Altered networks in bothersome tinnitus: a functional connectivity study

Harold Burton, Andre Wineland, Mousumi Bhattacharya, Joyce Nicklaus, Keith S Garcia, Jay F Piccirillo, Harold Burton, Andre Wineland, Mousumi Bhattacharya, Joyce Nicklaus, Keith S Garcia, Jay F Piccirillo

Abstract

Background: The objective was to examine functional connectivity linked to the auditory system in patients with bothersome tinnitus. Activity was low frequency (< 0.1 Hz), spontaneous blood oxygenation level-dependent (BOLD) responses at rest. The question was whether the experience of chronic bothersome tinnitus induced changes in synaptic efficacy between co-activated components. Functional connectivity for seed regions in auditory, visual, attention, and control networks was computed across all 2 mm(3) brain volumes in 17 patients with moderate-severe bothersome tinnitus (Tinnitus Handicap Index: average 53.5 ± 3.6 (range 38-76)) and 17 age-matched controls.

Results: In bothersome tinnitus, negative correlations reciprocally characterized functional connectivity between auditory and occipital/visual cortex. Negative correlations indicate that when BOLD response magnitudes increased in auditory or visual cortex they decreased in the linked visual or auditory cortex, suggesting reciprocally phase reversed activity between functionally connected locations in tinnitus. Both groups showed similar connectivity with positive correlations within the auditory network. Connectivity for primary visual cortex in tinnitus included extensive negative correlations in the ventral attention temporoparietal junction and in the inferior frontal gyrus and rostral insula - executive control network components. Rostral insula and inferior frontal gyrus connectivity in tinnitus also showed greater negative correlations in occipital cortex.

Conclusions: These results imply that in bothersome tinnitus there is dissociation between activity in auditory cortex and visual, attention and control networks. The reciprocal negative correlations in connectivity between these networks might be maladaptive or reflect adaptations to reduce phantom noise salience and conflict with attention to non-auditory tasks.

Figures

Figure 1
Figure 1
Comparison between tinnitus and control participants for mean brain signals and head movements. Scatter plot of standard deviation (STDev) of mean whole-brain signals vs. root-mean square (RMS) of head movements.
Figure 2
Figure 2
Functional connectivity maps for a left primary auditory area (LAud) seed region centered in Heschl's gyrus. Rows 1 and 2 show, respectively, random effect functional connectivity t-maps [62] for controls and tinnitus displayed on inflated views of the PALS-B12 atlas surface [59]. The distribution of positive and negative correlations between time courses in the seed vs. other brain locations painted, respectively, in yellow-orange and blue (scale: p value 0.05-0.005). Row 3 shows map of a t-test assessment per node of group differences in Fisher Z-transforms of correlations. Significant t-test results marked in yellow-orange for positive and blue for negative (scale: p value 0.05-0.002). Row 4 shows t-test results for contrast between functional connectivity maps for a right primary auditory area (RAud) seed region. Black borders surround significant cluster identified with the threshold free cluster extension analysis [63] after 5000 permutations of the t-test analysis and an alpha threshold < .05.
Figure 3
Figure 3
Functional connectivity maps for a seed region in right primary visual area (RV1) centered within the calcarine sulcus. Rows 1 and 2 show, respectively, random effect functional connectivity t-maps [62] for controls and tinnitus displayed on inflated views of the PALS-B12 atlas surface [59]. The distribution of positive and negative correlations between time courses in the seed vs. other brain locations painted, respectively, in yellow-orange and blue (scale: p value 0.05-0.005). Row 3 shows map of a t-test assessment per node of group differences in Fisher Z-transforms of correlations. Significant t-test results marked in yellow-orange for positive and blue for negative (scale: p value 0.05-0.002). Black borders surround significant cluster identified with the threshold free cluster extension analysis [63] after 5000 permutations of the t-test analysis and an alpha threshold < .05.
Figure 4
Figure 4
Functional connectivity maps for a seed region in right anterior insula (RAI). Rows 1 and 2 show, respectively, random effect functional connectivity t-maps [62] for controls and tinnitus displayed on inflated views of the PALS-B12 atlas surface [59]. The distribution of positive and negative correlations between time courses in the seed vs. other brain locations painted, respectively, in yellow-orange and blue (scale: p value 0.05-0.005). Row 3 shows map of a t-test assessment per node of group differences in Fisher Z-transforms of correlations. Significant t-test results marked in yellow-orange for positive and blue for negative (scale: p value 0.05-0.002). Black borders surround significant cluster identified with the threshold free cluster extension analysis [63] after 5000 permutations of the t-test analysis and an alpha threshold < .05.
Figure 5
Figure 5
Functional connectivity maps for a seed region in left inferior frontal gyrus (LIFG). Rows 1 and 2 show, respectively, random effect functional connectivity t-maps [62] for controls and tinnitus displayed on inflated views of the PALS-B12 atlas surface [59]. The distribution of positive and negative correlations between time courses in the seed vs. other brain locations painted, respectively, in yellow-orange and blue (scale: p value 0.05-0.005). Row 3 shows map of a t-test assessment per node of group differences in Fisher Z-transforms of correlations. Significant t-test results marked in yellow-orange for positive and blue for negative (scale: p value 0.05-0.002). Black borders surround significant cluster identified with the threshold free cluster extension analysis [63] after 5000 permutations of the t-test analysis and an alpha threshold < .05.

References

    1. Hoffman H, Reed G. In: Tinnitus Theory and Management. Snow JB, Hamilton J, editor. Ont.: B.C. Decker, Inc; 2004. Epidemiology of tinnitus; pp. 16–41.
    1. Jastreboff P. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res - Suppl. 1990;8(221-254)
    1. Adjamian P, Sereda M, Hall DA. The mechanisms of tinnitus: Perspectives from human functional neuroimaging. Hear Res. 2009;253:15–31. doi: 10.1016/j.heares.2009.04.001.
    1. Eggermont JJ, Roberts LE. The neuroscience of tinnitus. Trends Neurosci. 2004;27:676–682. doi: 10.1016/j.tins.2004.08.010.
    1. Møller AR. The role of neural plasticity in tinnitus. Prog Brain Res. 2007;166:37–45.
    1. Lanting CP, De Kleine E, Bartels H, Van Dijk P. Functional imaging of unilateral tinnitus using fMRI. Acta Otolaryngol. 2008;128(4):415–421. doi: 10.1080/00016480701793743.
    1. Lanting CP, de Kleine E, van Dijk P. Neural activity underlying tinnitus generation: results from PET and fMRI. Hear Res. 2009;255(1-2):1–13. doi: 10.1016/j.heares.2009.06.009.
    1. Melcher JR, Sigalovsky IS, Guinan JJ, Levine RA. Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol. 2000;83(2):1058–1072.
    1. Melcher J, Levine R, Bergevin C, B N. The auditory midbrain of people with tinnitus: abnormal sound-evoked activity revisited. Hear Res. 2009;2009(257):263–274.
    1. Bavelier D, Neville HJ. Cross-modal plasticity: where and how? Nat Rev Neurosci. 2002;3(6):443–452.
    1. Buonomano DV, Merzenich MM. Cortical plasticity: From synapses to maps. Annu Rev Neurosci. 1998;21:149–186. doi: 10.1146/annurev.neuro.21.1.149.
    1. Dobie RA. Depression and tinnitus. Otolaryngol Clin North Am. 2003;36(2):383–388. doi: 10.1016/S0030-6665(02)00168-8.
    1. Henry JA, Dennis KC, Schechter MA. General review of tinnitus: prevalence, mechanisms, effects, and management. J Speech Lang Hear Res. 2005;48(5):1204–1235. doi: 10.1044/1092-4388(2005/084).
    1. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME. et al.Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA. 2007;104(26):11073–11078. doi: 10.1073/pnas.0704320104.
    1. Stevens C, Walker G, Boyer M, Gallagher M. Severe tinnitus and its effect on selective and divided attention. Int J Audiol. 2007;46(5):208–216. doi: 10.1080/14992020601102329.
    1. Buckner RL, Andrews-Hanna JR, Schacter DL. The Brain's Default Network: Anatomy, Function, and Relevance to Disease. Ann NY Acad Sci. 2008;1124(1):1–38. doi: 10.1196/annals.1440.011.
    1. Greicius MD, Menon V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci. 2004;16(9):1484–1492. doi: 10.1162/0898929042568532.
    1. Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2:685–694. doi: 10.1038/35094500.
    1. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98(2):676–682. doi: 10.1073/pnas.98.2.676.
    1. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci. 1997;9:648–663. doi: 10.1162/jocn.1997.9.5.648.
    1. Burton H, Snyder A, Raichle M. Default brain functionality in blind people. Proc Natl Acad Sci USA. 2004.
    1. Hallam RS, McKenna L, Shurlock L. Tinnitus impairs cognitive efficiency. Int J Audiol. 2004;43(4):218–226. doi: 10.1080/14992020400050030.
    1. Møller AR. Similarities between severe tinnitus and chronic pain. Journal of the American Academy of Audioliology. 2000;11(3):115–124.
    1. Searchfield GD, Morrison-Low J, Wise K. Object identification and attention training for treating tinnitus. Prog Brain Res. 2007;166:441–460.
    1. Andersson G, Juris L, Classon E, Fredrikson M, Furmark T. Consequences of suppressing thoughts about tinnitus and the effects of cognitive distraction on brain activity in tinnitus patients. Audiol Neurootol. 2006;11(5):301–309. doi: 10.1159/000094460.
    1. Tyler RS, Baker LJ. Difficulties experienced by tinnitus sufferers. J Speech Hear Disord. 1983;48(2):150–154.
    1. Wilson PH, Henry J, Bowen M, Haralambous G. Tinnitus reaction questionnaire: psychometric properties of a measure of distress associated with tinnitus. J Speech Hear Res. 1991;34(1):197–201.
    1. Andersson G, Lyttkens L, Larsen HC. Distinguishing levels of tinnitus distress. Clin Otolaryngol Allied Sci. 1999;24(5):404–410. doi: 10.1046/j.1365-2273.1999.00278.x.
    1. Rossiter S, Stevens C, Walker G. Tinnitus and its effect on working memory and attention. J Speech Lang Hear Res. 2006;49(1):150–160. doi: 10.1044/1092-4388(2006/012).
    1. Cuny C, Norena A, El Massioui F, Chery-Croze S. Reduced attention shift in response to auditory changes in subjects with tinnitus. Audiol Neurootol. 2004;9(5):294–302. doi: 10.1159/000080267.
    1. Plewnia C, Reimold M, Najib A, Brehm B, Reischl G, Plontke SK, Gerloff C. Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Hum Brain Mapp. 2007;28(3):238–246. doi: 10.1002/hbm.20270.
    1. Mirz F, Pedersen B, Ishizu K, Johannsen P, Ovesen T, Stodkilde-Jorgensen H, Gjedde A. Positron emission tomography of cortical centers of tinnitus. Hear Res. 1999;134(1-2):133–144. doi: 10.1016/S0378-5955(99)00075-1.
    1. Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58(3):306–324. doi: 10.1016/j.neuron.2008.04.017.
    1. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–215.
    1. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA. 2006;103(26):10046–10051. doi: 10.1073/pnas.0604187103.
    1. Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol. 2008;100(6):3328–3342. doi: 10.1152/jn.90355.2008.
    1. He BJ, Shulman GL, Snyder AZ, Corbetta M. The role of impaired neuronal communication in neurological disorders. Curr Opin Neurol. 2007;20(6):655–660. doi: 10.1097/WCO.0b013e3282f1c720.
    1. He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron. 2007;53(6):905–918. doi: 10.1016/j.neuron.2007.02.013.
    1. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA. 2004;101(13):4637–4642. doi: 10.1073/pnas.0308627101.
    1. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, Mintun MA, Wang S, Coalson RS, Raichle ME. The default mode network and self-referential processes in depression. Proc Natl Acad Sci USA. 2009;106(6):1942–1947. doi: 10.1073/pnas.0812686106.
    1. Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol. 2009;101(6):3270–3283. doi: 10.1152/jn.90777.2008.
    1. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA. 2009;106(6):2035–2040. doi: 10.1073/pnas.0811168106.
    1. Newman CW, Jacobson GP, Spitzer JB. Development of the Tinnitus Handicap Inventory. Arch Otolaryngol Head Neck Surg. 1996;122(2):143–148. doi: 10.1001/archotol.1996.01890140029007.
    1. McCombe A, Baguley D, Coles R, McKenna L, McKinney C, Windle-Taylor P. Guidelines for the grading of tinnitus severity: the results of a working group commissioned by the British Association of Otolaryngologists, Head and Neck Surgeons, 1999. Clin Otolaryngol Allied Sci. 2001;26:388–393. doi: 10.1046/j.1365-2273.2001.00490.x.
    1. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–571. doi: 10.1001/archpsyc.1961.01710120031004.
    1. Piccirillo J, Garcia K, Nicklaus J, Pierce K, Burton H, Viassenko A, Mintun M, Duddy D, Kallogjeri D, Spitznagel JE. Low-frequency repetitive transcranial magnetic stimulation to the temporoparietal junction for tinnitus. Arch Otolaryngol Head Neck Surg. 2011;137:221–228. doi: 10.1001/archoto.2011.3.
    1. Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage. 1997;6:156–167. doi: 10.1006/nimg.1997.0289.
    1. Fox MD, Snyder AZ, Zacks JM, Raichle ME. Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat Neurosci. 2006;9(1):23–25. doi: 10.1038/nn1616.
    1. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102(27):9673–9678. doi: 10.1073/pnas.0504136102.
    1. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol. 2006;96(6):3517–3531. doi: 10.1152/jn.00048.2006.
    1. Talairach J, Tournoux P. Coplanar Stereotaxic Atlas of the Human Brain. New York: Thieme Medical; 1988.
    1. Lancaster JL, Glass TG, Lankipalli BR, Downs H, Mayberg H, Fox PT. A modality-independent approach to spatial normalization of tomographic images of the human brain. Hum Brain Mapp. 1995;3:209–223. doi: 10.1002/hbm.460030305.
    1. Birn RM, Diamond JB, Smith MA, Bandettini PA. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage. 2006;31(4):1536–1548. doi: 10.1016/j.neuroimage.2006.02.048.
    1. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME. Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol. 2001;22(7):1326–1333.
    1. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA. 2008;105(34):12569–12574. doi: 10.1073/pnas.0800005105.
    1. Roberts KL, Hall DA. Examining a supramodal network for conflict processing: A systematic review and novel functional magnetic resonance imaging data for related visual and auditory stroop tasks. J Cogn Neurosci. 2008;20(6):1063–1078. doi: 10.1162/jocn.2008.20074.
    1. Jenkins GM, Watts DG. Spectral Analysis and its Applications. Boca Raton: Emerson-Adams Press; 1968.
    1. Burton H, Dixit S, Litkowski P, Wingert JR. Functional connectivity for somatosensory and motor cortex in spastic diplegia. Somatosens Mot Res. 2009;26(4):90–104. doi: 10.3109/08990220903335742.
    1. Van Essen DC. A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. NeuroImage. 2005;28:635–662. doi: 10.1016/j.neuroimage.2005.06.058.
    1. Hill J, Dierker D, Neil J, Inder T, Knutsen A, Harwell J, Coalson T, Van Essen D. A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human iinfants. J Neurosci. 2010;30(6):2268–2276. doi: 10.1523/JNEUROSCI.4682-09.2010.
    1. Nordahl CW, Dierker D, Mostafavi I, Schumann CM, Rivera SM, Amaral DG, Van Essen DC. Cortical folding abnormalities in autism revealed by surface-based morphometry. J Neurosci. 2007;27(43):11725–11735. doi: 10.1523/JNEUROSCI.0777-07.2007.
    1. Holmes AP, Friston KJ. Generalisability, random effects and population inference. Neuroimage. 1998;7:S754.
    1. Smith SM, Nichols TE. Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009;44(1):83–98. doi: 10.1016/j.neuroimage.2008.03.061.
    1. Muhlnickel W, Elbert T, Taub E, Flor H. Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA. 1998;95(17):10340–10343. doi: 10.1073/pnas.95.17.10340.
    1. Yu C, Liu Y, Li J, Zhou Y, Wang K, Tian L, Qin W, Jiang T, Li K. Altered functional connectivity of primary visual cortex in early blindness. Hum Brain Mapp. 2008;29(5):533–543. doi: 10.1002/hbm.20420.
    1. Burton H. Visual cortex activity in early and late blind people. J Neurosci. 2003;23:405–411.
    1. Drevets WC, Burton H, Videen TO, Snyder AZ, Simpson JR, Raichle ME. Blood flow changes in human somatosensory cortex during anticipated stimulation. Nature. 1995;373(6511):249–252. doi: 10.1038/373249a0.
    1. Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, Grady CL. The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci. 1994;14(11 Pt 1):6336–6353.
    1. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW. Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci. 1999;11(1):80–95. doi: 10.1162/089892999563265.
    1. Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houde O, Crivello F, Joliot M, Petit L, Tzourio-Mazoyer N. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull. 2001;54(3):287–298. doi: 10.1016/S0361-9230(00)00437-8.
    1. Buckner RL, Carroll DC. Self-projection and the brain. Trends Cogn Sci. 2007;11(2):49–57. doi: 10.1016/j.tics.2006.11.004.
    1. Shulman GL, Astafiev SV, Franke D, Pope DL, Snyder AZ, McAvoy MP, Corbetta M. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. J Neurosci. 2009;29(14):4392–4407. doi: 10.1523/JNEUROSCI.5609-08.2009.
    1. Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci. 2000;3(3):292–297. doi: 10.1038/73009.
    1. Downar J, Crawley AP, Mikulis DJ, Davis KD. A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci. 2000;3(3):277–283. doi: 10.1038/72991.
    1. Downar J, Crawley AP, Mikulis DJ, Davis KD. A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J Neurophysiol. 2002;87(1):615–620.
    1. Shulman GL, Astafiev SV, McAvoy MP, d'Avossa G, Corbetta M. Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. Cereb Cortex. 2007;17(11):2625–2633. doi: 10.1093/cercor/bhl170.
    1. Shulman GL, McAvoy MP, Cowan MC, Astafiev SV, Tansy AP, d'Avossa G, Corbetta M. Quantitative analysis of attention and detection signals during visual search. J Neurophysiol. 2003;90(5):3384–3397. doi: 10.1152/jn.00343.2003.

Source: PubMed

3
Subscribe