Efficacy and toxicity of vemurafenib and cobimetinib in relation to plasma concentrations, after administration via feeding tube in patients with BRAF-mutated thyroid cancer: a case series and review of literature

J M van Berge Henegouwen, H van der Wijngaart, L J Zeverijn, L R Hoes, M Meertens, A D R Huitema, L A Devriese, M Labots, H M W Verheul, E E Voest, H Gelderblom, J M van Berge Henegouwen, H van der Wijngaart, L J Zeverijn, L R Hoes, M Meertens, A D R Huitema, L A Devriese, M Labots, H M W Verheul, E E Voest, H Gelderblom

Abstract

Introduction: The combination of vemurafenib, a proto-oncogene B-Raf inhibitor (BRAFi) and cobimetinib, an inhibitor of mitogen-activated protein kinase kinase (MEKi) has shown to improve survival in patients with BRAF V600-mutated melanoma. BRAF mutations are also frequently detected driver mutations in other tumor types, including thyroid carcinoma. Since thyroid carcinoma is not a labeled indication for BRAF/MEKi, a cohort for patients with BRAF V600-mutated thyroid carcinoma was opened within the Drug Rediscovery Protocol (DRUP), a national ongoing pan-cancer multi-drug trial, in which patients receive off-label treatment with approved drugs based on their molecular tumor profile.

Results: Here, we present two patients with BRAF-mutated thyroid carcinoma, who were successfully treated with vemurafenib/cobimetinib administered via a feeding tube. Plasma concentrations of vemurafenib and cobimetinib were determined. A partial response was observed in both patients, but they experienced significant toxicity.

Conclusion: Our cases show that vemurafenib/cobimetinib treatment is effective in BRAF V600-mutated thyroid carcinoma, also when administered via a feeding tube. Although serious side effects occurred in both patients, we hypothesize that this was not attributable to the administration route. Therefore, administration of vemurafenib/cobimetinib by feeding tube is feasible and effective.

Trial registration: Clinical trial identification: NCT02925234.

Keywords: Case series; Cobimetinib; Feeding tube; Plasma concentrations; Thyroid carcinoma; Vemurafenib.

Conflict of interest statement

All authors declare that they have no conflict of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Trough plasma concentrations of vemurafenib and cobimetinib for patient 1 during the course of the treatment. Dosage and treatment interruptions, co-medication and adverse events are presented below the chart. Cmin trough concentration, OD once daily, BID twice daily, TID thrice daily, PPI proton-pump inhibitor, SUSAR Suspected Unexpected Serious Adverse Reaction
Fig. 2
Fig. 2
Trough plasma concentrations of vemurafenib and cobimetinib for patient 2 during the course of the treatment. Dosage and treatment interruptions and adverse events are presented below the chart. Cmin trough concentration, OD once daily, BID twice daily

References

    1. Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat Rev. 2020 doi: 10.1016/j.ctrv.2020.102019.
    1. Bedard PL, Hyman DM, Davids MS, Siu LLL. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet. 2020;395(10229):1078–1088. doi: 10.1016/S0140-6736(20)30164-1.
    1. de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, Chi KN, Sartor O, Agarwal N, Olmos D, Thiery-Vuillemin A, Twardowski P, Mehra N, Goessl C, Kang J, Burgents J, Wu W, Kohlmann A, Adelman CA, Hussain M. Olaparib for metastatic castration-resistant prostate cancer. New Engl J Med. 2020;382(22):2091–2102. doi: 10.1056/NEJMoa1911440.
    1. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS, Turpin B, Dowlati A, Brose MS, Mascarenhas L, Federman N, Berlin J, El-Deiry WS, Baik C, Deeken J, Boni V, Nagasubramanian R, Taylor M, Rudzinski ER, Meric-Bernstam F, Sohal DPS, Ma PC, Raez LE, Hechtman JF, Benayed R, Ladanyi M, Tuch BB, Ebata K, Cruickshank S, Ku NC, Cox MC, Hawkins DS, Hong DS, Hyman DM. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. New Engl J Med. 2018;378(8):731–739. doi: 10.1056/NEJMoa1714448.
    1. Le DT, Kim TW, Van Cutsem E, Geva R, Jager D, Hara H, Burge M, O'Neil B, Kavan P, Yoshino T, Guimbaud R, Taniguchi H, Elez E, Al-Batran SE, Boland PM, Crocenzi T, Atreya CE, Cui Y, Dai T, Marinello P, Diaz LA, Andre T. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 2020;38(1):11. doi: 10.1200/Jco.19.02107.
    1. Robert C, Grob JJ, Stroyakovskiy D, Karaszewska B, Hauschild A, Levchenko E, Chiarion Sileni V, Schachter J, Garbe C, Bondarenko I, Gogas H, Mandalá M, Haanen J, Lebbé C, Mackiewicz A, Rutkowski P, Nathan PD, Ribas A, Davies MA, Flaherty KT, Burgess P, Tan M, Gasal E, Voi M, Schadendorf D, Long GV. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381(7):626–636. doi: 10.1056/NEJMoa1904059.
    1. van der Velden DL, Hoes LR, van der Wijngaart H, van Berge Henegouwen JM, van Werkhoven E, Roepman P, Schilsky RL, de Leng WWJ, Huitema ADR, Nuijen B, Nederlof PM, van Herpen CML, de Groot DJA, Devriese LA, Hoeben A, de Jonge MJA, Chalabi M, Smit EF, de Langen AJ, Mehra N, Labots M, Kapiteijn E, Sleijfer S, Cuppen E, Verheul HMW, Gelderblom H, Voest EE. The drug rediscovery protocol facilitates the expanded use of existing anticancer drugs. Nature. 2019;574(7776):127–131. doi: 10.1038/s41586-019-1600-x.
    1. Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E, Shale C, Duyvesteyn K, Haidari S, van Hoeck A, Onstenk W, Roepman P, Voda M, Bloemendal HJ, Tjan-Heijnen VCG, van Herpen CML, Labots M, Witteveen PO, Smit EF, Sleijfer S, Voest EE, Cuppen E. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature. 2019;575(7781):210. doi: 10.1038/s41586-019-1689-y.
    1. Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, Auman JT, Balasundaram M, Balu S, Baylin SB, Behera M, Bernard B, Beroukhim R, Bishop JA, Black AD, Bodenheimer T, Boice L, Bootwalla MS, Bowen J, Bowlby R, Bristow CA, Brookens R, Brooks D, Bryant R, Buda E, Butterfield YSN, Carling T, Carlsen R, Carter SL, Carty SE, Chan TA, Chen AY, Cherniack AD, Cheung D, Chin L, Cho J, Chu A, Chuah E, Cibulskis K, Ciriello G, Clarke A, Clayman GL, Cope L, Copland JA, Covington K, Danilova L, Davidsen T, Demchok JA, DiCara D, Dhalla N, Dhir R, Dookran SS, Dresdner G, Eldridge J, Eley G, El-Naggar AK, Eng S, Fagin JA, Fennell T, Ferris RL, Fisher S, Frazer S, Frick J, Gabriel SB, Ganly I, Gao JJ, Garraway LA, Gastier-Foster JM, Getz G, Gehlenborg N, Ghossein R, Gibbs RA, Giordano TJ, Gomez-Hernandez K, Grimsby J, Gross B, Guin R, Hadjipanayis A, Harper HA, Hayes DN, Heiman DI, Herman JG, Hoadley KA, Hofree M, Holt RA, Hoyle AP, Huang FW, Huang M, Hutter CM, Ideker T, Iype L, Jacobsen A, Jefferys SR, Jones CD, Jones SJM, Kasaian K, Kebebew E, Khuri FR, Kim J, Kramer R, Kreisberg R, Kucherlapati R, Kwiatkowski DJ, Ladanyi M, Lai PH, Laird PW, Lander E, Lawrence MS, Lee D, Lee E, Lee S, Lee W, Leraas KM, Lichtenberg TM, Lichtenstein L, Lin P, Ling SY, Liu JZ, Liu WB, Liu YC, LiVolsi VA, Lu YL, Ma Y, Mahadeshwar HS, Marra MA, Mayo M, McFadden DG, Meng SW, Meyerson M, Mieczkowski PA, Miller M, Mills G, Moore RA, Mose LE, Mungall AJ, Murray BA, Nikiforov YE, Noble MS, Ojesina AI, Owonikoko TK, Ozenberger BA, Pantazi A, Parfenov M, Park PJ, Parker JS, Paull EO, Pedamallu CS, Perou CM, Prins JF, Protopopov A, Ramalingam SS, Ramirez NC, Ramirez R, Raphael BJ, Rathmell WK, Ren XJ, Reynolds SM, Rheinbay E, Ringel MD, Rivera M, Roach J, Robertson AG, Rosenberg MW, Rosenthal M, Sadeghi S, Saksena G, Sander C, Santoso N, Schein JE, Schultz N, Schumacher SE, Seethala RR, Seidman J, Senbabaoglu Y, Seth S, Sharpe S, Shaw KRM, Shen JP, Shen RL, Sherman S, Sheth M, Shi Y, Shmulevich I, Sica GL, Simons JV, Sinha R, Sipahimalani P, Smallridge RC, Sofia HJ, Soloway MG, Song XZ, Sougnez C, Stewart C, Stojanov P, Stuart JM, Sumer SO, Sun YC, Tabak B, Tam A, Tan DH, Tang JB, Tarnuzzer R, Taylor BS, Thiessen N, Thorne L, Thorsson V, Tuttle RM, Umbricht CB, Van Den Berg DJ, Vandin F, Veluvolu U, Verhaak RGW, Vinco M, Voet D, Walter V, Wang ZN, Waring S, Weinberger PM, Weinhold N, Weinstein JN, Weisenberger DJ, Wheeler D, Wilkerson MD, Wilson J, Williams M, Winer DA, Wise L, Wu JY, Xi L, Xu AW, Yang LM, Yang LX, Zack TI, Zeiger MA, Zeng D, Zenklusen JC, Zhao N, Zhang HL, Zhang JH, Zhang JS, Zhang W, Zmuda E, Zou LH, Network CGAR. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–690. doi: 10.1016/j.cell.2014.09.050.
    1. Jeon MJ, Chun SM, Kim D, Kwon H, Jang EK, Kim TY, Kim WB, Shong YK, Jang SJ, Song DE, Kim WG. Genomic alterations of anaplastic thyroid carcinoma detected by targeted massive parallel sequencing in a BRAF(V600E) mutation-prevalent area. Thyroid. 2016;26(5):683–690. doi: 10.1089/thy.2015.0506.
    1. Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, Rubinstein JC, Choi M, Kiss N, Nelson-Williams C, Mane S, Rimm DL, Prasad ML, Hoog A, Zedenius J, Larsson C, Korah R, Lifton RP, Carling T. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24(8):2318–2329. doi: 10.1093/hmg/ddu749.
    1. Lancia I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte JC, Krishnamoorthy GP, Xu B, Schultz N, Berger MF, Sander C, Taylor BS, Ghossein R, Ganly I, Fagin JA. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–1066. doi: 10.1172/Jci85271.
    1. Sykorova V, Dvorakova S, Vcelak J, Vaclavikova E, Halkova T, Kodetova D, Lastuvka P, Betka J, Vlcek P, Reboun M, Katra R, Bendlova B. Search for new genetic biomarkers in poorly differentiated and anaplastic thyroid carcinomas using next generation sequencing. Anticancer Res. 2015;35(4):2029–2036.
    1. Clinical Pharmacology and Biopharmaeutics Review (2015) Center for Drug Evaluation and Research, US Food and Drug Administration. . Accessed 3 Dec 2021
    1. Kramkimel N, Thomas-Schoemann A, Sakji L, Golmard J, Noe G, Regnier-Rosencher E, Chapuis N, Maubec E, Vidal M, Avril M, Goldwasser F, Mortier L, Dupin N, Blanchet B. Vemurafenib pharmacokinetics and its correlation with efficacy and safety in outpatients with advanced BRAF-mutated melanoma. Target Oncol. 2016;11(1):59–69. doi: 10.1007/s11523-015-0375-8.
    1. Janssen JM, Dorlo TPC, Steeghs N, Beijnen JH, Hanff LM, van Eijkelenburg NKA, van der Lugt J, Zwaan CM, Huitema ADR. Pharmacokinetic targets for therapeutic drug monitoring of small molecule kinase inhibitors in pediatric oncology. Clin Pharmacol Ther. 2020;108(3):494–505. doi: 10.1002/cpt.1808.
    1. Brose MS, Cabanillas ME, Cohen EE, Wirth LJ, Riehl T, Yue H, Sherman SI, Sherman EJ. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(9):1272–1282. doi: 10.1016/s1470-2045(16)30166-8.
    1. Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, Wen PY, Zielinski C, Cabanillas ME, Urbanowitz G, Mookerjee B, Wang D, Rangwala F, Keam B. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol. 2018;36(1):7–13. doi: 10.1200/jco.2017.73.6785.
    1. Wagner C, Adams V, Overley C. Alternate dosage formulations of oral targeted anticancer agents. J Oncol Pharm Pract. 2021;27(8):1963–1981. doi: 10.1177/10781552211037976.
    1. Spencer SH, Menard SM, Labedz MZ, Krueger CD, Sarna KV. Enteral tube administration of oral chemotherapy drugs. J Oncol Pharm Pract. 2020;26(3):703–717. doi: 10.1177/1078155219893449.
    1. Tejedor-Tejada E, Nieto-Guindo P, Tejedor-Tejada J, Martínez-Velasco E, Gómez-Sánchez A. A guide for the administration of oral antineoplastic in patients with swallowing disorders. Farm Hosp. 2021;45(3):126–134. doi: 10.7399/fh.11628.
    1. Crespo Martínez CL, Romero Jiménez RM, Vázquez-López C, Pérez-Cordón L, Vallinas Hidalgo S, Bravo José P. Recommendations for using oral antineoplastic and immunomodulating agents in oncohematology by enteral tube administration. Nutr Hosp. 2022;39(1):171–201. doi: 10.20960/nh.03736.
    1. Chiu JW, Chan K, Chen EX, Siu LL, Abdul Razak AR. Pharmacokinetic assessment of dacomitinib (pan-HER tyrosine kinase inhibitor) in patients with locally advanced head and neck squamous cell carcinoma (LA SCCHN) following administration through a gastrostomy feeding tube (GT) Invest New Drugs. 2015;33(4):895–900. doi: 10.1007/s10637-015-0245-3.
    1. Cantarini MV, McFarquhar T, Smith RP, Bailey C, Marshall AL. Relative bioavailability and safety profile of gefitinib administered as a tablet or as a dispersion preparation via drink or nasogastric tube: results of a randomized, open-label, three-period crossover study in healthy volunteers. Clin Ther. 2004;26(10):1630–1636. doi: 10.1016/j.clinthera.2004.10.011.
    1. Khimani F, Hoban C, Williams V, Mavromatis B, Auber ML, Abraham J, Higa GM. Efficacy of solubilized vemurafenib administered via nasogastric tube. Future Oncol. 2014;10(2):165–170. doi: 10.2217/fon.13.187.
    1. Shah N, Iyer RM, Mair HJ, Choi DS, Tian H, Diodone R, Fähnrich K, Pabst-Ravot A, Tang K, Scheubel E, Grippo JF, Moreira SA, Go Z, Mouskountakis J, Louie T, Ibrahim PN, Sandhu H, Rubia L, Chokshi H, Singhal D, Malick W. Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent-controlled coprecipitation process. J Pharm Sci. 2013;102(3):967–981. doi: 10.1002/jps.23425.
    1. Shimada Y, Sato Y, Tachikawa R, Hara S, Tomii K. Gastrointestinal perforation following dabrafenib and trametinib administration in non-small cell lung carcinoma with BRAF V600E mutation: a case report and literature review. Invest New Drugs. 2021;39(6):1702–1706. doi: 10.1007/s10637-021-01135-0.
    1. Mincu RI, Mahabadi AA, Michel L, Mrotzek SM, Schadendorf D, Rassaf T, Totzeck M. Cardiovascular adverse events associated with BRAF and MEK inhibitors: a systematic review and meta-analysis. JAMA Netw Open. 2019;2(8):e198890. doi: 10.1001/jamanetworkopen.2019.8890.

Source: PubMed

3
Subscribe