425–432. doi: 10.1590/S1807-59322006000500009.
    1. Patel SR, Karmpaliotis D, Ayas NT, et al. The role of open-lung biopsy in ARDS. Chest. 2004;125(1):197–202. doi: 10.1378/chest.125.1.197.
    1. Papazian L, Thomas P, Bregeon F, et al. Open-lung biopsy in patients with acute respiratory distress syndrome. Anesthesiology. 1998;88(4):935–944. doi: 10.1097/00000542-199804000-00013.
    1. Nishiyama A, Kawata N, Yokota H, et al. A predictive factor for patients with acute respiratory distress syndrome: CT lung volumetry of the well-aerated region as an automated method. Eur J Radiol. 2020;122:108748. doi: 10.1016/j.ejrad.2019.108748.
    1. Kamo T, Tasaka S, Suzuki T, et al. Prognostic values of the Berlin definition criteria, blood lactate level, and fibroproliferative changes on high-resolution computed tomography in ARDS patients. BMC Pulm Med. 2019;19(1):37. doi: 10.1186/s12890-019-0803-0.
    1. Ichikado K, Muranaka H, Gushima Y, et al. Fibroproliferative changes on high-resolution CT in the acute respiratory distress syndrome predict mortality and ventilator dependency: a prospective observational cohort study. BMJ Open. 2012;2(2):e000545. doi: 10.1136/bmjopen-2011-000545.
    1. Chung JH, Kradin RL, Greene RE, Shepard JA, Digumarthy SR. CT predictors of mortality in pathology confirmed ARDS. Eur Radiol. 2011;21(4):730–737. doi: 10.1007/s00330-010-1979-0.
    1. Ichikado K, Suga M, Muranaka H, et al. Prediction of prognosis for acute respiratory distress syndrome with thin-section CT: validation in 44 cases. Radiology. 2006;238(1):321–329. doi: 10.1148/radiol.2373041515.
    1. Rouby JJ, Puybasset L, Cluzel P, Richecoeur J, Lu Q, Grenier P. Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group. Intensive Care Med. 2000;26(8):1046–1056. doi: 10.1007/s001340051317.
    1. Song M, Liu Y, Lu Z, Luo H, Peng H, Chen P. Prognostic factors for ARDS: clinical, physiological and atypical immunodeficiency. BMC Pulm Med. 2020;20(1):102. doi: 10.1186/s12890-020-1131-0.
    1. Fujishima S, Gando S, Saitoh D, et al. Demographics, treatments, and outcomes of acute respiratory distress syndrome: the focused outcomes research in emergency care in acute respiratory distress syndrome, sepsis, and trauma (FORECAST) study. Shock. 2020;53(5):544–549. doi: 10.1097/SHK.0000000000001416.
    1. Shen Y, Cai G, Gong S, Dong L, Yan J, Cai W. Interaction between low tidal volume ventilation strategy and severity of acute respiratory distress syndrome: a retrospective cohort study. Crit Care. 2019;23(1):254. doi: 10.1186/s13054-019-2530-6.
    1. Chinh LQ, Manabe T, Son DN, et al. Clinical epidemiology and mortality on patients with acute respiratory distress syndrome (ARDS) in Vietnam. PLoS ONE. 2019;14(8):e0221114. doi: 10.1371/journal.pone.0221114.
    1. Chan MC, Chao WC, Liang SJ, et al. First tidal volume greater than 8 mL/kg is associated with increased mortality in complicated influenza infection with acute respiratory distress syndrome. J Formos Med Assoc. 2019;118(1 Pt 2):378–385. doi: 10.1016/j.jfma.2018.06.010.
    1. Neuschwander A, Lemiale V, Darmon M, et al. Noninvasive ventilation during acute respiratory distress syndrome in patients with cancer: trends in use and outcome. J Crit Care. 2017;38:295–299. doi: 10.1016/j.jcrc.2016.11.042.
    1. Kallet RH, Zhuo H, Ho K, Lipnick MS, Gomez A, Matthay MA. Lung injury etiology and other factors influencing the relationship between dead-space fraction and mortality in ARDS. Respir Care. 2017;62(10):1241–1248. doi: 10.4187/respcare.05589.
    1. DesPrez K, McNeil JB, Wang C, Bastarache JA, Shaver CM, Ware LB. Oxygenation saturation index predicts clinical outcomes in ARDS. Chest. 2017;152(6):1151–1158. doi: 10.1016/j.chest.2017.08.002.
    1. Bellani G, Laffey JG, Pham T, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE Study. Am J Respir Crit Care Med. 2017;195(1):67–77. doi: 10.1164/rccm.201606-1306OC.
    1. Lazzeri C, Bonizzoli M, Cozzolino M, et al. Serial measurements of troponin and echocardiography in patients with moderate-to-severe acute respiratory distress syndrome. J Crit Care. 2016;33:132–136. doi: 10.1016/j.jcrc.2016.01.004.
    1. Lai CC, Sung MI, Liu HH, et al. The ratio of partial pressure arterial oxygen and fraction of inspired oxygen 1 day after acute respiratory distress syndrome onset can predict the outcomes of involving patients. Medicine (Baltimore) 2016;95(14):e3333. doi: 10.1097/MD.0000000000003333.
    1. Laffey JG, Bellani G, Pham T, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016;42(12):1865–1876. doi: 10.1007/s00134-016-4571-5.
    1. Chen W, Janz DR, Shaver CM, Bernard GR, Bastarache JA, Ware LB. Clinical characteristics and outcomes are similar in ARDS diagnosed by oxygen saturation/Fio2 ratio compared with Pao2/Fio2 ratio. Chest. 2015;148(6):1477–1483. doi: 10.1378/chest.15-0169.
    1. Choi WI, Shehu E, Lim SY, et al. Markers of poor outcome in patients with acute hypoxemic respiratory failure. J Crit Care. 2014;29(5):797–802. doi: 10.1016/j.jcrc.2014.05.017.
    1. Villar J, Pérez-Méndez L, Blanco J, et al. A universal definition of ARDS: the PaO2/FiO2 ratio under a standard ventilatory setting—a prospective, multicenter validation study. Intensive Care Med. 2013;39(4):583–592. doi: 10.1007/s00134-012-2803-x.
    1. Hernu R, Wallet F, Thiollière F, et al. An attempt to validate the modification of the American–European consensus definition of acute lung injury/acute respiratory distress syndrome by the Berlin definition in a university hospital. Intensive Care Med. 2013;39(12):2161–2170. doi: 10.1007/s00134-013-3122-6.
    1. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–2533.
    1. Cooke CR, Kahn JM, Caldwell E, et al. Predictors of hospital mortality in a population-based cohort of patients with acute lung injury. Crit Care Med. 2008;36(5):1412–1420. doi: 10.1097/CCM.0b013e318170a375.
    1. Bhadade R, de’Souza R, Harde M, Asgaonkar D, Tuplondhe N. Mortality predictors of ARDS in medical intensive care unit of a tertiary care centre in a tropical country. J Assoc Physicians India. 2015;63(11):16–22.
    1. Britos M, Smoot E, Liu KD, Thompson BT, Checkley W, Brower RG. The value of positive end-expiratory pressure and Fio2 criteria in the definition of the acute respiratory distress syndrome. Crit Care Med. 2011;39(9):2025–2030. doi: 10.1097/CCM.0b013e31821cb774.
    1. Villar J, Pérez-Méndez L, López J, et al. An early PEEP/FIO2 trial identifies different degrees of lung injury in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;176(8):795–804. doi: 10.1164/rccm.200610-1534OC.
    1. He H, Sun B, Liang L, et al. A multicenter RCT of noninvasive ventilation in pneumonia-induced early mild acute respiratory distress syndrome. Crit Care. 2019;23(1):300. doi: 10.1186/s13054-019-2575-6.
    1. Azoulay E, Lemiale V, Mokart D, et al. Effect of high-flow nasal oxygen vs standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure: the HIGH randomized clinical trial. JAMA. 2018;320(20):2099–2107. doi: 10.1001/jama.2018.14282.
    1. Belenguer-Muncharaz A, Cubedo-Bort M, Blasco-Asensio D, et al. Non-invasive ventilation versus invasive mechanical ventilation in patients with hypoxemic acute respiratory failure in an intensive care unit. A randomized controlled study. Minerva Pneumol. 2017;56:1–10.
    1. Lemiale V, Mokart D, Resche-Rigon M, et al. Effect of noninvasive ventilation vs oxygen therapy on mortality among immunocompromised patients with acute respiratory failure: a randomized clinical trial. JAMA. 2015;314(16):1711–1719. doi: 10.1001/jama.2015.12402.
    1. Lemiale V, Mokart D, Mayaux J, et al. The effects of a 2-h trial of high-flow oxygen by nasal cannula versus Venturi mask in immunocompromised patients with hypoxemic acute respiratory failure: a multicenter randomized trial. Crit Care. 2015;19:380. doi: 10.1186/s13054-015-1097-0.
    1. Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–2196. doi: 10.1056/NEJMoa1503326.
    1. Bell N, Hutchinson CL, Green TC, Rogan E, Bein KJ, Dinh MM. Randomised control trial of humidified high flow nasal cannulae versus standard oxygen in the emergency department. Emerg Med Australas. 2015;27(6):537–541. doi: 10.1111/1742-6723.12490.
    1. Brambilla AM, Aliberti S, Prina E, et al. Helmet CPAP vs oxygen therapy in severe hypoxemic respiratory failure due to pneumonia. Intensive Care Med. 2014;40(7):942–949. doi: 10.1007/s00134-014-3325-5.
    1. Zhan Q, Sun B, Liang L, et al. Early use of noninvasive positive pressure ventilation for acute lung injury: a multicenter randomized controlled trial. Crit Care Med. 2012;40(2):455–460. doi: 10.1097/CCM.0b013e318232d75e.
    1. Wermke M, Schiemanck S, Höffken G, Ehninger G, Bornhäuser M, Illmer T. Respiratory failure in patients undergoing allogeneic hematopoietic SCT—a randomized trial on early non-invasive ventilation based on standard care hematology wards. Bone Marrow Transplant. 2012;47(4):574–580. doi: 10.1038/bmt.2011.160.
    1. Squadrone V, Massaia M, Bruno B, et al. Early CPAP prevents evolution of acute lung injury in patients with hematologic malignancy. Intensive Care Med. 2010;36(10):1666–1674. doi: 10.1007/s00134-010-1934-1.
    1. Cosentini R, Brambilla AM, Aliberti S, et al. Helmet continuous positive airway pressure vs oxygen therapy to improve oxygenation in community-acquired pneumonia: a randomized, controlled trial. Chest. 2010;138(1):114–120. doi: 10.1378/chest.09-2290.
    1. Ferrer M, Esquinas A, Leon M, Gonzalez G, Alarcon A, Torres A. Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial. Am J Respir Crit Care Med. 2003;168(12):1438–1444. doi: 10.1164/rccm.200301-072OC.
    1. Hilbert G, Gruson D, Vargas F, et al. Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates, fever, and acute respiratory failure. N Engl J Med. 2001;344(7):481–487. doi: 10.1056/NEJM200102153440703.
    1. Martin TJ, Hovis JD, Costantino JP, et al. A randomized, prospective evaluation of noninvasive ventilation for acute respiratory failure. Am J Respir Crit Care Med. 2000;161(3 Pt 1):807–813. doi: 10.1164/ajrccm.161.3.9808143.
    1. Delclaux C, L'Her E, Alberti C, et al. Treatment of acute hypoxemic nonhypercapnic respiratory insufficiency with continuous positive airway pressure delivered by a face mask: a randomized controlled trial. JAMA. 2000;284(18):2352–2360. doi: 10.1001/jama.284.18.2352.
    1. Antonelli M, Conti G, Bufi M, et al. Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial. JAMA. 2000;283(2):235–241. doi: 10.1001/jama.283.2.235.
    1. Antonelli M, Conti G, Rocco M, et al. A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med. 1998;339(7):429–435. doi: 10.1056/NEJM199808133390703.
    1. Wysocki M, Tric L, Wolff MA, Millet H, Herman B. Noninvasive pressure support ventilation in patients with acute respiratory failure. A randomized comparison with conventional therapy. Chest. 1995;107(3):761–768. doi: 10.1378/chest.107.3.761.
    1. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–354. doi: 10.1056/NEJM199802053380602.
    1. Brochard L, Roudot-Thoraval F, Roupie E, et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The multicenter trail group on tidal volume reduction in ARDS. Am J Respir Crit Care Med. 1998;158(6):1831–1838. doi: 10.1164/ajrccm.158.6.9801044.
    1. Stewart TE, Meade MO, Cook DJ, et al. Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and volume-limited ventilation strategy group. N Engl J Med. 1998;338(6):355–361. doi: 10.1056/NEJM199802053380603.
    1. Wu G, Lu B. The application of low tidal volume pressure-controlled ventilation in patients with acute respiratory distress syndrome. Hunan Yi Ke Da Xue Xue Bao. 1998;23(1):57–58.
    1. Brower RG, Shanholtz CB, Fessler HE, et al. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med. 1999;27(8):1492–1498. doi: 10.1097/00003246-199908000-00015.
    1. East TD, Heermann LK, Bradshaw RL, et al. Efficacy of computerized decision support for mechanical ventilation: results of a prospective multi-center randomized trial. Proc AMIA Symp. 1999;251–255.
    1. Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282(1):54–61. doi: 10.1001/jama.282.1.54.
    1. Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Orme J, Jr, Romney JS, Hopkins RO, et al. Pulmonary function and health-related quality of life in survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2003;167(5):690–694. doi: 10.1164/rccm.200206-542OC.
    1. Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34(5):1311–1318. doi: 10.1097/01.CCM.0000215598.84885.01.
    1. Sun JJ, Yang MW, Wang CH, et al. Clinical effects of low-stretch ventilation on acute respiratory distress syndrome. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2009;21(10):609–612.
    1. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327–336. doi: 10.1056/NEJMoa032193.
    1. Long Y, Liu DW, Zhou X, et al. The application of individualized ventilation strategies in acute respiratory distress syndrome. Zhonghua Jie He He Hu Xi Za Zhi. 2006;29(8):549–553.
    1. Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637–645. doi: 10.1001/jama.299.6.637.
    1. Mercat A, Richard JC, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646–655. doi: 10.1001/jama.299.6.646.
    1. Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–2104. doi: 10.1056/NEJMoa0708638.
    1. Hodgson CL, Tuxen DV, Davies AR, et al. A randomised controlled trial of an open lung strategy with staircase recruitment, titrated PEEP and targeted low airway pressures in patients with acute respiratory distress syndrome. Crit Care. 2011;15(3):R133. doi: 10.1186/cc10249.
    1. Kacmarek RM, Villar J, Sulemanji D, et al. Open lung approach for the acute respiratory distress syndrome: a pilot randomized controlled trial. Crit Care Med. 2016;44(1):32–42. doi: 10.1097/CCM.0000000000001383.
    1. Cavalcanti AB, Suzumura ÉA, Laranjeira LN, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318(14):1335–1345. doi: 10.1001/jama.2017.14171.
    1. Hodgson CL, Cooper DJ, Arabi Y, et al. Maximal recruitment open lung ventilation in acute respiratory distress syndrome (PHARLAP). A phase II, multicenter randomized controlled clinical trial. Am J Respir Crit Care Med. 2019;200(11):1363–1372. doi: 10.1164/rccm.201901-0109OC.
    1. Lam NN, Hung TD, Hung DK. Impact of "opening the lung" ventilatory strategy on burn patients with acute respiratory distress syndrome. Burns. 2019;45(8):1841–1847. doi: 10.1016/j.burns.2019.05.016.
    1. Salem MS, Eltatawy HS, Abdelhafez AA, Alsherif SE-dI. Lung ultrasound- versus FiO2-guided PEEP in ARDS patients. Egypt J Anaesth. 2020;36(1):31–37. doi: 10.1080/11101849.2020.1741253.
    1. Li J, Luo Z, Li X, et al. Effect of different transpulmonary pressures guided mechanical ventilation on respiratory and hemodynamics of patients with ARDS: a prospective randomized controlled trial. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017;29(1):39–44.
    1. Hashimoto S, Sanui M, Egi M, et al. The clinical practice guideline for the management of ARDS in Japan. J Intensive Care. 2017;5:50. doi: 10.1186/s40560-017-0222-3.
    1. Ali AAE-R, El Wahsh RAE-R, Agha MAE-S, Tawadroos BB. Pressure regulated volume controlled ventilation versus synchronized intermittent mandatory ventilation in COPD patients suffering from acute respiratory failure. Egypt J Chest Dis Tuberc. 2016;65(1):121–125. doi: 10.1016/j.ejcdt.2015.08.004.
    1. Esteban A, Alía I, Gordo F, et al. Prospective randomized trial comparing pressure-controlled ventilation and volume-controlled ventilation in ARDS. For the Spanish Lung Failure Collaborative Group. Chest. 2000;117(6):1690–1696. doi: 10.1378/chest.117.6.1690.
    1. Rappaport SH, Shpiner R, Yoshihara G, Wright J, Chang P, Abraham E. Randomized, prospective trial of pressure-limited versus volume-controlled ventilation in severe respiratory failure. Crit Care Med. 1994;22(1):22–32. doi: 10.1097/00003246-199401000-00009.
    1. Chacko B, Peter JV, Tharyan P, John G, Jeyaseelan L. Pressure-controlled versus volume-controlled ventilation for acute respiratory failure due to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) Cochrane Database Syst Rev. 2015;1(1):Cd008807.
    1. Li JQ, Li N, Han GJ, et al. Clinical research about airway pressure release ventilation for moderate to severe acute respiratory distress syndrome. Eur Rev Med Pharmacol Sci. 2016;20(12):2634–2641.
    1. Maxwell RA, Green JM, Waldrop J, et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010;69(3):501–510; discussion 511.
    1. Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164(1):43–49. doi: 10.1164/ajrccm.164.1.2001078.
    1. Varpula T, Jousela I, Niemi R, Takkunen O, Pettilä V. Combined effects of prone positioning and airway pressure release ventilation on gas exchange in patients with acute lung injury. Acta Anaesthesiol Scand. 2003;47(5):516–524. doi: 10.1034/j.1399-6576.2003.00109.x.
    1. Varpula T, Valta P, Niemi R, Takkunen O, Hynynen M, Pettilä VV. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand. 2004;48(6):722–731. doi: 10.1111/j.0001-5172.2004.00411.x.
    1. Varpula T, Valta P, Markkola A, et al. The effects of ventilatory mode on lung aeration assessed with computer tomography: a randomized controlled study. J Intensive Care Med. 2009;24(2):122–130. doi: 10.1177/0885066608330098.
    1. Zhou Y, Jin X, Lv Y, et al. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med. 2017;43(11):1648–1659. doi: 10.1007/s00134-017-4912-z.
    1. Luo J, Wang MY, Liang BM, et al. Initial synchronized intermittent mandatory ventilation versus assist/control ventilation in treatment of moderate acute respiratory distress syndrome: a prospective randomized controlled trial. J Thorac Dis. 2015;7(12):2262–2273.
    1. Robinson BR, Blakeman TC, Toth P, Hanseman DJ, Mueller E, Branson RD. Patient-ventilator asynchrony in a traumatically injured population. Respir Care. 2013;58(11):1847–1855. doi: 10.4187/respcare.02237.
    1. Brochard L, Rauss A, Benito S, et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med. 1994;150(4):896–903. doi: 10.1164/ajrccm.150.4.7921460.
    1. Esteban A, Frutos F, Tobin MJ, et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med. 1995;332(6):345–350. doi: 10.1056/NEJM199502093320601.
    1. Khan NA, Saleem M, Ashfaq A, Yusuf M. Is the lung recruitment and titrated positive end expiratory pressure a better strategy as compare to low PEEP on mortality in patients with acute respiratory distress syndrome. Med Forum Mon. 2018;29(4):93–97.
    1. Kung SC, Hung YL, Chen WL, Wang CM, Chang HC, Liu WL. Effects of stepwise lung recruitment maneuvers in patients with early acute respiratory distress syndrome: a prospective, randomized, controlled trial. J Clin Med. 2019 doi: 10.3390/jcm8020231.
    1. Xi XM, Jiang L, Zhu B. Clinical efficacy and safety of recruitment maneuver in patients with acute respiratory distress syndrome using low tidal volume ventilation: a multicenter randomized controlled clinical trial. Chin Med J (Engl) 2010;123(21):3100–3105.
    1. Chung FT, Lee CS, Lin SM, et al. Alveolar recruitment maneuver attenuates extravascular lung water in acute respiratory distress syndrome. Medicine (Baltimore) 2017;96(30):e7627. doi: 10.1097/MD.0000000000007627.
    1. Huh JW, Jung H, Choi HS, Hong SB, Lim CM, Koh Y. Efficacy of positive end-expiratory pressure titration after the alveolar recruitment manoeuvre in patients with acute respiratory distress syndrome. Crit Care. 2009;13(1):R22. doi: 10.1186/cc7725.
    1. Yu S, Hu TX, Jin J, Zhang S. Effect of protective lung ventilation strategy combined with lung recruitment maneuver in patients with acute respiratory distress syndrome (ARDS) J Acute Dis. 2017;6(4):163–168. doi: 10.12980/jad.6.20170403.
    1. Constantin JM, Futier E, Cherprenet AL, et al. A recruitment maneuver increases oxygenation after intubation of hypoxemic intensive care unit patients: a randomized controlled study. Crit Care. 2010;14(2):R76. doi: 10.1186/cc8989.
    1. Blackwood B, Alderdice F, Burns KE, Cardwell CR, Lavery G, O'Halloran P. Protocolized versus non-protocolized weaning for reducing the duration of mechanical ventilation in critically ill adult patients. Cochrane Database Syst Rev. 2010;5:Cd006904.
    1. Chaiwat O, Sarima N, Niyompanitpattana K, Komoltri C, Udomphorn Y, Kongsayreepong S. Protocol-directed vs physician-directed weaning from ventilator in intra-abdominal surgical patients. J Med Assoc Thai. 2010;93(8):930–936.
    1. Ely EW, Baker AM, Dunagan DP, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med. 1996;335(25):1864–1869. doi: 10.1056/NEJM199612193352502.
    1. Fan L, Su Y, Elmadhoun OA, et al. Protocol-directed weaning from mechanical ventilation in neurological patients: a randomised controlled trial and subgroup analyses based on consciousness. Neurol Res. 2015;37(11):1006–1014. doi: 10.1179/1743132815Y.0000000092.
    1. Kollef MH, Shapiro SD, Silver P, et al. A randomized, controlled trial of protocol-directed versus physician-directed weaning from mechanical ventilation. Crit Care Med. 1997;25(4):567–574. doi: 10.1097/00003246-199704000-00004.
    1. Krishnan JA, Moore D, Robeson C, Rand CS, Fessler HE. A prospective, controlled trial of a protocol-based strategy to discontinue mechanical ventilation. Am J Respir Crit Care Med. 2004;169(6):673–678. doi: 10.1164/rccm.200306-761OC.
    1. Marelich GP, Murin S, Battistella F, Inciardi J, Vierra T, Roby M. Protocol weaning of mechanical ventilation in medical and surgical patients by respiratory care practitioners and nurses: effect on weaning time and incidence of ventilator-associated pneumonia. Chest. 2000;118(2):459–467. doi: 10.1378/chest.118.2.459.
    1. Namen AM, Ely EW, Tatter SB, et al. Predictors of successful extubation in neurosurgical patients. Am J Respir Crit Care Med. 2001;163(3 Pt 1):658–664. doi: 10.1164/ajrccm.163.3.2003060.
    1. Navalesi P, Frigerio P, Moretti MP, et al. Rate of reintubation in mechanically ventilated neurosurgical and neurologic patients: evaluation of a systematic approach to weaning and extubation. Crit Care Med. 2008;36(11):2986–2992. doi: 10.1097/CCM.0b013e31818b35f2.
    1. Roh JH, Synn A, Lim CM, et al. A weaning protocol administered by critical care nurses for the weaning of patients from mechanical ventilation. J Crit Care. 2012;27(6):549–555. doi: 10.1016/j.jcrc.2011.11.008.
    1. Rose L, Presneill JJ, Johnston L, Cade JF. A randomised, controlled trial of conventional versus automated weaning from mechanical ventilation using SmartCare/PS. Intensive Care Med. 2008;34(10):1788–1795. doi: 10.1007/s00134-008-1179-4.
    1. Simeone F, Biagioli B, Scolletta S, et al. Optimization of mechanical ventilation support following cardiac surgery. J Cardiovasc Surg (Torino) 2002;43(5):633–641.
    1. Strickland JH, Jr, Hasson JH. A computer-controlled ventilator weaning system. Chest. 1991;100(4):1096–1099. doi: 10.1378/chest.100.4.1096.
    1. Stahl C, Dahmen G, Ziegler A, Muhl E. Comparison of automated protocol-based versus non-protocol-based physician-directed weaning from mechanical ventilation. Intensivmedizin Notfallmedizin. 2009;46(6):441–446. doi: 10.1007/s00390-009-0061-0.
    1. Ferguson ND, Cook DJ, Guyatt GH, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368(9):795–805. doi: 10.1056/NEJMoa1215554.
    1. Bollen CW, van Well GT, Sherry T, et al. High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial [ISRCTN24242669] Crit Care. 2005;9(4):R430–439. doi: 10.1186/cc3737.
    1. Derdak S, Mehta S, Stewart TE, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med. 2002;166(6):801–808. doi: 10.1164/rccm.2108052.
    1. Young D, Lamb SE, Shah S, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368(9):806–813. doi: 10.1056/NEJMoa1215716.
    1. Mohamed SA-R, Mohamed NN. Efficacy and adverse events of early high-frequency oscillatory ventilation in adult burn patients with acute respiratory distress syndrome. Egypt J Anaesth. 2019;32(3):421–429. doi: 10.1016/j.egja.2016.01.001.
    1. Chiu LC, Hu HC, Hung CY, et al. Dynamic driving pressure associated mortality in acute respiratory distress syndrome with extracorporeal membrane oxygenation. Ann Intensive Care. 2017;7(1):12. doi: 10.1186/s13613-017-0236-y.
    1. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–755. doi: 10.1056/NEJMsa1410639.
    1. Burrell AJC, Lubnow M, Enger TB, et al. The impact of venovenous extracorporeal membrane oxygenation on cytokine levels in patients with severe acute respiratory distress syndrome: a prospective, observational study. Crit Care Resusc. 2017;19(Suppl 1):37–44.
    1. Parhar KKS, Zjadewicz K, Soo A, et al. Epidemiology, mechanical power, and 3-year outcomes in acute respiratory distress syndrome patients using standardized screening. An observational cohort study. Ann Am Thorac Soc. 2019;16(10):1263–1272. doi: 10.1513/AnnalsATS.201812-910OC.
    1. Villar J, Martín-Rodríguez C, Domínguez-Berrot AM, et al. A quantile analysis of plateau and driving pressures: effects on mortality in patients with acute respiratory distress syndrome receiving lung-protective ventilation. Crit Care Med. 2017;45(5):843–850. doi: 10.1097/CCM.0000000000002330.
    1. Toufen Junior C, De Santis Santiago RR, Hirota AS, et al. Driving pressure and long-term outcomes in moderate/severe acute respiratory distress syndrome. Ann Intensive Care. 2018;8(1):119. doi: 10.1186/s13613-018-0469-4.
    1. Fukumoto M. Theory and indications of fat emulsions. INTENSIVIST. 2017;9(3):618–625.
    1. Guérin C, Papazian L, Reignier J, Ayzac L, Loundou A, Forel JM. Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials. Crit Care. 2016;20(1):384. doi: 10.1186/s13054-016-1556-2.
    1. Liu L, Yang Y, Gao Z, et al. Practice of diagnosis and management of acute respiratory distress syndrome in mainland China: a cross-sectional study. J Thorac Dis. 2018;10(9):5394–5404. doi: 10.21037/jtd.2018.08.137.
    1. MekontsoDessap A, Boissier F, Charron C, et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. 2016;42(5):862–870. doi: 10.1007/s00134-015-4141-2.
    1. Morales-Quinteros L, Schultz MJ, Bringué J, et al. Estimated dead space fraction and the ventilatory ratio are associated with mortality in early ARDS. Ann Intensive Care. 2019;9(1):128. doi: 10.1186/s13613-019-0601-0.
    1. Chiumello D, Carlesso E, Brioni M, Cressoni M. Airway driving pressure and lung stress in ARDS patients. Crit Care. 2016;20:276. doi: 10.1186/s13054-016-1446-7.
    1. Zhao X, Xiao H, Dai F, Brodie D, Meng L. Classification and effectiveness of different oxygenation goals in mechanically ventilated critically ill patients: network meta-analysis of randomised controlled trials. Eur Respir J. 2021 doi: 10.1183/13993003.02928-2020.
    1. Asfar P, Schortgen F, Boisramé-Helms J, et al. Hyperoxia and hypertonic saline in patients with septic shock (HYPERS2S): a two-by-two factorial, multicentre, randomised, clinical trial. Lancet Respir Med. 2017;5(3):180–190. doi: 10.1016/S2213-2600(17)30046-2.
    1. Barrot L, Asfar P, Mauny F, et al. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N Engl J Med. 2020;382(11):999–1008. doi: 10.1056/NEJMoa1916431.
    1. Girardis M, Busani S, Damiani E, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA. 2016;316(15):1583–1589. doi: 10.1001/jama.2016.11993.
    1. Mackle D, Bellomo R, Bailey M, et al. Conservative oxygen therapy during mechanical ventilation in the ICU. N Engl J Med. 2020;382(11):989–998. doi: 10.1056/NEJMoa1903297.
    1. Panwar R, Hardie M, Bellomo R, et al. Conservative versus liberal oxygenation targets for mechanically ventilated patients. A pilot multicenter randomized controlled trial. Am J Respir Crit Care Med. 2016;193(1):43–51. doi: 10.1164/rccm.201505-1019OC.
    1. Yang X, Shang Y, Yuan S. Low versus high pulse oxygen saturation directed oxygen therapy in critically ill patients: a randomized controlled pilot study. J Thorac Dis. 2019;11(10):4234–4240. doi: 10.21037/jtd.2019.09.66.
    1. Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–1116. doi: 10.1056/NEJMoa1005372.
    1. Moss M, Huang DT, Brower RG, et al. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med. 2019;380(21):1997–2008. doi: 10.1056/NEJMoa1901686.
    1. Gainnier M, Roch A, Forel JM, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2004;32(1):113–119. doi: 10.1097/01.CCM.0000104114.72614.BC.
    1. Forel JM, Roch A, Marin V, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34(11):2749–2757. doi: 10.1097/01.CCM.0000239435.87433.0D.
    1. Guervilly C, Bisbal M, Forel JM, et al. Effects of neuromuscular blockers on transpulmonary pressures in moderate to severe acute respiratory distress syndrome. Intensive Care Med. 2017;43(3):408–418. doi: 10.1007/s00134-016-4653-4.
    1. Beitler JR, Sarge T, Banner-Goodspeed VM, et al. Effect of Titrating Positive End-Expiratory Pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-Fio2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2019;321(9):846–857. doi: 10.1001/jama.2019.0555.
    1. Zhao Z, Chang MY, Chang MY, et al. Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve in severe acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):7. doi: 10.1186/s13613-019-0484-0.
    1. Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–2168. doi: 10.1056/NEJMoa1214103.
    1. Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001;345(8):568–573. doi: 10.1056/NEJMoa010043.
    1. Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA. 2004;292(19):2379–2387. doi: 10.1001/jama.292.19.2379.
    1. Voggenreiter G, Aufmkolk M, Stiletto RJ, et al. Prone positioning improves oxygenation in post-traumatic lung injury—a prospective randomized trial. J Trauma. 2005;59(2):333–341; discussion 341–333.
    1. Mancebo J, Fernández R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173(11):1233–1239. doi: 10.1164/rccm.200503-353OC.
    1. Fernandez R, Trenchs X, Klamburg J, et al. Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. Intensive Care Med. 2008;34(8):1487–1491. doi: 10.1007/s00134-008-1119-3.
    1. Taccone P, Pesenti A, Latini R, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2009;302(18):1977–1984. doi: 10.1001/jama.2009.1614.
    1. Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–1975. doi: 10.1056/NEJMoa1800385.
    1. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374(9698):1351–1363. doi: 10.1016/S0140-6736(09)61069-2.
    1. Cheung NH, Napolitano LM. Tracheostomy: epidemiology, indications, timing, technique, and outcomes. Respir Care. 2014;59(6):895–915; discussion 916-899. doi: 10.4187/respcare.02971.
    1. Freeman BD, Morris PE. Tracheostomy practice in adults with acute respiratory failure. Crit Care Med. 2012;40(10):2890–2896. doi: 10.1097/CCM.0b013e31825bc948.
    1. de Franca SA, Tavares WM, Salinet ASM, Paiva WS, Teixeira MJ. Early tracheostomy in severe traumatic brain injury patients: a meta-analysis and comparison with late tracheostomy. Crit Care Med. 2020;48(4):e325–e331. doi: 10.1097/CCM.0000000000004239.
    1. Sugerman HJ, Wolfe L, Pasquale MD, et al. Multicenter, randomized, prospective trial of early tracheostomy. J Trauma. 1997;43(5):741–747. doi: 10.1097/00005373-199711000-00002.
    1. Saffle JR, Morris SE, Edelman L. Early tracheostomy does not improve outcome in burn patients. J Burn Care Rehabil. 2002;23(6):431–438. doi: 10.1097/00004630-200211000-00009.
    1. Bouderka MA, Fakhir B, Bouaggad A, Hmamouchi B, Hamoudi D, Harti A. Early tracheostomy versus prolonged endotracheal intubation in severe head injury. J Trauma. 2004;57(2):251–254. doi: 10.1097/01.TA.0000087646.68382.9A.
    1. Rumbak MJ, Newton M, Truncale T, Schwartz SW, Adams JW, Hazard PB. A prospective, randomized, study comparing early percutaneous dilational tracheotomy to prolonged translaryngeal intubation (delayed tracheotomy) in critically ill medical patients. Crit Care Med. 2004;32(8):1689–1694. doi: 10.1097/01.CCM.0000134835.05161.B6.
    1. Blot F, Similowski T, Trouillet JL, et al. Early tracheotomy versus prolonged endotracheal intubation in unselected severely ill ICU patients. Intensive Care Med. 2008;34(10):1779–1787. doi: 10.1007/s00134-008-1195-4.
    1. Terragni PP, Antonelli M, Fumagalli R, et al. Early vs late tracheotomy for prevention of pneumonia in mechanically ventilated adult ICU patients: a randomized controlled trial. JAMA. 2010;303(15):1483–1489. doi: 10.1001/jama.2010.447.
    1. Trouillet JL, Luyt CE, Guiguet M, et al. Early percutaneous tracheotomy versus prolonged intubation of mechanically ventilated patients after cardiac surgery: a randomized trial. Ann Intern Med. 2011;154(6):373–383. doi: 10.7326/0003-4819-154-6-201103150-00002.
    1. Koch T, Hecker B, Hecker A, et al. Early tracheostomy decreases ventilation time but has no impact on mortality of intensive care patients: a randomized study. Langenbecks Arch Surg. 2012;397(6):1001–1008. doi: 10.1007/s00423-011-0873-9.
    1. Zheng Y, Sui F, Chen XK, et al. Early versus late percutaneous dilational tracheostomy in critically ill patients anticipated requiring prolonged mechanical ventilation. Chin Med J (Engl) 2012;125(11):1925–1930.
    1. Young D, Harrison DA, Cuthbertson BH, Rowan K. Effect of early vs late tracheostomy placement on survival in patients receiving mechanical ventilation: the TracMan randomized trial. JAMA. 2013;309(20):2121–2129. doi: 10.1001/jama.2013.5154.
    1. Diaz-Prieto A, Mateu A, Gorriz M, et al. A randomized clinical trial for the timing of tracheotomy in critically ill patients: factors precluding inclusion in a single center study. Crit Care. 2014;18(5):585. doi: 10.1186/s13054-014-0585-y.
    1. Dunham CM, Cutrona AF, Gruber BS, Calderon JE, Ransom KJ, Flowers LL. Early tracheostomy in severe traumatic brain injury: evidence for decreased mechanical ventilation and increased hospital mortality. Int J Burns Trauma. 2014;4(1):14–24.
    1. Mohamed KAE, Mousa AY, ElSawy AS, Saleem AM. Early versus late percutaneous tracheostomy in critically ill adult mechanically ventilated patients. Egypt J Chest Dis Tuberc. 2014;63(2):443–448. doi: 10.1016/j.ejcdt.2014.01.008.
    1. Yadav S, Yadav G, Bharti AK, Shrivastav A, Verma RK. Effects of early verses late percutaneous dilatational tracheostomy on mechanically ventilated ICU patients. Res J Pharm, Biol Chem Sci. 2017;8(1):2078–2082.
    1. Guidelines for the management of adults with hospital-acquired ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388–416. doi: 10.1164/rccm.200405-644ST.
    1. Kudo D, Toyama M, Aoyagi T, et al. Involvement of high mobility group box 1 and the therapeutic effect of recombinant thrombomodulin in a mouse model of severe acute respiratory distress syndrome. Clin Exp Immunol. 2013;173(2):276–287. doi: 10.1111/cei.12106.
    1. Suzuki K, Okada H, Takemura G, et al. Recombinant thrombomodulin protects against LPS-induced acute respiratory distress syndrome via preservation of pulmonary endothelial glycocalyx. Br J Pharmacol. 2020;177(17):4021–4033. doi: 10.1111/bph.15153.
    1. Hayakawa S, Matsuzawa Y, Irie T, Rikitake H, Okada N, Suzuki Y. Efficacy of recombinant human soluble thrombomodulin for the treatment of acute exacerbation of idiopathic pulmonary fibrosis: a single arm, non-randomized prospective clinical trial. Multidiscip Respir Med. 2016;11:38. doi: 10.1186/s40248-016-0074-z.
    1. Park KJ, Lee YJ, Oh YJ, Lee KS, Sheen SS, Hwang SC. Combined effects of inhaled nitric oxide and a recruitment maneuver in patients with acute respiratory distress syndrome. Yonsei Med J. 2003;44(2):219–226. doi: 10.3349/ymj.2003.44.2.219.
    1. Taylor RW, Zimmerman JL, Dellinger RP, et al. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA. 2004;291(13):1603–1609. doi: 10.1001/jama.291.13.1603.
    1. Gerlach H, Keh D, Semmerow A, et al. Dose-response characteristics during long-term inhalation of nitric oxide in patients with severe acute respiratory distress syndrome: a prospective, randomized, controlled study. Am J Respir Crit Care Med. 2003;167(7):1008–1015. doi: 10.1164/rccm.2108121.
    1. Troncy E, Collet JP, Shapiro S, et al. Inhaled nitric oxide in acute respiratory distress syndrome: a pilot randomized controlled study. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1483–1488. doi: 10.1164/ajrccm.157.5.9707090.
    1. Dellinger RP, Zimmerman JL, Taylor RW, et al. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled Nitric Oxide in ARDS Study Group. Crit Care Med. 1998;26(1):15–23. doi: 10.1097/00003246-199801000-00011.
    1. Lundin S, Mang H, Smithies M, Stenqvist O, Frostell C. Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med. 1999;25(9):911–919. doi: 10.1007/s001340050982.
    1. Michael JR, Barton RG, Saffle JR, et al. Inhaled nitric oxide versus conventional therapy: effect on oxygenation in ARDS. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1372–1380. doi: 10.1164/ajrccm.157.5.96-10089.
    1. Cuthbertson BH, Galley HF, Webster NR. Effect of inhaled nitric oxide on key mediators of the inflammatory response in patients with acute lung injury. Crit Care Med. 2000;28(6):1736–1741. doi: 10.1097/00003246-200006000-00006.
    1. Donnelly SC, MacGregor I, Zamani A, et al. Plasma elastase levels and the development of the adult respiratory distress syndrome. Am J Respir Crit Care Med. 1995 doi: 10.1164/ajrccm.151.5.7735596.
    1. Moraes TJ, Chow CW, Downey GP. Proteases and lung injury. Crit Care Med. 2003 doi: 10.1097/01.CCM.0000057842.90746.1E.
    1. Kadoi Y, Hinohara H, Kunimoto F, et al. Pilot study of the effects of ONO-5046 in patients with acute respiratory distress syndrome. Anesth Analg. 2004 doi: 10.1213/01.ANE.0000129996.22368.85.
    1. Nakayama H. Evaluation of the usefulness of civelestat sodium in patients with ALI/ARDS under NPPV. Prog Med. 2013;33(10):2223–2227.
    1. Sato N. Treatment of ALI/ARDS caused by pneumonia with civelestat sodium. Prog Med. 2008;28(2):437–439.
    1. Zeiher BG, Artigas A, Vincent JL, et al. Neutrophil elastase inhibition in acute lung injury: results of the STRIVE study. Crit Care Med. 2004 doi: 10.1097/01.ccm.0000133332.48386.85.
    1. Ryugo M, Sawa Y, Takano H, et al. Effect of a polymorphonuclear elastase inhibitor (sivelestat sodium) on acute lung injury after cardiopulmonary bypass: findings of a double-blind randomized study. Surg Today. 2006 doi: 10.1007/s00595-005-3160-y.
    1. Pelosi P, D’Onofrio D, Chiumello D, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J Suppl. 2003 doi: 10.1183/09031936.03.00420803.
    1. Ruan SY, Lin HH, Huang CT, Kuo PH, Wu HD, Yu CJ. Exploring the heterogeneity of effects of corticosteroids on acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care (London, England). 2014 doi: 10.1186/cc13819.
    1. Bernard GR, Luce JM, Sprung CL, et al. High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med. 1987;317(25):1565–1570. doi: 10.1056/NEJM198712173172504.
    1. Meduri GU, Headley AS, Golden E, et al. Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1998;280(2):159–165. doi: 10.1001/jama.280.2.159.
    1. Meduri GU, Golden E, Freire AX, et al. Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest. 2007 doi: 10.1378/chest.06-2100.
    1. Steinberg KP, Hudson LD, Goodman RB, et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354(16):1671–1684. doi: 10.1056/NEJMoa051693.
    1. Tongyoo S, Permpikul C, Mongkolpun W, et al. Hydrocortisone treatment in early sepsis-associated acute respiratory distress syndrome: results of a randomized controlled trial. Crit Care (London, England) 2016;20(1):329. doi: 10.1186/s13054-016-1511-2.
    1. Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267–276. doi: 10.1016/S2213-2600(19)30417-5.
    1. Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011 doi: 10.1056/NEJMoa1011802.
    1. Tipping CJ, Harrold M, Holland A, Romero L, Nisbet T, Hodgson CL. The effects of active mobilisation and rehabilitation in ICU on mortality and function: a systematic review. Intensive Care Med. 2017;43(2):171–183. doi: 10.1007/s00134-016-4612-0.
    1. Doiron KA, Hoffmann TC, Beller EM. Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit. Cochrane Database Syst Rev. 2018;3:CD010754.
    1. Abu-Khaber HA, Abouelela AMZ, Abdelkarim EM. Effect of electrical muscle stimulation on prevention of ICU acquired muscle weakness and facilitating weaning from mechanical ventilation. Alex J Med. 2013;49(4):309–315.
    1. Dong Z-H, Yu B-X, Sun Y-B, Fang W, Li L. Effects of early rehabilitation therapy on patients with mechanical ventilation. World J Emerg Med. 2014;5(1):48–52. doi: 10.5847/wjem.j.issn.1920-8642.2014.01.008.
    1. Fossat G, Baudin F, Courtes L, et al. Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults: a randomized clinical trial. JAMA. 2018;320(4):368–78. doi: 10.1001/jama.2018.9592.
    1. Morris PE, Berry MJ, Files DC, et al. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA. 2016;315(24):2694–702. doi: 10.1001/jama.2016.7201.
    1. Dos Santos FV, Cipriano G, Jr, Vieira L, et al. Neuromuscular electrical stimulation combined with exercise decreases duration of mechanical ventilation in ICU patients: a randomized controlled trial. Physiotherapy Theory Pract. 2020;36(5):580–588. doi: 10.1080/09593985.2018.1490363.
    1. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet (London, England). 2009 doi: 10.1016/S0140-6736(09)60658-9.
    1. Yu L, Jiang J-X, Zhang Y, Chen Y-Z, Shi Y. Use of in-bed cycling combined with passive joint activity in acute respiratory failure patients receiving mechanical ventilation. Ann Palliat Med. 2020;9(2):175–81. doi: 10.21037/apm.2020.02.12.
    1. Treggiari MM, Romand JA, Yanez ND, et al. Randomized trial of light versus deep sedation on mental health after critical illness. Critical Care Med. 2009;37(9):2527–2534. doi: 10.1097/CCM.0b013e3181a5689f.
    1. Strøm T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet (London, England). 2010;375(9713):475–80. doi: 10.1016/S0140-6736(09)62072-9.
    1. SRLF Trial Group Impact of oversedation prevention in ventilated critically ill patients: a randomized trial-the AWARE study. Ann Intensive Care. 2018;8(1):93. doi: 10.1186/s13613-018-0425-3.
    1. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334–49. doi: 10.1056/NEJM200005043421806.
    1. Han F, Sun R, Ni Y, et al. Early initiation of continuous renal replacement therapy improves clinical outcomes in patients with acute respiratory distress syndrome. Am J Med Sci. 2015;349(3):199–205. doi: 10.1097/MAJ.0000000000000379.
    1. Meng JB, Lai ZZ, Xu XJ, Ji CL, Hu MH, Zhang G. Effects of early continuous venovenous hemofiltration on e-selectin, hemodynamic stability, and ventilatory function in patients with septic-shock-induced acute respiratory distress syndrome. Biomed Res Int. 2016;2016:7463130.
    1. Martin GS, Mangialardi RJ, Wheeler AP, Dupont WD, Morris JA, Bernard GR. Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury. Crit Care Med. 2002;30(10):2175–2182. doi: 10.1097/00003246-200210000-00001.
    1. Martin GS, Moss M, Wheeler AP, Mealer M, Morris JA, Bernard GR. A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med. 2005;33(8):1681–7. doi: 10.1097/01.CCM.0000171539.47006.02.
    1. Phillips C. Hemodynamics and extravascular lung water in acute lung injury : a prospective randomized controlled multicentered trial of goal directed treatment of EVLW versus standard management for the treatment of acute lung injury. Available at: .
    1. Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–2575. doi: 10.1056/NEJMoa062200.
    1. Mikkelsen ME, Christie JD, Lanken PN, et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med. 2012;185(12):1307–15. doi: 10.1164/rccm.201111-2025OC.
    1. Chang Y-F, Hou Y-C, Pai M-H, Yeh S-L, Liu J-J. Effects of ω-3 polyunsaturated fatty acids on the homeostasis of CD4+ T cells and lung injury in mice with polymicrobial sepsis. JPEN J Parenter Enter Nutr. 2017;41(5):805–14. doi: 10.1177/0148607115597670.
    1. Elamin EM, Miller AC, Ziad S. Immune enteral nutrition can improve outcomes in medical-surgical patients with ARDS: a prospective randomized controlled trial. J Nutr Disord Ther. 2012;2:109. doi: 10.4172/2161-0509.1000109.
    1. Rice TW, Wheeler AP, Thompson BT, deBoisblanc BP, Steingrub J, Rock P. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306(14):1574–1581. doi: 10.1001/jama.2011.1435.
    1. Gadek JE, DeMichele SJ, Karlstad MD, et al. Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med. 1999;27(8):1409–1420. doi: 10.1097/00003246-199908000-00001.
    1. Parish M, Valiyi F, Hamishehkar H, et al. The effect of omega-3 fatty acids on ARDS: a randomized double-blind study. Adv Pharm Bull. 2014;4(Suppl 2):555–561.
    1. Rice TW, Wheeler AP, Thompson BT, et al. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306(14):1574–81. doi: 10.1001/jama.2011.1435.
    1. Stapleton RD, Martin TR, Weiss NS, et al. A phase II randomized placebo-controlled trial of omega-3 fatty acids for the treatment of acute lung injury. Crit Care Med. 2011;39(7):1655–1662. doi: 10.1097/CCM.0b013e318218669d.
    1. Sapru A, Flori H, Quasney MW, Dahmer MK. Pathobiology of acute respiratory distress syndrome. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S6–22. doi: 10.1097/PCC.0000000000000431.
    1. Khemani RG, Smith LS, Zimmerman JJ, Erickson S. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S23–40. doi: 10.1097/PCC.0000000000000432.
    1. Khemani RG, Smith L, Lopez-Fernandez YM, et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7(2):115–128. doi: 10.1016/S2213-2600(18)30344-8.
    1. Gupta S, Sankar J, Lodha R, Kabra SK. Comparison of prevalence and outcomes of pediatric acute respiratory distress syndrome using pediatric acute lung injury consensus conference criteria and berlin definition. Front Pediatr. 2018;6:93. doi: 10.3389/fped.2018.00093.
    1. ARDS Definition Task Force Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33.
    1. Cam BV, Tuan DT, Fonsmark L, et al. Randomized comparison of oxygen mask treatment vs nasal continuous positive airway pressure in dengue shock syndrome with acute respiratory failure. J Trop Pediatr. 2002;48(6):335–339. doi: 10.1093/tropej/48.6.335.
    1. Chisti MJ, Salam MA, Smith JH, et al. Bubble continuous positive airway pressure for children with severe pneumonia and hypoxaemia in Bangladesh: an open, randomised controlled trial. Lancet. 2015;386(9998):1057–1065. doi: 10.1016/S0140-6736(15)60249-5.
    1. Peters MJ, Agbeko R, Davis P, et al. Randomized study of early continuous positive airways pressure in acute respiratory failure in children with impaired immunity (SCARF) ISRCTN82853500. Pediatr Crit Care Med. 2018;19(10):939–948. doi: 10.1097/PCC.0000000000001683.
    1. Yanez LJ, Yunge M, Emilfork M, et al. A prospective, randomized, controlled trial of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med. 2008;9(5):484–489. doi: 10.1097/PCC.0b013e318184989f.
    1. McCollum ED, Mvalo T, Eckerle M, et al. Bubble continuous positive airway pressure for children with high-risk conditions and severe pneumonia in Malawi: an open label, randomised, controlled trial. Lancet Respir Med. 2019;7(11):964–974. doi: 10.1016/S2213-2600(19)30243-7.
    1. Pediatric acute respiratory distress syndrome consensus recommendations from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16(5):428–439. doi: 10.1097/PCC.0000000000000350.
    1. Marini JJ, Rocco PRM, Gattinoni L. Static and dynamic contributors to ventilator-induced lung injury in clinical practice. pressure, energy, and power. Am J Respir Crit Care Med. 2020;201(7):767–74. doi: 10.1164/rccm.201908-1545CI.
    1. Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319(7):698–710. doi: 10.1001/jama.2017.21907.
    1. Nieman GF, Satalin J, Andrews P, Aiash H, Habashi NM, Gatto LA. Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI) Intensive Care Med Exp. 2017;5(1):8. doi: 10.1186/s40635-017-0121-x.
    1. Kneyber MCJ, de Luca D, Calderini E, et al. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) Intensive Care Med. 2017;43(12):1764–1780. doi: 10.1007/s00134-017-4920-z.
    1. Melsen WG, Rovers MM, Groenwold RHH, et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect Dis. 2013;13(8):655–71. doi: 10.1016/S1473-3099(13)70081-1.
    1. Foronda FK, Troster EJ, Farias JA, et al. The impact of daily evaluation and spontaneous breathing test on the duration of pediatric mechanical ventilation: a randomized controlled trial. Crit Care Med. 2011;39(11):2526–2533. doi: 10.1097/CCM.0b013e3182257520.
    1. Schultz TR, Lin RJ, Watzman HM, et al. Weaning children from mechanical ventilation: a prospective randomized trial of protocol-directed versus physician-directed weaning. Respir Care. 2001;46(8):772–782.
    1. El-Nawawy A, Moustafa A, Heshmat H, Abouahmed A. High frequency oscillatory ventilation versus conventional mechanical ventilation in pediatric acute respiratory distress syndrome: a randomized controlled study. Turk J Pediatr. 2017;59(2):130–143. doi: 10.24953/turkjped.2017.02.004.
    1. Arnold JH, Hanson JH, Toro-Figuero LO, Gutiérrez J, Berens RJ, Anglin DL. Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med. 1994;22(10):1530–1539. doi: 10.1097/00003246-199422100-00006.
    1. Samransamruajkit R, Prapphal N, Deelodegenavong J, Poovorawan Y. Plasma soluble intercellular adhesion molecule-1 (sICAM-1) in pediatric ARDS during high frequency oscillatory ventilation: a predictor of mortality. Asian Pac J Allergy Immunol. 2005;23(4):181–188.
    1. Samransamruajkit R, Rassameehirun C, Pongsanon K, et al. A comparison of clinical efficacy between high frequency oscillatory ventilation and conventional ventilation with lung volume recruitment in pediatric acute respiratory distress syndrome: a randomized controlled trial. Indian J Crit Care Med. 2016;20(2):72–77. doi: 10.4103/0972-5229.175940.
    1. Facchin F, Fan E. Airway pressure release ventilation and high-frequency oscillatory ventilation: potential strategies to treat severe hypoxemia and prevent ventilator-induced lung injury. Respir Care. 2015;60(10):1509–21. doi: 10.4187/respcare.04255.
    1. Ganesan SL, Jayashree M, Singhi SC, Bansal A. Airway pressure release ventilation in pediatric acute respiratory distress syndrome: a randomized controlled trial. Am J Respir Crit Care Med. 2018;198(9):1199–1207. doi: 10.1164/rccm.201705-0989OC.
    1. Walters DM, Cho H-Y, Kleeberger SR. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxidants Redox Signal. 2008;10(2):321–32. doi: 10.1089/ars.2007.1901.
    1. Hraiech S, Yoshida T, Annane D, et al. Myorelaxants in ARDS patients. Intensive Care Med. 2020;46(12):2357–72. doi: 10.1007/s00134-020-06297-8.
    1. Claude Guérin C, Albert RK, Beitler J, et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med. 2020;46(12):2385–96. doi: 10.1007/s00134-020-06306-w.
    1. Munshi L, Del Sorbo L, Adhikari NKJ, et al. Prone position for acute respiratory distress syndrome. a systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(Supplement_4):S280–S288. doi: 10.1513/AnnalsATS.201704-343OT.
    1. Robak O, Schellongowski P, Bojic A, Laczika K, Locker GJ, Staudinger T. Short-term effects of combining upright and prone positions in patients with ARDS: a prospective randomized study. Crit Care (London, England). 2011;15(5):R230. doi: 10.1186/cc10471.
    1. Curley MA, Hibberd PL, Fineman LD, et al. Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. JAMA. 2005;294(2):229–237. doi: 10.1001/jama.294.2.229.
    1. Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377(6):562–72. doi: 10.1056/NEJMra1608077.
    1. Westphal K, Strouhal U, Byhahn C, Hommel K, Behne M. Inhalation of nitric oxide in severe lung failure. Anaesthesiol Reanim. 1998;23(6):144–8.
    1. Bronicki RA, Fortenberry J, Schreiber M, Checchia PA, Anas NG. Multicenter randomized controlled trial of inhaled nitric oxide for pediatric acute respiratory distress syndrome. J Pediatr. 2015;166(2):365–369.e361. doi: 10.1016/j.jpeds.2014.10.011.
    1. Ream RS, Hauver JF, Lynch RE, Kountzman B, Gale GB, Mink RB. Low-dose inhaled nitric oxide improves the oxygenation and ventilation of infants and children with acute, hypoxemic respiratory failure. Crit Care Med. 1999;27(5):989–996. doi: 10.1097/00003246-199905000-00042.
    1. Dobyns EL, Cornfield DN, Anas NG, et al. Multicenter randomized controlled trial of the effects of inhaled nitric oxide therapy on gas exchange in children with acute hypoxemic respiratory failure. J Pediatr. 1999;134(4):406–412. doi: 10.1016/S0022-3476(99)70196-4.
    1. Luchetti M, Ferrero F, Gallini C, et al. Multicenter, randomized, controlled study of porcine surfactant in severe respiratory syncytial virus-induced respiratory failure. Pediatr Crit Care Med. 2002;3(3):261–268. doi: 10.1097/00130478-200207000-00011.
    1. Möller JC, Schaible T, Roll C, et al. Treatment with bovine surfactant in severe acute respiratory distress syndrome in children: a randomized multicenter study. Intensive Care Med. 2003;29(3):437–446. doi: 10.1007/s00134-003-1650-1.
    1. Rodriguez-Moya VS, Gallo-Borrero CM, Santos-Areas D, Prince-Martinez IA, Diaz-Casanas E, Lopez-Herce CJ. Exogenous surfactant and alveolar recruitment in the treatment of the acute respiratory distress syndrome. Clin Respir J. 2017;11(6):1032–1039. doi: 10.1111/crj.12462.
    1. Rodriguez-Moya VS, Del Carmen Machado-Lubian M, Barrese-Perez Y, et al. Cuban exogenous pulmonary surfactant in treatment of pediatric acute respiratory distress syndrome. MEDICC Revw. 2017;19(23):24–31.
    1. Thomas NJ, Guardia CG, Moya FR, et al. A pilot, randomized, controlled clinical trial of lucinactant, a peptide-containing synthetic surfactant, in infants with acute hypoxemic respiratory failure. Pediatr Crit Care Med. 2012;13(6):646–653. doi: 10.1097/PCC.0b013e3182517bec.
    1. Thomas NJ, Spear D, Wasserman E, et al. CALIPSO: a randomized controlled trial of calfactant for acute lung injury in pediatric stem cell and oncology patients. Biol Blood Marrow Transplant. 2018;24(12):2479–2486. doi: 10.1016/j.bbmt.2018.07.023.
    1. Willson DF, Zaritsky A, Bauman LA, et al. Instillation of calf lung surfactant extract (calfactant) is beneficial in pediatric acute hypoxemic respiratory failure. Members of the Mid-Atlantic Pediatric Critical Care Network. Crit Care Med. 1999;27(1):188–195. doi: 10.1097/00003246-199901000-00050.
    1. Willson DF, Thomas NJ, Markovitz BP, et al. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA. 2005;293(4):470–476. doi: 10.1001/jama.293.4.470.
    1. Willson DF, Thomas NJ, Tamburro R, et al. Pediatric calfactant in acute respiratory distress syndrome trial. Pediatr Crit Care Med. 2013;14(7):657–665. doi: 10.1097/PCC.0b013e3182917b68.
    1. Drago BB, Kimura D, Rovnaghi CR, et al. Double-blind, placebo-controlled pilot randomized trial of methylprednisolone infusion in pediatric acute respiratory distress syndrome. Pediatr Crit Care Med. 2015;16(3):e74–81. doi: 10.1097/PCC.0000000000000349.
    1. Curley MA, Wypij D, Watson RS, et al. Protocolized sedation vs usual care in pediatric patients mechanically ventilated for acute respiratory failure: a randomized clinical trial. JAMA. 2015;313(4):379–389. doi: 10.1001/jama.2014.18399.
    1. Gupta K, Gupta VK, Jayashree M, Singhi S. Randomized controlled trial of interrupted versus continuous sedative infusions in ventilated children. Pediatr Crit Care Med. 2012;13(2):131–5. doi: 10.1097/PCC.0b013e31820aba48.
    1. Vet NJ, de Wildt SN, Verlaat CWM, et al. A randomized controlled trial of daily sedation interruption in critically ill children. Intensive Care Med. 2016;42(2):233–44. doi: 10.1007/s00134-015-4136-z.
    1. Verlaat CWM, Heesen GP, Vet NJ, et al. Randomized controlled trial of daily interruption of sedatives in critically ill children. Paediatr Anaesth. 2014;24(2):151–6. doi: 10.1111/pan.12245.

Source: PubMed

3
Subscribe