5G mobile networks and health-a state-of-the-science review of the research into low-level RF fields above 6 GHz

Ken Karipidis, Rohan Mate, David Urban, Rick Tinker, Andrew Wood, Ken Karipidis, Rohan Mate, David Urban, Rick Tinker, Andrew Wood

Abstract

The increased use of radiofrequency (RF) fields above 6 GHz, particularly for the 5 G mobile phone network, has given rise to public concern about any possible adverse effects to human health. Public exposure to RF fields from 5 G and other sources is below the human exposure limits specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). This state-of-the science review examined the research into the biological and health effects of RF fields above 6 GHz at exposure levels below the ICNIRP occupational limits. The review included 107 experimental studies that investigated various bioeffects including genotoxicity, cell proliferation, gene expression, cell signalling, membrane function and other effects. Reported bioeffects were generally not independently replicated and the majority of the studies employed low quality methods of exposure assessment and control. Effects due to heating from high RF energy deposition cannot be excluded from many of the results. The review also included 31 epidemiological studies that investigated exposure to radar, which uses RF fields above 6 GHz similar to 5 G. The epidemiological studies showed little evidence of health effects including cancer at different sites, effects on reproduction and other diseases. This review showed no confirmed evidence that low-level RF fields above 6 GHz such as those used by the 5 G network are hazardous to human health. Future experimental studies should improve the experimental design with particular attention to dosimetry and temperature control. Future epidemiological studies should continue to monitor long-term health effects in the population related to wireless telecommunications.

Keywords: Disease; Epidemiology; Health studies; Radiation.

Conflict of interest statement

The authors declare no competing interest

References

    1. Wu T, Rappaport TS, Collins CM. Safe for generations to come: considerations of safety for millimeter waves in wireless communications. IEEE Micro Mag. 2015;16:65–84. doi: 10.1109/MMM.2014.2377587.
    1. Health protection agency (HPA). Health effects from radiofrequency electromagnetic fields: the report of the independent advisory group on non-ionising radiation (AGNIR). HPA. 2012; RCE 20.
    1. Scientific committee on emerging and newly identified health risks (SCENHIR). Potential health effects of exposure to electromagnetic fields (EMF). Euro Comm. 2015; 1831-4783.
    1. Australian radiation protection and nuclear safety agency (ARPANSA). Radiation protection standard for maximum exposure levels to radiofrequency fields—3 kHz to 300 GHz. Radiation Protection Series 3. ARPANSA; 2002.
    1. International Commission on Non-Ionizing Radiation Protection (ICNIRP). ICNIRP guidelines for limiting exposure to electromagnetic fields (100 KHz to 300 GHz) Health Phys. 2020;118:483–524. doi: 10.1097/HP.0000000000001210.
    1. Institute of electrical and electronics engineers (IEEE). IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz. IEEE 2019; C95.1.
    1. Stam R. Comparison of international policies on electromagnetic fields (power frequency and radiofrequency fields). National institute for public health and the environment, RIVM 2018.
    1. Simkó M, Mattsson MO. 5G Wireless communication and health effects—a pragmatic review based on available studies regarding 6 to 100 GHz. Int J Environ Res Public Health. 2019;16:3406. doi: 10.3390/ijerph16183406.
    1. Wood A, Mate R, Karipidis K. Meta-analysis of in vitro and in vivo studies of the biological effects of low-level millimetre waves. 2020. 10.1038/s41370-021-00307-7.
    1. International commission on non-Ionizing radiation protection (ICNIRP). Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz-300 GHz). ICNIRP 2009; 978-3-934994-10-2.
    1. International agency for research on cancer (IARC) IARC monographs: non-ionizing radiation, part 2: radiofrequency electromagnetic fields. IARC. 2013;102:1–460.
    1. Garaj-Vrhovac V, Horvat D, Koren Z. The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation. Mutat Res Lett. 1991;263:143–9. doi: 10.1016/0165-7992(91)90054-8.
    1. Garaj-Vrhovac V, Fučić A, Horvat D. The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwave radiation in vitro. Mutat Res Lett. 1992;281:181–6. doi: 10.1016/0165-7992(92)90006-4.
    1. Korenstein-Ilan A, Barbul A, Hasin P, Eliran A, Gover A, Korenstein R. Terahertz radiation increases genomic instability in human lymphocytes. Radiat Res. 2008;170:224–34. doi: 10.1667/RR0944.1.
    1. Hintzsche H Jastrow C, Kleine-Ostmann T, Kärst U, Schrader T, Stopper H. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro. PloS One. 2012;2012:7–e46397.
    1. Koyama S, Narita E, Shimizu Y, Suzuki Y, Shiina T, Taki M, et al. Effects of long-term exposure to 60 GHz millimeter-wavelength radiation on the genotoxicity and heat shock protein (Hsp) expression of cells derived from human eye. Int J Environ Res Public Health. 2016;13:802. doi: 10.3390/ijerph13080802.
    1. Koyama S, Narita E, Suzuki Y, Shiina T, Taki M, Shinohara N, et al. Long-term exposure to a 40-GHz electromagnetic field does not affect genotoxicity or heat shock protein expression in HCE-T or SRA01/04 cells. J Radiat Res. 2019;60:417–23. doi: 10.1093/jrr/rrz017.
    1. De Amicis A, De Sanctis S, Di Cristofaro S, Franchini V, Lista F, Regalbuto E, et al. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts. Mutat Res Genet Toxicol Environ Mutagen. 2015;793:150–60. doi: 10.1016/j.mrgentox.2015.06.003.
    1. Franchini V, Regalbuto E, De Amicis A, De Sanctis S, Di Cristofaro S, Coluzzi E, et al. Genotoxic effects in human fibroblasts exposed to microwave radiation. Health Phys. 2018;115:126–39. doi: 10.1097/HP.0000000000000871.
    1. Shckorbatov YG, Grigoryeva NN, Shakhbazov VG, Grabina VA, Bogoslavsky AM. Microwave irradiation influences on the state of human cell nuclei. Bioelectromagnetics. 1998;19:414–9. doi: 10.1002/(SICI)1521-186X(1998)19:7<414::AID-BEM2>;2-4.
    1. Shckorbatov YG, Pasiuga VN, Kolchigin NN, Grabina VA, Batrakov DO, Kalashnikov VV. The influence of differently polarised microwave radiation on chromatin in human cells. Int J Radiat Biol. 2009;85:322–9. doi: 10.1080/09553000902781113.
    1. Shckorbatov YG, Pasiuga VN, Goncharuk EI, Petrenko TP, Grabina VA, Kolchigin NN, et al. Effects of differently polarized microwave radiation on the microscopic structure of the nuclei in human fibroblasts. J Zhejiang Univ Sci B. 2010;11:801–5. doi: 10.1631/jzus.B1000051.
    1. Paulraj R, Behari J. Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res. 2006;596:76–80. doi: 10.1016/j.mrfmmm.2005.12.006.
    1. Kesari KK, Behari J. Fifty-gigahertz microwave exposure effect of radiations on rat brain. Appl Biochem Biotechnol. 2009;158:126. doi: 10.1007/s12010-008-8469-8.
    1. Kumar S, Kesari KK, Behari J. Evaluation of genotoxic effects in male Wistar rats following microwave exposure. Indian J Exp Biol. 2010;48:586–92.
    1. Crouzier D, Perrin A, Torres G, Dabouis V, Debouzy JC. Pulsed electromagnetic field at 9.71 GHz increase free radical production in yeast (Saccharomyces cerevisiae) Patho Biol. 2009;57:245–51. doi: 10.1016/j.patbio.2007.12.003.
    1. Smolyanskaya AZ, Vilenskaya RL. Effects of millimeter-band electromagnetic radiation on the functional activity of certain genetic elements of bacterial cells. Sov Phys. 1974;16:571. doi: 10.1070/PU1974v016n04ABEH005311.
    1. Lukashevsky KV, Belyaev IY. Switching of prophage lambda genes in Escherichia coli by millimetre waves. Med Sci Res. 1990;18:955–7.
    1. Kalantaryan VP, Vardevanyan PO, Babayan YS, Gevorgyan ES, Hakobyan SN, Antonyan AP. Influence of low intensity coherent electromagnetic millimeter radiation (EMR) on aqua solution of DNA. Prog Electromag Res. 2010;13:1–9. doi: 10.2528/PIERL09110605.
    1. Hintzsche H, Jastrow C, Kleine-Ostmann T. Terahertz radiation induces spindle disturbances in human-hamster hybrid cells. Radiat Res. 2011;175:569–74. doi: 10.1667/RR2406.1.
    1. Zeni O, Gallerano GP, Perrotta A, Romano M, Sannino A, Sarti M, et al. Cytogenetic observations in human peripheral blood leukocytes following in vitro exposure to THz radiation: a pilot study. Health Phys. 2007;92:349–57. doi: 10.1097/01.HP.0000251248.23991.35.
    1. Gapeyev A, Lukyanova N, Gudkov S. Hydrogen peroxide induced by modulated electromagnetic radiation protects the cells from DNA damage. Open Life Sci. 2014;9:915–21. doi: 10.2478/s11535-014-0326-x.
    1. Gapeyev AB, Lukyanova NA. Pulse-modulated extremely high-frequency electromagnetic radiation protects cellular DNA from the damaging effects of physical and chemical factors in vitro. Biophys. 2015;60:732–8. doi: 10.1134/S0006350915050061.
    1. Webb SJ, Dodds DD. Inhibition of bacterial cell growth by 136 GC microwaves. Nature. 1968;218:374–5. doi: 10.1038/218374a0.
    1. Webb SJ, Booth AD. Absorption of microwaves by microorganisms. Nature. 1969;222:1199–200. doi: 10.1038/2221199a0.
    1. Rojavin MA, Ziskin MC. Effect of millimeter waves on survival of UVC‐exposed Escherichia coli. Bioelectromagnetics. 1995;16:188–96. doi: 10.1002/bem.2250160307.
    1. Pakhomova ON, Pakhomov AG, Akyel Y. Effect of millimeter waves on UV-induced recombination and mutagenesis in yeast. Bioelectrochem Bioenerg. 1997;43:227–32. doi: 10.1016/S0302-4598(96)05158-6.
    1. Cohen I, Cahan R, Shani G, Cohen E, Abramovich A. Effect of 99 GHz continuous millimeter wave electro-magnetic radiation on E. coli viability and metabolic activity. Int J Radiat Biol. 2010;86:390–9. doi: 10.3109/09553000903567912.
    1. Tadevosyan H, Kalantaryan V, Trchounian A. Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics. Cell Biochem Biophys. 2008;51:97–103. doi: 10.1007/s12013-008-9020-9.
    1. Torgomyan H, Trchounian A. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation–reduction state. Biochem Biophys Res Commun. 2011;414:265–9. doi: 10.1016/j.bbrc.2011.09.069.
    1. Torgomyan H, Kalantaryan V, Trchounian A. Low intensity electromagnetic irradiation with 70.6 and 73 GHz frequencies affects Escherichia coli growth and changes water properties. Cell Biochem Biophys. 2011;60:275–81. doi: 10.1007/s12013-010-9150-8.
    1. Torgomyan H, Hovnanyan K, Trchounian A. Escherichia coli growth changes by the mediated effects after low-intensity electromagnetic irradiation of extremely high frequencies. Cell Biochem Biophys. 2012;65:445–54. doi: 10.1007/s12013-012-9448-9.
    1. Torgomyan H, Ohanyan V, Blbulyan S, Kalantaryan V, Trchounian A. Electromagnetic irradiation of Enterococcus hirae at low-intensity 51.8-and 53.0-GHz frequencies: changes in bacterial cell membrane properties and enhanced antibiotics effects. FEMS microbiol Lett. 2012;329:131–7. doi: 10.1111/j.1574-6968.2012.02512.x.
    1. Soghomonyan D, Trchounian A. Comparable effects of low-intensity electromagnetic irradiation at the frequency of 51.8 and 53 GHz and antibiotic ceftazidime on Lactobacillus acidophilus growth and survival. Cell Biochem Biophys. 2013;67:829–35. doi: 10.1007/s12013-013-9571-2.
    1. Hovnanyan K, Kalantaryan V, Trchounian A. The distinguishing effects of low‐intensity electromagnetic radiation of different extremely high frequencies on Enterococcus hirae: growth rate inhibition and scanning electron microscopy analysis. Lett Appl microbiol. 2017;65:220–5. doi: 10.1111/lam.12764.
    1. Grundler W, Keilmann F. Nonthermal effects of millimeter microwaves on yeast growth. Z Naturforsch. 1977;33:15–22. doi: 10.1515/znc-1978-1-205.
    1. Grundler W, Keilmann F. Sharp resonances in yeast growth prove nonthermal sensitivity to microwaves. Phys Rev Lett. 1983;51:1214. doi: 10.1103/PhysRevLett.51.1214.
    1. Furia L, Hill DW, Gandhi OMP. Effect of millimeter-wave irradiation on growth of Saccharomyces cerevisiae. IEEE Trans Biom Eng. 1986;33:993–9. doi: 10.1109/TBME.1986.325865.
    1. Gos P, Eicher B, Kohli J, Heyer WD. Extremely high frequency electromagnetic fields at low power density do not affect the division of exponential phase Saccharomyces cerevisiae cells. Bioelectromagnetics. 1997;18:142–55. doi: 10.1002/(SICI)1521-186X(1997)18:2<142::AID-BEM7>;2-2.
    1. Chidichimo G, Beneduci A, Nicoletta M, Critelli M, De RR, Tkatchenko Y, et al. Selective inhibition of tumoral cells growth by low power millimeter waves. Anticancer Res. 2002;22:1681–8.
    1. Beneduci A, Chidichimo G, Tripepi S, Perrotte E. Frequency and irradiation time-dependant antiproliferative effect of low-power millimeter waves on RPMI 7932 human melanoma cell line. Anticancer Res. 2005;25(2A):1023–8.
    1. Beneduci A, Chidichimo G, Tripepi S, Perrotte E. Transmission electron microscopy study of the effects produced by wide-band low-power millimeter waves on MCF-7 human breast cancer cells in culture. Anticancer Res. 2005;25(2A):1009–13.
    1. Beneduci A. Evaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells. Cell Biochem Biophys. 2009;1:25–32. doi: 10.1007/s12013-009-9053-8.
    1. Beneduci A, Chidichimo G, Tripepi S, Perrotta E, Cufone F. Antiproliferative effect of millimeter radiation on human erythromyeloid leukemia cell line K562 in culture: ultrastructural-and metabolic-induced changes. Bioelectrochemistry. 2007;70:214–20. doi: 10.1016/j.bioelechem.2006.07.008.
    1. Yaekashiwa N, Otsuki S, Hayashi SI, Kawase K. Investigation of the non-thermal effects of exposing cells to 70–300 GHz irradiation using a widely tunable source. J Radiat Res. 2017;59:116–21. doi: 10.1093/jrr/rrx075.
    1. Badzhinyan SA, Sayadyan AB, Sarkisyan NK, Grigoryan RM, Gasparyan GG. Lethal effect of electromagnetic radiation of the millimeter wavelength range on cell cultures of chicken embryo. Dokl Biochem Biophys. 2001;377:94–5. doi: 10.1023/A:1011531823898.
    1. Shiina T, Suzuki Y, Kasai Y, Inami Y, Taki M, Wake K. Effect of two-times 24 h exposures to 60 GHz millimeter-waves on neurite outgrowth in PC12VG cells in consideration of polarization. IEEE Int Sympo Electromag Compat. 2014;13:166–9.
    1. Le Quément C, Nicolas Nicolaz C, Zhadobov M, Desmots F, Sauleau R, Aubry M, et al. Whole‐genome expression analysis in primary human keratinocyte cell cultures exposed to 60 GHz radiation. Bioelectromagnetics. 2012;33:147–58. doi: 10.1002/bem.20693.
    1. Zhadobov M, Sauleau R, Le Coq L, Thouroude D, Orlov I, Michel D. 60 GHz electromagnetic fields do not activate stress-sensitive gene expression. IEEE 11th Int Sympo on Antenna Technol and appl electromag. 2005;11:1–4.
    1. Zhadobov M, Sauleau R, Le Coq L, Debure L, Thouroude D, Michel D, et al. Low‐power millimeter wave radiations do not alter stress‐sensitive gene expression of chaperone proteins. Bioelectromagnetics. 2007;28:188–96. doi: 10.1002/bem.20285.
    1. Zhadobov M, Nicolaz CN, Sauleau R, Desmots F, Thouroude D, Michel D, et al. Evaluation of the potential biological effects of the 60-GHz millimeter waves upon human cells. IEEE Trans Antennas Propag. 2009;57:2949–56. doi: 10.1109/TAP.2009.2029308.
    1. Nicolaz CN, Zhadobov M, Desmots F, Ansart A, Sauleau R, Thouroude D, et al. Study of narrow band millimeter‐wave potential interactions with endoplasmic reticulum stress sensor genes. Bioelectromagnetics. 2008;30:365–73. doi: 10.1002/bem.20481.
    1. Nicolaz CN, Zhadobov M, Desmots F, Sauleau R, Thouroude D, Michel D, et al. Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress. Cell Biol Toxicol. 2009;25:471–8. doi: 10.1007/s10565-008-9101-y.
    1. Belyaev IY, Alipov YD, Shcheglov VS, Lystsov VN. Resonance effect of microwaves on the genome conformational state of E. coli cells. Z Naturforsch C. 1992;47:621–7. doi: 10.1515/znc-1992-7-822.
    1. Belyaev IY, Shcheglov VS, Alipov YD. Existence of selection rules on helicity during discrete transitions of the genome conformational state of E. coli cells exposed to low-level millimetre radiation. Bioelectrochem Bioenerg. 1992;27:405–11. doi: 10.1016/0302-4598(92)87015-M.
    1. Belyaev IY, Shcheglov VS, Alipov YD. Selection rules on helicity during discrete transitions of the genome conformational state in intact and X-rayed cells of E. coli in millimeter range of electromagnetic field. Charg Field Eff Biosyst. 1992;3:115–26. doi: 10.1007/978-1-4615-9837-4_10.
    1. Belyaev I, Alipov YD, Shcheglov VS, Chromosome DNA. as a target of resonant interaction between Escherichia coli cells and low–intensity millimeter waves. Electro Magnetobiol. 1992;11:97–108. doi: 10.3109/15368379209009820.
    1. Belyaev IY, Alipov YD, Polunin VA, Shcheglov VS. Evidence for dependence of resonant frequency of millimeter wave interaction with Escherichia coli K12 cells on haploid genome length. Electro Magnetobiol. 1993;12:39–49. doi: 10.3109/15368379309012861.
    1. Belyaev IY, Shcheglov VS, Alipov YD, Radko SP. Regularities of separate and combined effects of circularly polarized millimeter waves on E. coli cells at different phases of culture growth. Bioelectrochem Bioenerg. 1993;31:49–63. doi: 10.1016/0302-4598(93)86105-A.
    1. Belyaev IY, Alipov YD, Shcheglov VS, Polunin VA, Aizenberg OA. Cooperative response of Escherichia coli cells to the resonance effect of millimeter waves at super low intensity. Electro Magnetobiol. 1994;13:53–66. doi: 10.3109/15368379409030698.
    1. Belyaev IY, Kravchenko VG. Resonance effect of low-intensity millimeter waves on the chromatin conformational state of rat thymocytes. Z Naturforsch. 1994;49:352–8. doi: 10.1515/znc-1994-5-612.
    1. Belyaev IY, Shcheglov VS, Alipov YD, Polunin VA. Resonance effect of millimeter waves in the power range from 10‐19 to 3× 10‐3 W/cm2 on Escherichia coli cells at different concentrations. Bioelectromagnetics. 1996;17:312–21. doi: 10.1002/(SICI)1521-186X(1996)17:4<312::AID-BEM7>;2-6.
    1. Shcheglov VS, Belyaev I, Alipov YD, Ushakov VL. Power-dependent rearrangement in the spectrum of resonance effect of millimeter waves on the genome conformational state of Escherichia Coli cells. Electro Magnetobiol. 1997;16:69–82. doi: 10.3109/15368379709016174.
    1. Shcheglov VS, Alipov ED, Belyaev I. Cell-to-cell communication in response of E. coli cells at different phases of growth to low-intensity microwaves. Biochim biophys Acta. 2002;1572:101–6. doi: 10.1016/S0304-4165(02)00283-0.
    1. Gandhi OP, Hagmann MJ, Hill DW, Partlow LM, Bush L. Millimeter wave absorption spectra of biological samples. Bioelectromagnetics. 1980;1:285–98. doi: 10.1002/bem.2250010305.
    1. Bush LG, Hill DW, Riazi A, Stensaas LJ, Partlow LM, Gandhi OP. Effects of millimeter‐wave radiation on monolayer cell cultures. III. A search for frequency‐specific athermal biological effects on protein synthesis. Bioelectromagnetics. 1981;2:151–9. doi: 10.1002/bem.2250020206.
    1. Belyaev IY, Shcheglov VS, Alipov ED, Ushakov VD. Nonthermal effects of extremely high-frequency microwaves on chromatin conformation in cells in vitro—dependence on physical, physiological, and genetic factors. IEEE Trans Micro Theory Tech. 2000;48:2172–9. doi: 10.1109/22.884211.
    1. Pakhomov AG, Akyel Y, Pakhomova ON, Stuck BE, Murphy MR. Current state and implications of research on biological effects of millimeter waves: a review of the literature. Bioelectromagnetics. 1998;19:393–413. doi: 10.1002/(SICI)1521-186X(1998)19:7<393::AID-BEM1>;2-X.
    1. Minasyan SM, Grigoryan GY, Saakyan SG, Akhumyan AA, Kalantaryan VP. Effects of the action of microwave-frequency electromagnetic radiation on the spike activity of neurons in the supraoptic nucleus of the hypothalamus in rats. Neurosci Behav Physiol. 2007;37:175–80. doi: 10.1007/s11055-007-0165-6.
    1. Pikov V, Arakaki X, Harrington M, Fraser SE, Siegel PH. Modulation of neuronal activity and plasma membrane properties with low-power millimeter waves in organotypic cortical slices. J Neural Eng. 2010;7:045003. doi: 10.1088/1741-2560/7/4/045003.
    1. Munemori J, Ikeda T. Effects of low-level microwave radiation on the eye of the crayfish. Med Biol Eng Comput. 1982;20:84–8. doi: 10.1007/BF02441855.
    1. Munemori J, Ikeda T. Biological effects of X-band microwave radiation on the eye of the crayfish. Med Biol Eng Comput. 1984;22:263–7. doi: 10.1007/BF02442754.
    1. Pakhomov AG, Prol HK, Mathur SP, Akyel Y, Campbell CB. Frequency-specific effects of millimeter-wavelength electromagnetic radiation in isolated nerve. Electro Magnetobiol. 1997;16:43–57. doi: 10.3109/15368379709016172.
    1. Pakhomov AG, Prol HK, Mathur SP, Akyel Y, Campbell CB. Search for frequency‐specific effects of millimeter‐wave radiation on isolated nerve function. Bioelectromagnetics. 1997;18:324–34. doi: 10.1002/(SICI)1521-186X(1997)18:4<324::AID-BEM5>;2-4.
    1. Pakhomov AG, Prol HK, Mathur SP, Akyel Y, Campbell CB. Role of field intensity in the biological effectiveness of millimeter waves at a resonance frequency. Bioelectrochem Bioenerg. 1997;43:27–33. doi: 10.1016/S0302-4598(97)00022-6.
    1. Pikov V, Siegel PH. Millimeter wave-induced changes in membrane properties of leech Retzius neurons. Photonic Therapeutics Diagnostics. 2011;7883:56–1.
    1. Romanenko S, Siegel PH, Pikov V. Microdosimetry and physiological effects of millimeter wave irradiation in isolated neural ganglion preparation. IEEE 2013 International kharkov symposium on physics and engineering of microwaves, millimeter and submillimeter waves. IEEE. 2013;13:512–6.
    1. Romanenko S, Siegel PH, Wagenaar DA, Pikov V. Effects of millimeter wave irradiation and equivalent thermal heating on the activity of individual neurons in the leech ganglion. J Neurophysiol. 2014;112:2423–31. doi: 10.1152/jn.00357.2014.
    1. Beneduci A, Filippelli L, Cosentino K, Calabrese ML, Massa R, Chidichimo G. Microwave induced shift of the main phase transition in phosphatidylcholine membranes. Bioelectrochemistry. 2012;1:18–24. doi: 10.1016/j.bioelechem.2011.10.003.
    1. Beneduci A, Cosentino K, Chidichimo G. Millimeter wave radiations affect membrane hydration in phosphatidylcholine vesicles. Materials. 2013;6:2701–12. doi: 10.3390/ma6072701.
    1. Beneduci A, Cosentino K, Romeo S, Massa R, Chidichimo G. Effect of millimetre waves on phosphatidylcholine membrane models: a non-thermal mechanism of interaction. Soft Matter. 2014;10:5559–67. doi: 10.1039/C4SM00551A.
    1. Geletyuk VI, Kazachenko VN, Chemeris NK, Fesenko EE. Dual effects of microwaves on single Ca2+-activated K+ channels in cultured kidney cells Vero. FEBS Lett. 1995;359:85–8. doi: 10.1016/0014-5793(95)00002-Q.
    1. Chen Q, Zeng QL, Lu DQ, Chiang H. Millimeter wave exposure reverses TPA suppression of gap junction intercellular communication in HaCaT human keratinocytes. Bioelectromagnetics. 2004;25:1–4. doi: 10.1002/bem.10140.
    1. Shckorbatov YG, Shakhbazov VG, Navrotskaya VV, Grabina VA, Sirenko SP, Fisun AI, et al. Application of intracellular microelectrophoresis to analysis of the influence of the low‐level microwave radiation on electrokinetic properties of nuclei in human epithelial cells. Electrophoresis. 2002;23:2074–9. doi: 10.1002/1522-2683(200207)23:13<2074::AID-ELPS2074>;2-A.
    1. Zhadobov M, Sauleau R, Vié V, Himdi M, Le Coq L, Thouroude D. Interactions between 60-GHz millimeter waves and artificial biological membranes: dependence on radiation parameters. IEEE Trans Micro Theory Tech. 2006;54:2534–42. doi: 10.1109/TMTT.2006.875811.
    1. Deghoyan A, Heqimyan A, Nikoghosyan A, Dadasyan E, Ayrapetyan S. Cell bathing medium as a target for non thermal effect of millimeter waves. Electromag Biol Med. 2012;31:132–42. doi: 10.3109/15368378.2011.624659.
    1. D’Agostino S, Della Monica C, Palizzi E, Di Pietrantonio F, Benetti M, Cannatà D, et al. Extremely high frequency electromagnetic fields facilitate electrical signal propagation by increasing transmembrane potassium efflux in an artificial axon model. Sci Rep. 2018;8:9299. doi: 10.1038/s41598-018-27630-8.
    1. Ramundo-Orlando A, Longo G, Cappelli M, Girasole M, Tarricone L, Beneduci A, et al. The response of giant phospholipid vesicles to millimeter waves radiation. Biochem Biophys Acta. 2009;1788:1497–507. doi: 10.1016/j.bbamem.2009.04.006.
    1. Di Donato L, Cataldo M, Stano P, Massa R, Ramundo-Orlando A. Permeability changes of cationic liposomes loaded with carbonic anhydrase induced by millimeter waves radiation. Radiat Res. 2012;178:437–46. doi: 10.1667/RR2949.1.
    1. Cosentino K, Beneduci A, Ramundo-Orlando A, Chidichimo G. The influence of millimeter waves on the physical properties of large and giant unilamellar vesicles. J Biol Phys. 2013;39:395–410. doi: 10.1007/s10867-012-9296-2.
    1. Manikowska E, Luciani JM, Servantie B, Czerski P, Obrenovitch J, Stahl A. Effects of 9.4 GHz microwave exposure on meiosis in mice. Experientia. 1979;35:388–90. doi: 10.1007/BF01964370.
    1. Subbotina TI, Tereshkina OV, Khadartsev AA, Yashin AA. Effect of low-intensity extremely high frequency radiation on reproductive function in Wistar rats. Bull Exp Biol Med. 2006;142:189–90. doi: 10.1007/s10517-006-0324-8.
    1. Volkova NA, Pavlovich EV, Gapon AA, Nikolov OT. Effects of millimeter-wave electromagnetic exposure on the morphology and function of human cryopreserved spermatozoa. Bull Exp Biol Med. 2014;157:574–6. doi: 10.1007/s10517-014-2618-6.
    1. Kesari KK, Behari J. Microwave exposure affecting reproductive system in male rats. Appl Biochem Biotechnol. 2010;162:416–28. doi: 10.1007/s12010-009-8722-9.
    1. Kumar S, Kesari KK, Behari J. Influence of microwave exposure on fertility of male rats. Fertil Steril. 2011;95:1500–2. doi: 10.1016/j.fertnstert.2010.04.078.
    1. Gapeyev AB, Safronova VG, Chemeris NK, Fesenko EE. Inhibition of the production of reactive oxygen species in mouse peritoneal neutrophils by millimeter wave radiation in the near and far field zones of the radiator. Bioelectrochem Bioenerg. 1997;43:217–20. doi: 10.1016/S0302-4598(96)05155-0.
    1. Gapeyev AB, Yakushina VS, Chemeris NK, Fesenko EE. Modification of production of reactive oxygen species in mouse peritoneal neutrophils on exposure to low-intensity modulated millimeter wave radiation. Bioelectrochem Bioenerg. 1998;46:267–72. doi: 10.1016/S0302-4598(98)00153-6.
    1. Safronova VG, Gabdoulkhakova AG, Santalov BF. Immunomodulating action of low intensity millimeter waves on primed neutrophils. Bioelectromagnetics. 2002;23:599–606. doi: 10.1002/bem.10056.
    1. Homenko A, Kapilevich B, Kornstein R, Firer MA. Effects of 100 GHz radiation on alkaline phosphatase activity and antigen–antibody interaction. Bioelectromagnetics. 2009;30:167–75. doi: 10.1002/bem.20466.
    1. Gapeyev AB, Kulagina TP, Aripovsky AV, Chemeris NK. The role of fatty acids in anti‐inflammatory effects of low‐intensity extremely high‐frequency electromagnetic radiation. Bioelectromagnetics. 2011;32:388–95. doi: 10.1002/bem.20645.
    1. Gapeyev AB, Kulagina TP, Aripovsky AV. Exposure of tumor-bearing mice to extremely high-frequency electromagnetic radiation modifies the composition of fatty acids in thymocytes and tumor tissue. Int J Radiat Biol. 2013;89:602–10. doi: 10.3109/09553002.2013.784426.
    1. Gapeyev AB, Aripovsky AV, Kulagina TP. Modifying effects of low-intensity extremely high-frequency electromagnetic radiation on content and composition of fatty acids in thymus of mice exposed to X-rays. Int J Radiat Biol. 2015;91:277–85. doi: 10.3109/09553002.2014.980467.
    1. Rotkovská D, Moc J, Kautská J, Bartonícková A, Keprtová J, Hofer M. Evaluation of the biological effects of police radar RAMER 7F. Environ Health Perspect. 1993;101:134–6.
    1. Müller J, Hadeler KP, Müller V, Waldmann J, Landstorfer FM, Wisniewski R, et al. Influence of low power cm-/mm-microwaves on cardiovascular function. Int J Environ Health Res. 2004;14:331–41. doi: 10.1080/09603120400004006.
    1. Webb SJ, Booth AD. Microwave absorption by normal and tumor cells. Science. 1971;1:72–4. doi: 10.1126/science.174.4004.72.
    1. Stensaas LJ, Partlow LM, Bush LG, Iversen PL, Hill DW, Hagmann MJ, et al. Effects of millimeter‐wave radiation on monolayer cell cultures. II. Scanning and transmission electron microscopy. Bioelectromagnetics. 1981;2:141–50. doi: 10.1002/bem.2250020205.
    1. Bellossi A, Dubost G, Moulinoux JP, Himdi M, Ruelloux M, Rocher C. Biological effects of millimeter wave irradiation on mice-preliminary results. IEEE Trans Micro Theory Tech. 2000;48:2104–10. doi: 10.1109/22.884201.
    1. Olchowik G, Maj JG. Inhibitory action of microwave radiation on gamma-glutamyl transpeptidase activity in liver of rats treated with hydrocortisone. Folia Histochemica Et Cytobiologica. 2000;38:189–91.
    1. Khizhnyak EP, Ziskin MC. Temperature oscillations in liquid media caused by continuous (nonmodulated) millimeter wavelength electromagnetic irradiation. Bioelectromagnetics. 1996;17:223–9. doi: 10.1002/(SICI)1521-186X(1996)17:3<223::AID-BEM8>;2-5.
    1. Sarapultseva EI, Igolkina JV, Tikhonov VN, Dubrova YE. The in vivo effects of low-intensity radiofrequency fields on the motor activity of protozoa. Int J Radiat Biol. 2014;90:262–7. doi: 10.3109/09553002.2014.868612.
    1. Robinette CD, Silverman C, Jablon S. Effects upon health of occupational exposure to microwave radiation (radar) Am J Epidemiol. 1980;112:39–53. doi: 10.1093/oxfordjournals.aje.a112975.
    1. Groves FD, Page WF, Gridley G, Lisimaque L, Stewart PA, Tarone RE, et al. Cancer in Korean war navy technicians: mortality survey after 40 years. Am J Epidemiol. 2002;155:810–8. doi: 10.1093/aje/155.9.810.
    1. Degrave E, Autier P, Grivegnée AR, Zizi M. All-cause mortality among Belgian military radar operators: a 40-year controlled longitudinal study. Eur J Epidemiol. 2005;20:677–81. doi: 10.1007/s10654-005-7922-z.
    1. Degrave E, Meeusen B, Grivegnée AR, Boniol M, Autier P. Causes of death among Belgian professional military radar operators: a 37‐year retrospective cohort study. Int J Cancer. 2009;124:945–51. doi: 10.1002/ijc.23988.
    1. Dabouis V, Arvers P, Debouzy JC, Sebbah C, Crouzier D, Perrin A. First epidemiological study on occupational radar exposure in the French Navy: a 26-year cohort study. Int J Environ Health Res. 2016;26:131–44. doi: 10.1080/09603123.2015.1061112.
    1. Hayes RB, Brown LM, Pottern LM, Gomez M, Kardaun JW, Hoover RN, et al. Occupation and risk for testicular cancer: a case-control study. Int J Epidemiol. 1990;19:825–31. doi: 10.1093/ije/19.4.825.
    1. Davis RL, Mostofi FK. Cluster of testicular cancer in police officers exposed to hand‐held radar. Am J Ind Med. 1993;24:231–3. doi: 10.1002/ajim.4700240209.
    1. Hardell LE, Näsman A, Ohlson CG, Fredrikson MA. Case-control study on risk factors for testicular cancer. Int J Oncol. 1998;13:1299–602.
    1. Baumgardt-Elms C, Ahrens W, Bromen K, Boikat U, Stang A, Jahn I, et al. Testicular cancer and electromagnetic fields (EMF) in the workplace: results of a population-based case–control study in Germany. Cancer Causes Control. 2002;13:895–902. doi: 10.1023/A:1021999000651.
    1. Walschaerts M, Muller A, Auger J, Bujan L, Guérin JF, Lannou DL, et al. Environmental, occupational and familial risks for testicular cancer: a hospital‐based case‐control study. Int J Androl. 2007;30:222–9. doi: 10.1111/j.1365-2605.2007.00805.x.
    1. Grayson JK. Radiation exposure, socioeconomic status, and brain tumor risk in the US Air Force: a nested case-control study. Am J Epidemiol. 1996;143:480–6. doi: 10.1093/oxfordjournals.aje.a008768.
    1. Santana VS, Silva M, Loomis D. Brain neoplasms among naval military men. Int J Occup Environ health. 1999;5:88–94. doi: 10.1179/oeh.1999.5.2.88.
    1. Holly EA, Aston DA, Ahn DK, Smith AH. Intraocular melanoma linked to occupations and chemical exposures. Epidemiology. 1996;1:55–61. doi: 10.1097/00001648-199601000-00010.
    1. Stang A, Anastassiou G, Ahrens W, Bromen K, Bornfeld N, Jöckel KH. The possible role of radiofrequency radiation in the development of uveal melanoma. Epidemiology. 2001;1:7–12. doi: 10.1097/00001648-200101000-00003.
    1. La Vecchia CA, Negri E, D’avanzo BA, Franceschi S. Occupation and the risk of bladder cancer. Int J Epidemiol. 1990;19:264–8. doi: 10.1093/ije/19.2.264.
    1. Finkelstein MM. Cancer incidence among Ontario police officers. Am J Ind Med. 1998;34:157–62. doi: 10.1002/(SICI)1097-0274(199808)34:2<157::AID-AJIM8>;2-U.
    1. Fabbro-Peray P, Daures JP, Rossi JF. Environmental risk factors for non-Hodgkin’s lymphoma: a population-based case–control study in Languedoc-Roussillon, France. Cancer Causes Control. 2001;12:201–12. doi: 10.1023/A:1011274922701.
    1. Variani AS, Saboori S, Shahsavari S, Yari S, Zaroushani V. Effect of occupational exposure to radar radiation on cancer risk: a systematic review and meta-analysis. Asian Pac J cancer prev. 2019;20:3211–9. doi: 10.31557/APJCP.2019.20.11.3211.
    1. Weyandt TB, Schrader SM, Turner TW, Simon SD. Semen analysis of military personnel associated with military duty assignments. Reprod Toxicol. 1996;10:521–8. doi: 10.1016/S0890-6238(96)00139-6.
    1. Hjollund NH, Bonde JP, Skotte J. Semen analysis of personnel operating military radar equipment. Reprod Toxicol. 1997;11:897. doi: 10.1016/S0890-6238(97)00074-9.
    1. Schrader SM, Langford RE, Turner TW, Breitenstein MJ, Clark JC, Jenkins BL. Reproductive function in relation to duty assignments among military personnel. Reprod Toxicol. 1998;12:465–8. doi: 10.1016/S0890-6238(98)00023-9.
    1. Velez De La Calle JF, Rachou E, le Martelot MT, Ducot B, Multigner L, Thonneau PF. Male infertility risk factors in a French military population. Hum reprod. 2001;16:481–6. doi: 10.1093/humrep/16.3.481.
    1. Baste V, Riise T, Moen BE. Radiofrequency electromagnetic fields; male infertility and sex ratio of offspring. Eur J Epidemiol. 2008;23:369–77. doi: 10.1007/s10654-008-9236-4.
    1. Møllerløkken OJ, Moen BE. Is fertility reduced among men exposed to radiofrequency fields in the Norwegian Navy? Bioelectromagnetics. 2008;29:345–52. doi: 10.1002/bem.20400.
    1. De Roos AJ, Teschke K, Savitz DA, Poole C, Grufferman S, Pollock BH, et al. Parental occupational exposures to electromagnetic fields and radiation and the incidence of neuroblastoma in offspring. Epidemiology. 2001;1:508–17. doi: 10.1097/00001648-200109000-00008.
    1. Mageroy N, Mollerlokken OJ, Riise T, Koefoed V, Moen BE. A higher risk of congenital anomalies in the offspring of personnel who served aboard a Norwegian missile torpedo boat. Occup Environ Med. 2006;63:92–7. doi: 10.1136/oem.2005.021113.
    1. Baste V, Moen BE, Oftedal G, Strand LA, Bjørge L, Mild KH. Pregnancy outcomes after paternal radiofrequency field exposure aboard fast patrol boats. J Occup Environ Med. 2012;54:431–8. doi: 10.1097/JOM.0b013e3182445003.
    1. Beard JD, Kamel F. Military service, deployments, and exposures in relation to amyotrophic lateral sclerosis etiology and survival. Epidemiol Rev. 2015;37:55–70. doi: 10.1093/epirev/mxu001.
    1. Garaj-Vrhovac V, Gajski G, Pažanin S, Šarolić A, Domijan AM, Flajs D, et al. Assessment of cytogenetic damage and oxidative stress in personnel occupationally exposed to the pulsed microwave radiation of marine radar equipment. Int J Hyg Environ Health. 2011;214:59–65. doi: 10.1016/j.ijheh.2010.08.003.
    1. Mortazavi SM, Shahram TA, Dehghan N. Alterations of visual reaction time and short term memory in military radar personnel. Iran J Public Health. 2013;42:428.
    1. Singh S, Mani KV, Kapoor N. Effect of occupational EMF exposure from radar at two different frequency bands on plasma melatonin and serotonin levels. Int J Radiat Biol. 2015;91:426–34. doi: 10.3109/09553002.2015.1004466.
    1. Ahlbom A, Green A, Kheifets L, Savitz D, Swerdlow A. ICNIRP standing committee on epidemiology: epidemiology of health effects of radiofrequency exposure. Environ Health Perspect. 2004;112:1741–54. doi: 10.1289/ehp.7306.
    1. Savitz DA. Exposure assessment strategies in epidemiological studies of health effects of electric and magnetic fields. Sci Total Environ. 1995;168:143–53. doi: 10.1016/0048-9697(95)04618-B.
    1. J‐H Kim S, Ioannides SJ, Elwood JM. Trends in incidence of primary brain cancer in New Zealand, 1995 to 2010. Aust NZ J Public Health. 2015;39:148–52. doi: 10.1111/1753-6405.12338.
    1. Karipidis K, Elwood M, Benke G, Sanagou M, Tjong L, Croft RJ. Mobile phone use and incidence of brain tumour histological types, grading or anatomical location: a population-based ecological study. BMJ Open. 2018;8:e024489. doi: 10.1136/bmjopen-2018-024489.

Source: PubMed

3
Subscribe