Quantitative Ultrasound Imaging Differences in Multifidus and Thoracolumbar Fasciae between Athletes with and without Chronic Lumbopelvic Pain: A Case-Control Study

Jaime Almazán-Polo, Daniel López-López, Carlos Romero-Morales, David Rodríguez-Sanz, Ricardo Becerro-de-Bengoa-Vallejo, Marta Elena Losa-Iglesias, María Bravo-Aguilar, César Calvo-Lobo, Jaime Almazán-Polo, Daniel López-López, Carlos Romero-Morales, David Rodríguez-Sanz, Ricardo Becerro-de-Bengoa-Vallejo, Marta Elena Losa-Iglesias, María Bravo-Aguilar, César Calvo-Lobo

Abstract

New trends in ultrasound imaging are focused on exploration of morphology and muscle quality. The main goal of the study was to evaluate the first-order descriptor and echostructure of lumbar multifidus at the L4 vertebral level in athletes with and without chronic lumbopelvic pain (CLPP). A case-control study was performed in 15 semiprofessional athletes with CLPP and 15 without (healthy athletes). Lumbar multifidus echointensity and echovariation were measured for muscle quality assessment. Echostructure was used to evaluate lumbar multifidus cross-sectional area (CSA) at resting and during muscle contraction, respective differences during both phases (CSADif.), activation patterns, and thoracolumbar fasciae morphology and thickness. Significant differences with a large effect size were observed in quantitative data from CLPP and healthy athletes for left lumbar multifidus CSADif. and thoracolumbar fasciae morphology. Categorical data showed statistically significant differences with a small-to-moderate effect size for lumbar multifidus activation pattern and thoracolumbar fasciae morphology. Athletes with CLPP showed a reduced CSA difference between lumbar multifidus contraction and at resting and higher disorganization of thoracolumbar fasciae morphology compared to healthy athletes. These findings suggest the importance of dynamic exploration of the lumbar region and connective tissue in sports performance and injury prevention.

Keywords: athletes; cross-sectional area; grayscale analysis; lower back pain; lumbar multifidus; quantitative ultrasound imaging; ultrasonography.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Ultrasonographic evaluation of the lumbar region. (A) Probe location for longitudinal assessment of lumbar multifidus at L4 vertebral level (yellow dotted line). (B) Longitudinal scanning view of LM (yellow arrow), and L4/5 (orange asterisk) and L5/S1 (white asterisk) facet joints visualization. (C) Probe location for transverse scanning of lumbar multifidus at L4 vertebral level (yellow dotted line). (D) Transverse scanning view of the lumbar multifidus, and visualization of the L4 spinous process (SP), the laminae (LA) and L4/5 facet joint as measurement landmark, and CSA of LM; (E), CSA of lumbar multifidus at resting (LM) and borders delimitation with lumbar longissimus muscle (LG), as well as the white enhancement of the L4 spinous process (SP), the laminae (LA), and facet joint of L4/5 (orange asterisk). (F) CSA of lumbar multifidus (LM) during muscle contraction (CAL test) and borders delimitation with lumbar longissimus muscle (LG). Abbreviations: CAL, contralateral arm lift test; CSA, cross-sectional area; LA, laminae; LG, lumbar longissimus muscle; LM, lumbar multifidus; SP, spinous process.
Figure 2
Figure 2
ImageJ measurements of echostructure and first-order descriptors of the lumbar multifidus (LM) and the thoracolumbar fasciae (TLF). (A) Representation of the measurement protocol using ImageJ: Central line (1. Central line, magenta), Thoracolumbar fasciae distance reference (2. TLF-Distance, green), thickness (TH) of the thoracolumbar fasciae (3. TLF-TH, blue), cross-sectional area (CSA) of the lumbar multifidus at resting (4. CSA of LM red), width of the lumbar multifidus (5. LM width, yellow), region of interest (ROI) of lumbar multifidus at midpoint (6. ROI 145 × 145 pixels, orange), and vertical line reference for ROI adjustment (7. Vertical reference, cyan). (B) CSA of LM histogram displayed. (C) ROI of LM histogram displayed.
Figure 3
Figure 3
Ultrasound imaging assessment of thoracolumbar fasciae morphology and categorization based on Likert-scale type which considers fascial lines delimitation and organization, echogenicity and the ability to draw a rectangular box around the hyperechoic fascial layers (organized). The figure shows sample homologous images of a “very organized” ((A,B); Group = 4, Likert-scale type score = 9), “somewhat organized” ((C,D); Group = 3, Likert-scale type score = 7) and “somewhat disorganized” ((E,F); Group = 3, Likert-scale type score = 5) thoracolumbar fasciae. Abbreviations: SP, spinous process; TLF, thoracolumbar fasciae.

References

    1. Fett D., Trompeter K., Platen P. Back pain in elite sports: A cross-sectional study on 1114 athletes. PLoS ONE. 2017;12:e0180130. doi: 10.1371/journal.pone.0180130.
    1. Cheung W.K., Cheung J.P.Y., Lee W.-N. Role of Ultrasound in Low Back Pain: A Review. Ultrasound Med. Biol. 2020;46:1344–1358. doi: 10.1016/j.ultrasmedbio.2020.02.004.
    1. Heneweer H., Vanhees L., Picavet H.S.J. Physical activity and low back pain: A U-shaped relation? Pain. 2009;143:21–25. doi: 10.1016/j.pain.2008.12.033.
    1. Heneweer H., Staes F., Aufdemkampe G., van Rijn M., Vanhees L. Physical activity and low back pain: A systematic review of recent literature. Eur. spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2011;20:826–845. doi: 10.1007/s00586-010-1680-7.
    1. Trompeter K., Fett D., Platen P. Prevalence of Back Pain in Sports: A Systematic Review of the Literature. Sport. Med. 2017;47:1183–1207. doi: 10.1007/s40279-016-0645-3.
    1. Kibler B.W., Press J., Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36:189–198. doi: 10.2165/00007256-200636030-00001.
    1. Hides J.A., Stanton W.R. Predicting football injuries using size and ratio of the multifidus and quadratus lumborum muscles. Scand. J. Med. Sci. Sport. 2017;27:440–447. doi: 10.1111/sms.12643.
    1. Calvo-Lobo C., Almazán-Polo J., Becerro-de-Bengoa-Vallejo R., Losa-Iglesias M.E., Palomo-López P., Rodríguez-Sanz D., López-López D. Ultrasonography comparison of diaphragm thickness and excursion between athletes with and without lumbopelvic pain. Phys. Ther. Sport. 2019;37:128–137. doi: 10.1016/j.ptsp.2019.03.015.
    1. Willard F.H., Vleeming A., Schuenke M.D., Danneels L., Schleip R. The thoracolumbar fascia: Anatomy, function and clinical considerations. J. Anat. 2012;221:507–536. doi: 10.1111/j.1469-7580.2012.01511.x.
    1. Barker P.J., Hapuarachchi K.S., Ross J.A., Sambaiew E., Ranger T.A., Briggs C.A. Anatomy and Biomechanics of Gluteus Maximus and the Thoracolumbar Fascia at the Sacroiliac Joint. Clin. Anat. 2013;27:234–240. doi: 10.1002/ca.22233.
    1. Hides J.A., Stanton W.R., Mendis M.D., Gildea J., Sexton M.J. Effect of motor control training on muscle size and football games missed from injury. Med. Sci. Sports Exerc. 2012;44:1141–1149. doi: 10.1249/MSS.0b013e318244a321.
    1. Ferreira P.H., Ferreira M.L., Hodges P.W. Changes in recruitment of the abdominal muscles in people with low back pain: Ultrasound measurement of muscle activity. Spine (Phila. Pa. 1976) 2004;29:2560–2566. doi: 10.1097/01.brs.0000144410.89182.f9.
    1. Hodges P.W., Gandevia S.C. Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. J. Appl. Physiol. 2017;89:967–976. doi: 10.1152/jappl.2000.89.3.967.
    1. Barr K.P., Griggs M., Cadby T. Lumbar stabilization: Core concepts and current literature, part 1. Am. J. Phys. Med. Rehabil. 2005;84:473–480. doi: 10.1097/01.phm.0000163709.70471.42.
    1. Richardson C.A., Snijders C.J., Hides J.A., Damen L., Pas M.S., Storm J. The relation between the transversus abdominis muscles, sacroiliac joint mechanics, and low back pain. Spine (Phila. Pa. 1976) 2002;27:399–405. doi: 10.1097/00007632-200202150-00015.
    1. Pel J.J.M., Spoor C.W., Goossens R.H.M., Pool-Goudzwaard A.L. Biomechanical model study of pelvic belt influence on muscle and ligament forces. J. Biomech. 2008;41:1878–1884. doi: 10.1016/j.jbiomech.2008.04.002.
    1. Schuenke M.D., Danneels L., Masi A.T., Willard F.H., Carreiro J.E., Vleeming A. The sacroiliac joint: An overview of its anatomy, function and potential clinical implications. J. Anat. 2012;221:537–567.
    1. Stokes M., Hides J., Elliott J., Kiesel K., Hodges P. Rehabilitative Ultrasound Imaging of the Posterior Paraspinal Muscles. J. Orthop. Sport. Phys. Ther. 2007;37:581–595. doi: 10.2519/jospt.2007.2599.
    1. Freeman M.D., Woodham M.A., Woodham A.W. The role of the lumbar multifidus in chronic low back pain: A review. PM&R. 2010;2:142–167.
    1. Sweeney N., O’Sullivan C., Kelly G. Multifidus muscle size and percentage thickness changes among patients with unilateral chronic low back pain (CLBP) and healthy controls in prone and standing. Man. Ther. 2014;19:433–439. doi: 10.1016/j.math.2014.04.009.
    1. Hides J.A., Stanton W.R., Mendis M.D., Franettovich Smith M.M., Sexton M.J. Small Multifidus Muscle Size Predicts Football Injuries. Orthop. J. Sport. Med. 2014;2:2325967114537588. doi: 10.1177/2325967114537588.
    1. Kjaer P., Bendix T., Sorensen J.S., Korsholm L., Leboeuf-Yde C. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med. 2007;5:2. doi: 10.1186/1741-7015-5-2.
    1. Teichtahl A.J., Urquhart D.M., Wang Y., Wluka A.E., Wijethilake P., Sullivan R.O., Cicuttini F.M. Fat infiltration of paraspinal muscles is associated with low back pain, disability, and structural abnormalities in community-based adults. Spine J. 2015;15:1593–1601. doi: 10.1016/j.spinee.2015.03.039.
    1. Hebert J.J., Fritz J.M., Koppenhaver S.L., Thackeray A., Kjaer P. Predictors of clinical outcome following lumbar disc surgery: The value of historical, physical examination, and muscle function variables. Eur. Spine J. 2016;25:310–317. doi: 10.1007/s00586-015-3916-z.
    1. Hebert J.J., Le Cara E.C., Koppenhaver S.L., Hoffman M.D., Marcus R.L., Dempsey A.R., Albert W.J. Predictors of clinical success with stabilization exercise are associated with lower levels of lumbar multifidus intramuscular adipose tissue in patients with low back pain. Disabil. Rehabil. 2020;42:679–684. doi: 10.1080/09638288.2018.1506510.
    1. Wilke J., Schleip R., Klingler W., Stecco C. The Lumbodorsal Fascia as a Potential Source of Low Back Pain: A Narrative Review. BioMed Res. Int. 2017;2017:5349620. doi: 10.1155/2017/5349620.
    1. Langevin H.M., Sherman K.J. Pathophysiological model for chronic low back pain integrating connective tissue and nervous system mechanisms. Med. Hypotheses. 2007;68:74–80. doi: 10.1016/j.mehy.2006.06.033.
    1. Neil E.R., Winkelmann Z.K., Edler J.R. Defining the Term “Overuse”: An Evidence-Based Review of Sports Epidemiology Literature. J. Athl. Train. 2018;53:279–281. doi: 10.4085/1062-6050-84-16.
    1. Pavan P.G., Stecco A., Stern R., Stecco C. Painful connections: Densification versus fibrosis of fascia. Curr. Pain Headache Rep. 2014;18:441. doi: 10.1007/s11916-014-0441-4.
    1. Langevin H.M., Stevens-Tuttle D., Fox J.R., Badger G.J., Bouffard N.A., Krag M.H., Wu J., Henry S.M. Ultrasound evidence of altered lumbar connective tissue structure in human subjects with chronic low back pain. BMC Musculoskelet. Disord. 2009;10:151. doi: 10.1186/1471-2474-10-151.
    1. Bishop J.H., Fox J.R., Maple R., Loretan C., Badger G.J., Henry S.M., Vizzard M.A., Langevin H.M. Ultrasound Evaluation of the Combined Effects of Thoracolumbar Fascia Injury and Movement Restriction in a Porcine Model. PLoS ONE. 2016;11:e0147393. doi: 10.1371/journal.pone.0147393.
    1. Langevin H.M., Fox J.R., Koptiuch C., Badger G.J., Greenan-Naumann A.C., Bouffard N.A., Konofagou E.E., Lee W., Triano J.J., Henry S.M., et al. Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet. Disord. 2011;12:203. doi: 10.1186/1471-2474-12-203.
    1. Sions J.M., Teyhen D.S., Hicks G.E. Criterion Validity of Ultrasound Imaging: Assessment of Multifidi Cross-Sectional Area in Older Adults With and Without Chronic Low Back Pain. J. Geriatr. Phys. Ther. 2017;40:74–79. doi: 10.1519/JPT.0000000000000073.
    1. Hides J.A., Richardson C.A., Jull G.A. Magnetic resonance imaging and ultrasonography of the lumbar multifidus muscle. Comparison of two different modalities. Spine (Phila. Pa. 1976) 1995;20:54–58. doi: 10.1097/00007632-199501000-00010.
    1. Molinari F., Caresio C., Acharya U.R., Mookiah M.R.K., Minetto M.A. Advances in Quantitative Muscle Ultrasonography Using Texture Analysis of Ultrasound Images. Ultrasound Med. Biol. 2015;41:2520–2532. doi: 10.1016/j.ultrasmedbio.2015.04.021.
    1. De Coninck K., Hambly K., Dickinson J.W., Passfield L., De Coninck K., Hambly K., Dickinson J.W., Passfield L. Measuring the morphological characteristics of thoracolumbar fascia in ultrasound images: An inter-rater reliability study. BMC Musculoskelet. Disord. 2018;19:180. doi: 10.1186/s12891-018-2088-5.
    1. Schyver A., Rivaz H., Rizk A., Frenette S., Boily M., Fortin M. Ultrasonography of Lumbar Multifidus Muscle in University American Football Players. Med. Sci. Sports Exerc. 2020;52:1495–1501. doi: 10.1249/MSS.0000000000002292.
    1. Hides J.A., Stanton W.R., McMahon S., Sims K., Richardson C.A. Effect of stabilization training on multifidus muscle cross-sectional area among young elite cricketers with low back pain. J. Orthop. Sports Phys. Ther. 2008;38:101–108. doi: 10.2519/jospt.2008.2658.
    1. Fortin M., Rizk A., Frenette S., Boily M., Rivaz H. Ultrasonography of multifidus muscle morphology and function in ice hockey players with and without low back pain. Phys. Ther. Sport. 2019;37:77–85. doi: 10.1016/j.ptsp.2019.03.004.
    1. Le Cara E.C., Marcus R.L., Dempsey A.R., Hoffman M.D., Hebert J.J. Morphology versus function: The relationship between lumbar multifidus intramuscular adipose tissue and muscle function among patients with low back pain. Arch. Phys. Med. Rehabil. 2014;95:1846–1852. doi: 10.1016/j.apmr.2014.04.019.
    1. Caresio C., Molinari F., Emanuel G., Minetto M.A. Muscle echo intensity: Reliability and conditioning factors. Clin. Physiol. Funct. Imaging. 2015;35:393–403. doi: 10.1111/cpf.12175.
    1. Fukumoto Y., Ikezoe T., Yamada Y., Tsukagoshi R., Nakamura M., Mori N., Kimura M., Ichihashi N. Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur. J. Appl. Physiol. 2012;112:1519–1525. doi: 10.1007/s00421-011-2099-5.
    1. Arts I.M.P., Overeem S., Pillen S., Kleine B.U., Boekestein W.A., Zwarts M.J., Jurgen Schelhaas H. Muscle ultrasonography: A diagnostic tool for amyotrophic lateral sclerosis. Clin. Neurophysiol. 2012;123:1662–1667. doi: 10.1016/j.clinph.2011.11.262.
    1. Pillen S., Tak R.O., Zwarts M.J., Lammens M.M.Y., Verrijp K.N., Arts I.M.P., van der Laak J.A., Hoogerbrugge P.M., van Engelen B.G.M., Verrips A. Skeletal Muscle Ultrasound: Correlation Between Fibrous Tissue and Echo Intensity. Ultrasound Med. Biol. 2009;35:443–446. doi: 10.1016/j.ultrasmedbio.2008.09.016.
    1. Ticinesi A., Meschi T., Narici M.V., Lauretani F., Maggio M. Muscle Ultrasound and Sarcopenia in Older Individuals: A Clinical Perspective. J. Am. Med. Dir. Assoc. 2017;18:290–300. doi: 10.1016/j.jamda.2016.11.013.
    1. Watanabe Y., Yamada Y., Fukumoto Y., Ishihara T., Yokoyama K., Yoshida T., Miyake M., Yamagata E., Kimura M. Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men. Clin. Interv. Aging. 2013;8:993–998. doi: 10.2147/CIA.S47263.
    1. Chimenti R.L., Flemister A.S., Tome J., McMahon J.M., Flannery M.A., Xue Y., Houck J.R. Altered tendon characteristics and mechanical properties associated with insertional achilles tendinopathy. J. Orthop. Sports Phys. Ther. 2014;44:680–689. doi: 10.2519/jospt.2014.5369.
    1. Nadeau M.-J., Desrochers A., Lamontagne M., Larivière C., Gagnon D.H. Quantitative ultrasound imaging of Achilles tendon integrity in symptomatic and asymptomatic individuals: Reliability and minimal detectable change. J. Foot Ankle Res. 2016;9:30. doi: 10.1186/s13047-016-0164-3.
    1. Fujikake T., Hart R., Nosaka K. Changes in B-mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes. Ultrasound Med. Biol. 2009;35:687–696. doi: 10.1016/j.ultrasmedbio.2008.10.008.
    1. Yitzchaki N., Zhu W.G., Kuehne T.E., Vasenina E., Dankel S.J., Buckner S.L. An examination of changes in skeletal muscle thickness, echo intensity, strength and soreness following resistance exercise. Clin. Physiol. Funct. Imaging. 2020;40:238–244. doi: 10.1111/cpf.12630.
    1. Arts I.M.P., Schelhaas H.J., Verrijp K.C.N., Zwarts M.J., Overeem S., van der Laak J.A.W.M., Lammens M.M.Y., Pillen S. Intramuscular fibrous tissue determines muscle echo intensity in amyotrophic lateral sclerosis. Muscle Nerve. 2012;45:449–450. doi: 10.1002/mus.22254.
    1. Martínez-Payá J.J., Ríos-Díaz J., Medina-Mirapeix F., Vázquez-Costa J.F., del Baño-Aledo M.E. Monitoring Progression of Amyotrophic Lateral Sclerosis Using Ultrasound Morpho-Textural Muscle Biomarkers: A Pilot Study. Ultrasound Med. Biol. 2018;44:102–109. doi: 10.1016/j.ultrasmedbio.2017.09.013.
    1. Martinez-Paya J.J., Del Bano-Aledo M.E., Rios-Diaz J., Tembl-Ferrairo J.I., Vazquez-Costa J.F., Medina-Mirapeix F. Muscular Echovariation: A New Biomarker in Amyotrophic Lateral Sclerosis. Ultrasound Med. Biol. 2017;43:1153–1162. doi: 10.1016/j.ultrasmedbio.2017.02.002.
    1. Ríos-Díaz J., del Baño-Aledo M.E., Tembl-Ferrairó J.I., Chumillas M.J., Vázquez-Costa J.F., Martínez-Payá J.J. Quantitative neuromuscular ultrasound analysis as biomarkers in amyotrophic lateral sclerosis. Eur. Radiol. 2019;29:4266–4275. doi: 10.1007/s00330-018-5943-8.
    1. Kalichman L., Carmeli E., Been E. The Association between Imaging Parameters of the Paraspinal Muscles, Spinal Degeneration, and Low Back Pain. Biomed Res. Int. 2017;2017:1–14. doi: 10.1155/2017/2562957.
    1. Vandenbroucke J.P., von Elm E., Altman D.G., Gtzsche P.C., Mulrow C.D., Pocock S.J., Poole C., Schlesselman J.J., Egger M., Initiative S. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 2014;12:1500–1524. doi: 10.1016/j.ijsu.2014.07.014.
    1. Helsinki W.M.A.D. of Ethical principles for medical research involving human subjects. J. Am. Coll. Dent. 2014;81:14–18.
    1. Whittaker J.L., Warner M.B., Stokes M. Comparison of the Sonographic Features of the Abdominal Wall Muscles and Connective Tissues in Individuals With and Without Lumbopelvic Pain. J. Orthop. Sport. Phys. Ther. 2013;43:11–19. doi: 10.2519/jospt.2013.4450.
    1. Hagstromer M., Oja P., Sjostrom M. The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2006;9:755–762. doi: 10.1079/PHN2005898.
    1. Garrow J.S. Quetelet index as indicator of obesity. Lancet (London, England) 1986;1:1219. doi: 10.1016/S0140-6736(86)91207-9.
    1. Craig C.L., Marshall A.L., Sjöström M., Bauman A.E., Booth M.L., Ainsworth B.E., Pratt M., Ekelund U., Yngve A., Sallis J.F., et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003;35:1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. Van Dixhoorn J., Duivenvoorden H.J. Efficacy of Nijmegen Questionnaire in recognition of the hyperventilation syndrome. J. Psychosom. Res. 1985;29:199–206. doi: 10.1016/0022-3999(85)90042-X.
    1. Whittaker J.L. Ultrasound imaging of the lateral abdominal wall muscles in individuals with lumbopelvic pain and signs of concurrent hypocapnia. Man. Ther. 2008;13:404–410. doi: 10.1016/j.math.2007.03.008.
    1. Kovacs F.M., Llobera J., Gil Del Real M.T., Abraira V., Gestoso M., Fernández C., Primaria Group K.-A., Jover A., La P. Validation of the spanish version of the Roland-Morris questionnaire. Spine (Phila. Pa. 1976) 2002;27:538–542. doi: 10.1097/00007632-200203010-00016.
    1. Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089.
    1. Kelley K., Preacher K.J. On Effect Size. Psychol. Methods. 2012;17:137–152. doi: 10.1037/a0028086.
    1. Richard Landis J., Koch G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977;33:159–174. doi: 10.2307/2529310.
    1. Hallgren K.A. Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial. Tutor. Quant. Methods Psychol. 2012;8:23–34. doi: 10.20982/tqmp.08.1.p023.
    1. Portney L., Watkins M. In: Foundations of Clinical Research: Applications to Practice. 3rd ed. Hall P., editor. Pearson/Prentice Hall; Upper Saddle River, NJ, USA: 2009. ISBN 13: 978-0-8036-4657-5.
    1. Bland J.M., Altman D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. Wilson A., Hides J.A., Blizzard L., Callisaya M., Cooper A., Srikanth V.K., Winzenberg T., Wilson A., Srikanth V.K., Winzenberg T., et al. Measuring ultrasound images of abdominal and lumbar multifidus muscles in older adults: A reliability study. Man. Ther. 2016;23:114–119. doi: 10.1016/j.math.2016.01.004.
    1. Miljkovic I., Zmuda J.M. Epidemiology of myosteatosis. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:260–264. doi: 10.1097/MCO.0b013e328337d826.
    1. Zhang S., Xu Y., Han X., Wu W., Tang Y., Wang C. Functional and Morphological Changes in the Deep Lumbar Multifidus Using Electromyography and Ultrasound. Sci. Rep. 2018;8:1–9. doi: 10.1038/s41598-018-24550-5.
    1. Dickx N., Cagnie B., Parlevliet T., Lavens A., Danneels L. The effect of unilateral muscle pain on recruitment of the lumbar multifidus during automatic contraction. An experimental pain study. Man. Ther. 2010;15:364–369. doi: 10.1016/j.math.2010.02.002.
    1. Macdonald D.A., Dawson A.P., Hodges P.W. Behavior of the lumbar multifidus during lower extremity movements in people with recurrent low back pain during symptom remission. J. Orthop. Sports Phys. Ther. 2011;41:155–164. doi: 10.2519/jospt.2011.3410.
    1. Hides J., Stanton W., Freke M., Wilson S., McMahon S., Richardson C. MRI study of the size, symmetry and function of the trunk muscles among elite cricketers with and without low back pain. Br. J. Sports Med. 2008;42:809–813. doi: 10.1136/bjsm.2007.044024.
    1. Tsuchikane R., Higuchi T., Suga T., Wachi M., Misaki J., Tanaka D., Miyake Y., Isaka T. Relationships between Bat Swing Speed and Muscle Thickness and Asymmetry in Collegiate Baseball Players. Sport. 2017;5:33. doi: 10.3390/sports5020033.
    1. MacDonald D.A., Moseley G.L., Hodges P.W. The lumbar multifidus: Does the evidence support clinical beliefs? Man. Ther. 2006;11:254–263. doi: 10.1016/j.math.2006.02.004.
    1. Russo M., Deckers K., Eldabe S., Kiesel K., Gilligan C., Vieceli J., Crosby P. Muscle Control and Non-specific Chronic Low Back Pain. Neuromodulation. 2018;21:1–9. doi: 10.1111/ner.12738.
    1. Ríos-Díaz J., Martínez-Payá J.J., del Baño-Aledo M.E., de Groot-Ferrando A., Botía-Castillo P., Fernández-Rodríguez D., Rios-Diaz J., Martinez-Paya J.J., del Bano-Aledo M.E., de Groot-Ferrando A., et al. Sonoelastography of Plantar Fascia: Reproducibility and Pattern Description in Healthy Subjects and Symptomatic Subjects. Ultrasound Med. Biol. 2015;41:2605–2613. doi: 10.1016/j.ultrasmedbio.2015.05.024.
    1. Ohno Y., Fujimoto T., Shibata Y. A New Era in Diagnostic Ultrasound, Superb Microvascular Imaging: Preliminary Results in Pediatric Hepato-Gastrointestinal Disorders. Eur. J. Pediatr. Surg. 2017;27:20–25.

Source: PubMed

3
Subscribe