Effect of Calcium and Vitamin D Supplements as an Adjuvant Therapy to Metformin on Menstrual Cycle Abnormalities, Hormonal Profile, and IGF-1 System in Polycystic Ovary Syndrome Patients: A Randomized, Placebo-Controlled Clinical Trial

Sally Kadoura, Marwan Alhalabi, Abdul Hakim Nattouf, Sally Kadoura, Marwan Alhalabi, Abdul Hakim Nattouf

Abstract

Objective: This study aims to investigate the effect of combining calcium and vitamin D supplements with metformin on menstrual cycle abnormalities, gonadotropins, and IGF-1 system in vitamin D-deficient/insufficient PCOS women.

Study design: This is a randomized, placebo-controlled clinical trial.

Setting: This study was performed in Damascus University of Obstetrics and Gynecology Hospital and Orient Hospital, in Damascus, Syria.

Materials and methods: Forty PCOS women with 25-OH-vitamin D < 30 ng/ml were randomly assigned to take either metformin (1500 mg/daily) plus placebo or metformin (1500 mg/daily) plus calcium (1000 mg/daily) and vitamin D3 (6000 IU/daily) orally for 8 weeks. Serum levels of gonadotropins (luteinizing hormone (LH) and follicle-stimulating hormone (FSH)), insulin-like growth factor-1 (IGF-1), and insulin-like growth factor binding protein-1 (IGFBP-1) were detected at the baseline during the early follicular phase of a spontaneous or induced menstrual cycle and after 8 weeks of intervention (except for the final gonadotropins levels which were assayed from samples obtained during the early follicular phase of a spontaneous menstrual cycle).

Results: Thirty-four patients (85%) completed the study. After 8 weeks of intervention, calcium and vitamin D co-supplementation led to a significant increase in 25-OH-vitamin D levels and calcium levels in the supplementation group compared to the other group (change in 25-OH-vitamin D levels: +19.38 ± 7.78 vs +0.11 ± 4.79 ng/ml, respectively; p value=0.0001) (change in calcium levels: +0.83 ± 0.82 vs +0.01 ± 0.86 mg/dl, respectively; p value=0.014). An improvement in menstrual cycle irregularity was detected in 38.5% and 58.8% of patients in metformin-placebo group and metformin-calcium-vitamin D group, respectively; but the change was statistically significant only in the supplementation group (p value=0.002). Nevertheless, the means of changes from baseline in gonadotropins levels (serum levels of LH, FSH, and LH to FSH ratio) and the studied parameters of IGF-1 system (serum levels of IGF-1, IGFBP-1, and IGF-1 to IGFBP-I ratio) did not differ significantly between the two groups.

Conclusions: Calcium and vitamin D supplements can support metformin effect on regulation of menstrual cycle irregularity in vitamin D-deficient/insufficient PCOS patients, but this effect is not associated with any significant changes in gonadotropins or IGF-1 system. These results suggest a possible role of calcium and vitamin D supplements in managing PCOS. However, further studies are needed to identify the underlying mechanisms. The Clinical Trial Registration Number is NCT03792984.

Figures

Figure 1
Figure 1
Flow diagram of the study.

References

    1. Goodarzi M. O., Dumesic D. A., Chazenbalk G., Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nature Reviews Endocrinology. 2011;7(4):219–231. doi: 10.1038/nrendo.2010.217.
    1. Azziz R., Carmina E., Chen Z., et al. Polycystic ovary syndrome. Nature Reviews Disease Primers. 2016;2(1) doi: 10.1038/nrdp.2016.57.16057
    1. Krul-Poel Y. H. M., Snackey C., Louwers Y., et al. The role of vitamin D in metabolic disturbances in polycystic ovary syndrome: a systematic review. European Journal of Endocrinology. 2013;169(6):853–865. doi: 10.1530/eje-13-0617.
    1. van Dessel H. J. H. M. T., Lee P. D. K., Faessen G., Fauser B. C. J. M., Giudice L. C. Elevated serum levels of free insulin-like growth factor I in polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism. 1999;84(9):3030–3035. doi: 10.1210/jcem.84.9.5941.
    1. De Leo V., Musacchio M. C., Cappelli V., et al. Genetic, hormonal and metabolic aspects of PCOS: an update. Reproductive Biology and Endocrinology. 2016;14(1):p. 38. doi: 10.1186/s12958-016-0173-x.
    1. Clemmons D. R. 40 YEARS OF IGF1: role of IGF-binding proteins in regulating IGF responses to changes in metabolism. Journal of Molecular Endocrinology. 2018;61(1):T139–T169. doi: 10.1530/jme-18-0016.
    1. Bae J. H., Song D. K., Im S. S. Regulation of IGFBP-1 in metabolic diseases. Journal of Lifestyle Medicine. 2013;3(2):73–79.
    1. Raja-khan N., Stener-victorin E., Wu X., Legro R. S. The physiological basis of complementary and alternative medicines for polycystic ovary syndrome. American Journal of Physiology-Endocrinology and Metabolism. 2011;301(1):E1–E10. doi: 10.1152/ajpendo.00667.2010.
    1. Foroozanfard F., Jamilian M., Jafari Z., et al. Effects of zinc supplementation on markers of insulin resistance and lipid profiles in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Experimental and Clinical Endocrinology & Diabetes. 2015;123(4):215–220. doi: 10.1055/s-0035-1548790.
    1. Costantino D., Minozzi G., Minozzi F., Guaraldi C. Metabolic and hormonal effects of myo-inositol in women with polycystic ovary syndrome: a double-blind trial. European Review for Medical and Pharmacological Sciences. 2009;13(2):105–110.
    1. Mohammadi E., Rafraf M., Farzadi L., Asghari-Jafarabadi M., Sabour S. Effects of omega-3 fatty acids supplementation on serum adiponectin levels and some metabolic risk factors in women with polycystic ovary syndrome. Asia Pacific Journal of Clinical Nutrition. 2012;21(4):511–518.
    1. Asemi Z., Karamali M., Esmaillzadeh A. Metabolic response to folate supplementation in overweight women with polycystic ovary syndrome: a randomized double‐blind placebo‐controlled clinical trial. Molecular Nutrition & Food Research. 2014;58(7):1465–1473. doi: 10.1002/mnfr.201400033.
    1. Wang H., Chen W., Li D., et al. Vitamin D and chronic diseases. Aging and Disease. 2017;8(3):346–353. doi: 10.14336/ad.2016.1021.
    1. Irani M., Merhi Z. Role of vitamin D in ovarian physiology and its implication in reproduction: a systematic review. Fertility and Sterility. 2014;102(2):460.e3–468.e3. doi: 10.1016/j.fertnstert.2014.04.046.
    1. Yoshizawa T., Handa Y., Uematsu Y., et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nature Genetics. 1997;16(4):391–396. doi: 10.1038/ng0897-391.
    1. Wehr E., Pilz S., Schweighofer N., et al. Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. European Journal of Endocrinology. 2009;161(4):575–582. doi: 10.1530/eje-09-0432.
    1. Li H. W. R., Brereton R. E., Anderson R. A., Wallace A. M., Ho C. K. M. Vitamin D deficiency is common and associated with metabolic risk factors in patients with polycystic ovary syndrome. Metabolism. 2011;60(10):1475–1481. doi: 10.1016/j.metabol.2011.03.002.
    1. Hahn S., Haselhorst U., Tan S., et al. Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Experimental and Clinical Endocrinology & Diabetes. 2006;114(10):577–583. doi: 10.1055/s-2006-948308.
    1. Mishra S., Das A. K., Das S. Hypovitaminosis D and associated cardiometabolic risk in women with PCOS. Journal of Clinical and Diagnostic Research. 2016;10(5):BC01–BC04. doi: 10.7860/JCDR/2016/19407.7771.
    1. Patra S. K., Nasrat H., Goswami B., Jain A. Vitamin D as a predictor of insulin resistance in polycystic ovarian syndrome. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2012;6(3):146–149. doi: 10.1016/j.dsx.2012.09.006.
    1. Pal L., Zhang H., Williams J., et al. Vitamin D status relates to reproductive outcome in women with polycystic ovary syndrome: secondary analysis of a multicenter randomized controlled trial. Journal of Clinical Endocrinology & Metabolism. 2016;101(8):3027–3035. doi: 10.1210/jc.2015-4352.
    1. Ott J., Wattar L., Kurz C., et al. Parameters for calcium metabolism in women with polycystic ovary syndrome who undergo clomiphene citrate stimulation: a prospective cohort study. European Journal of Endocrinology. 2012;166(5):897–902. doi: 10.1530/eje-11-1070.
    1. Thys-Jacobs S., Donovan D., Papadopoulos A., Sarrel P., Bilezikian J. P. Vitamin D and calcium dysregulation in the polycystic ovarian syndrome. Steroids. 1999;64(6):430–435. doi: 10.1016/s0039-128x(99)00012-4.
    1. Parikh G., Varadinova M., Suwandhi P., et al. Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Hormone and Metabolic Research. 2010;42(10):754–757. doi: 10.1055/s-0030-1262837.
    1. Ameri P., Giusti A., Boschetti M., Murialdo G., Minuto F., Ferone D. Interactions between vitamin D and IGF-I: from physiology to clinical practice. Clinical Endocrinology. 2013;79(4):457–463. doi: 10.1111/cen.12268.
    1. Tehrani H. G., Mostajeran F., Shahsavari S. The effect of calcium and vitamin D supplementation on menstrual cycle, body mass index and hyperandrogenism state of women with poly cystic ovarian syndrome. Journal of Research in Medical Sciences. 2014;19(9):875–880.
    1. Rashidi B., Haghollahi F., Shariat M., Zayerii F. The effects of calcium-vitamin D and metformin on polycystic ovary syndrome: a pilot study. Taiwanese Journal of Obstetrics and Gynecology. 2009;48(2):142–147. doi: 10.1016/s1028-4559(09)60275-8.
    1. Firouzabadi R. d., Aflatoonian A., Modarresi S., Sekhavat L., MohammadTaheri S. Therapeutic effects of calcium & vitamin D supplementation in women with PCOS. Complementary Therapies in Clinical Practice. 2012;18(2):85–88. doi: 10.1016/j.ctcp.2012.01.005.
    1. The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and Sterility. 2004;81(1):19–25. doi: 10.1016/j.fertnstert.2003.10.004.
    1. Holick M. F., Binkley N. C., Bischoff-Ferrari H. A., et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. Journal of Clinical Endocrinology & Metabolism. 2011;96(7):1911–1930. doi: 10.1210/jc.2011-0385.
    1. Yildiz B. O., Bolour S., Woods K., Moore A., Azziz R. Visually scoring hirsutism. Human Reproduction Update. 2010;16(1):51–64. doi: 10.1093/humupd/dmp024.
    1. Marzouk T. M., Sayed Ahmed W. A. Effect of dietary weight loss on menstrual regularity in obese young adult women with polycystic ovary syndrome. Journal of Pediatric and Adolescent Gynecology. 2015;28(6):457–461. doi: 10.1016/j.jpag.2015.01.002.
    1. Selimoglu H., Duran C., Kiyici S., et al. The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. Journal of Endocrinological Investigation. 2010;33(4):234–238. doi: 10.1007/bf03345785.
    1. Irani M., Seifer D. B., Grazi R. V., et al. Vitamin D supplementation decreases TGF-β1 bioavailability in PCOS: a randomized placebo-controlled trial. Journal of Clinical Endocrinology & Metabolism. 2015;100(11):4307–4314. doi: 10.1210/jc.2015-2580.
    1. Garg D., Tal R. The role of AMH in the pathophysiology of polycystic ovarian syndrome. Reproductive BioMedicine Online. 2016;33(1):15–28. doi: 10.1016/j.rbmo.2016.04.007.
    1. Irani M., Minkoff H., Seifer D. B., Merhi Z. Vitamin D increases serum levels of the soluble receptor for advanced glycation end products in women with PCOS. Journal of Clinical Endocrinology & Metabolism. 2014;99(5):E886–E890. doi: 10.1210/jc.2013-4374.
    1. Malloy P. J., Peng L., Wang J., Feldman D. Interaction of the vitamin D receptor with a vitamin D response element in the Müllerian-inhibiting substance (MIS) promoter: regulation of MIS expression by calcitriol in prostate cancer cells. Endocrinology. 2009;150(4):1580–1587. doi: 10.1210/en.2008-1555.
    1. Merhi Z., Doswell A., Krebs K., Cipolla M. Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. Journal of Clinical Endocrinology & Metabolism. 2014;99(6):1137–1145. doi: 10.1210/jc.2013-4161.
    1. Asemi Z., Foroozanfard F., Hashemi T., Bahmani F., Jamilian M., Esmaillzadeh A. Calcium plus vitamin D supplementation affects glucose metabolism and lipid concentrations in overweight and obese vitamin D deficient women with polycystic ovary syndrome. Clinical Nutrition. 2015;34(4):586–592. doi: 10.1016/j.clnu.2014.09.015.
    1. Bland R., Markovic D., Hills C. E., et al. Expression of 25-hydroxyvitamin D3-1α-hydroxylase in pancreatic islets. Journal of Steroid Biochemistry and Molecular Biology. 2004;89-90:121–125. doi: 10.1016/j.jsbmb.2004.03.115.
    1. Wang Y., Zhu J., DeLuca H. F. Where is the vitamin D receptor? Archives of Biochemistry and Biophysics. 2012;523(1):123–133. doi: 10.1016/j.abb.2012.04.001.
    1. Maestro B., Dávila N., Carranza M. C., Calle C. Identification of a vitamin D response element in the human insulin receptor gene promoter. Journal of Steroid Biochemistry and Molecular Biology. 2003;84(2-3):223–230. doi: 10.1016/s0960-0760(03)00032-3.
    1. Sung C.-C., Liao M.-T., Lu K.-C., Wu C.-C. Role of vitamin D in insulin resistance. Journal of Biomedicine and Biotechnology. 2012;2012:1–11. doi: 10.1155/2012/634195.
    1. Nesbitt T., Drezner M. K. Insulin-like growth factor-I regulation of renal 25-hydroxyvitamin D-1- hydroxylase activity. Endocrinology. 1993;132(1):133–138. doi: 10.1210/en.132.1.133.
    1. Menaa C., Vrtovsnik F., Friedlander G., Corvol M., Garabedian M. Insulin-like growth factor I, a unique calcium-dependent stimulator of 1,25-dihydroxyvitamin D3 production: Studies in cultured mouse kidney cells. Journal of Biological Chemistry. 1995;270(43):25461–25467. doi: 10.1074/jbc.270.43.25461.
    1. Song Y., Kato S., Fleet J. C. Vitamin D receptor (VDR) knockout mice reveal VDR-independent regulation of intestinal calcium absorption and ECaC2 and calbindin D9k mRNA. Journal of Nutrition. 2003;133(2):374–380. doi: 10.1093/jn/133.2.374.
    1. Fernández-Cancio M., Audi L., Carrascosa A., et al. Vitamin D and growth hormone regulate growth hormone/insulin-like growth factor (GH-IGF) axis gene expression in human fetal epiphyseal chondrocytes. Growth Hormone & IGF Research. 2009;19(3):232–237. doi: 10.1016/j.ghir.2008.10.004.
    1. Hypponen E., Boucher B. J., Berry D. J., Power C. 25-hydroxyvitamin D, IGF-1, and metabolic syndrome at 45 years of age: a cross-sectional study in the 1958 British Birth Cohort. Diabetes. 2008;57(2):298–305. doi: 10.2337/db07-1122.
    1. Bogazzi F., Rossi G., Lombardi M., et al. Vitamin D status may contribute to serum insulin-like growth factor I concentrations in healthy subjects. Journal of Endocrinological Investigation. 2011;34(8):e200–e203.
    1. Lumachi F., Camozzi V., Doretto P., Tozzoli R., Basso S. M. M. Circulating PTH, vitamin D and IGF-I levels in relation to bone mineral density in elderly women. In Vivo. 2013;27(3):415–418.
    1. Trummer C., Schwetz V., Pandis M., et al. Effects of vitamin D supplementation on IGF-1 and calcitriol: a randomized-controlled trial. Nutrients. 2017;9:p. 623. doi: 10.3390/nu9060623.
    1. Zofková I., Bahbouh R., Bendlová B. Systemic insulin-like growth factor-I, insulin and vitamin D status in relation to age-associated bone loss in women. Experimental and Clinical Endocrinology & Diabetes. 2001;109(5):267–272. doi: 10.1055/s-2001-16346.
    1. Chanson P., Arnoux A., Mavromati M., et al. Reference values for IGF-I serum concentrations: comparison of six immunoassays. Journal of Clinical Endocrinology & Metabolism. 2016;101(9):3450–3458. doi: 10.1210/jc.2016-1257.
    1. Al-Daghri N. M., Yakout S. M., Wani K., et al. IGF and IGFBP as an index for discrimination between vitamin D supplementation responders and nonresponders in overweight Saudi subjects. Medicine. 2018;97(19):p. e0702. doi: 10.1097/md.0000000000010702.
    1. Ameri P., Giusti A., Boschetti M., et al. Vitamin D increases circulating IGF1 in adults: potential implication for the treatment of GH deficiency. European Journal of Endocrinology. 2013;169(6):767–772. doi: 10.1530/eje-13-0510.
    1. Sinha-Hikim I., Duran P., Shen R., et al. Effect of long term vitamin d supplementation on biomarkers of inflammation in Latino and African-American subjects with pre-diabetes and hypovitaminosis D. Hormone and Metabolic Research. 2015;47(4):280–283. doi: 10.1055/s-0034-1383652.
    1. Giovannini S., Cesari M., Marzetti E., Leeuwenburgh C., Maggio M., Pahor M. Effects of ACE-inhibition on IGF-1 and IGFBP-3 concentrations in older adults with high cardiovascular risk profile. Journal of Nutrition, Health & Aging. 2010;14(6):457–460. doi: 10.1007/s12603-010-0036-7.
    1. Bergen K., Brismar K., Tehrani S. High-dose atorvastatin is associated with lower IGF-1 levels in patients with type 1 diabetes. Growth Hormone & IGF Research. 2016;29:78–82. doi: 10.1016/j.ghir.2016.06.001.
    1. Narayanan R. P., Gittins M., Siddals K. W., et al. Atorvastatin administration is associated with dose-related changes in IGF bioavailability. European Journal of Endocrinology. 2013;168(4):543–548. doi: 10.1530/eje-12-0844.

Source: PubMed

3
Subscribe