Alerting and Circadian Effects of Short-Wavelength vs. Long-Wavelength Narrow-Bandwidth Light during a Simulated Night Shift

Erlend Sunde, Torhild Pedersen, Jelena Mrdalj, Eirunn Thun, Janne Grønli, Anette Harris, Bjørn Bjorvatn, Siri Waage, Debra J Skene, Ståle Pallesen, Erlend Sunde, Torhild Pedersen, Jelena Mrdalj, Eirunn Thun, Janne Grønli, Anette Harris, Bjørn Bjorvatn, Siri Waage, Debra J Skene, Ståle Pallesen

Abstract

Light can be used to facilitate alertness, task performance and circadian adaptation during night work. Novel strategies for illumination of workplaces, using ceiling mounted LED-luminaires, allow the use of a range of different light conditions, altering intensity and spectral composition. This study (ClinicalTrials.gov Identifier NCT03203538) investigated the effects of short-wavelength narrow-bandwidth light (λmax = 455 nm) compared to long-wavelength narrow-bandwidth light (λmax = 625 nm), with similar photon density (~2.8 × 1014 photons/cm2/s) across light conditions, during a simulated night shift (23:00-06:45 h) when conducting cognitive performance tasks. Light conditions were administered by ceiling mounted LED-luminaires. Using a within-subjects repeated measurements study design, a total of 34 healthy young adults (27 females and 7 males; mean age = 21.6 years, SD = 2.0 years) participated. The results revealed significantly reduced sleepiness and improved task performance during the night shift with short-wavelength light compared to long-wavelength light. There was also a larger shift of the melatonin rhythm (phase delay) after working a night shift in short-wavelength light compared to long-wavelength light. Participants' visual comfort was rated as better in the short-wavelength light than the long-wavelength light. Ceiling mounted LED-luminaires may be feasible to use in real workplaces, as these have the potential to provide light conditions that are favorable for alertness and performance among night workers.

Keywords: alertness; circadian rhythm; night work; performance; short-wavelength light; sleepiness.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Double-raster plot of the simulated night shift protocol. The protocol included two simulated night shifts (from 23:00 to 06:45 h) performed in a laboratory with long-wavelength narrow-bandwidth light (A) and short-wavelength narrow-bandwidth light (B). The night shifts were separated by 4 weeks and the order of conditions was counterbalanced. White bars indicate enrollment and practice session (before the first night shift only) in the laboratory. Black bars indicate assumed sleep periods at home. Colored bars indicate night shifts in the laboratory. Black dots indicate primary test bouts including the Positive and Negative Affect Schedule (PANAS), the Karolinska Sleepiness Scale (KSS), a Psychomotor Vigilance Task (PVT), and a Digit Symbol Substitution Test (DSST). White diamonds indicate salivary dim-light melatonin sampling at home.
Figure 2
Figure 2
Spectral distribution of the short-wavelength narrow-bandwidth light (solid line) and the long-wavelength narrow-bandwidth light (dotted line). Means and SD (error bars) for measurements (vertical plane) at eye level.
Figure 3
Figure 3
Mood, sleepiness and performance during a simulated night shift in long-wavelength narrow-bandwidth light (red bars) and short-wavelength narrow-bandwidth light (blue bars). The bars represent estimated marginal means with error bars indicating standard error. (A) Positive mood assessed with the Positive and Negative Affect Schedule (PANAS). (B) Negative mood assessed with PANAS. (C) Subjective sleepiness assessed with the Karolinska Sleepiness Scale (KSS). (D) Reciprocal response times (mean 1/RT) on the Psychomotor Vigilance Task (PVT). (E) RTs excluding lapses (mean RT500) on the PVT. (F) Number of lapses (RTs ≥ 500 ms) on the PVT. (G) Number of correct responses on the Digit Symbol Substitution Test (DSST). Significant differences indicated for variables with a significant Light by Time interaction only. Number symbols (#) indicate significant difference compared to the first test bout (23:30 h), and asterix symbols (*) indicate significant difference between light conditions. ##; ** = p < 0.01, ###; *** = p < 0.001.
Figure 4
Figure 4
Visual comfort assessed with the headache and eye strain scale (1–4 (severe)) during a simulated night shift in long-wavelength narrow-bandwidth light (triangles) and short-wavelength narrow-bandwidth light (circles). Data points are the estimated marginal means with error bars indicating standard error. Significant differences between light conditions indicated for variables with a significant Light by Time interaction only. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.
Figure 5
Figure 5
Phase markers for individual participants before (Baseline) and after (Final) a simulated night shift in (A) long-wavelength narrow-bandwidth light and (B) short-wavelength narrow-bandwidth light. Open circles indicate salivary dim light melatonin onset (DLMO) for each participant. Filled diamond squares indicate estimated temperature minimum (DLMO + 7 h) for each participant. Lines are drawn between the baseline and final markers for each participant. The vertical dotted lines and colored bars indicate the start and end times of the night shift and light exposure (23:00–06:45 h).

References

    1. Berson D.M., Dunn F.A., Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295:1070–1073. doi: 10.1126/science.1067262.
    1. Hattar S., Liao H.W., Takao M., Berson D.M., Yau K.W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science. 2002;295:1065–1070. doi: 10.1126/science.1069609.
    1. Provencio I., Rodriguez I.R., Jiang G., Hayes W.P., Moreira E.F., Rollag M.D. A novel human opsin in the inner retina. J. Neurosci. 2000;20:600–605. doi: 10.1523/JNEUROSCI.20-02-00600.2000.
    1. Vandewalle G., Maquet P., Dijk D.J. Light as a modulator of cognitive brain function. Trends Cogn. Sci. 2009;13:429–438. doi: 10.1016/j.tics.2009.07.004.
    1. Chellappa S.L., Gordijn M.C., Cajochen C. Can light make us bright? Effects of light on cognition and sleep. Prog. Brain Res. 2011;190:119–133. doi: 10.1016/b978-0-444-53817-8.00007-4.
    1. LeGates T.A., Fernandez D.C., Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 2014;15:443–454. doi: 10.1038/nrn3743.
    1. Guler A.D., Ecker J.L., Lall G.S., Haq S., Altimus C.M., Liao H.W., Barnard A.R., Cahill H., Badea T.C., Zhao H., et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature. 2008;453:102–105. doi: 10.1038/nature06829.
    1. Warthen D.M., Provencio I. The role of intrinsically photosensitive retinal ganglion cells in nonimage-forming responses to light. Eye Brain. 2012;4:43–48. doi: 10.2147/eb.S27839.
    1. Thapan K., Arendt J., Skene D.J. An action spectrum for melatonin suppression: Evidence for a novel non-rod, non-cone photoreceptor system in humans. J. Physiol. 2001;535:261–267. doi: 10.1111/j.1469-7793.2001.t01-1-00261.x.
    1. Brainard G.C., Hanifin J.P., Greeson J.M., Byrne B., Glickman G., Gerner E., Rollag M.D. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 2001;21:6405–6412. doi: 10.1523/JNEUROSCI.21-16-06405.2001.
    1. Lockley S.W., Brainard G.C., Czeisler C.A. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J. Clin. Endocrinol. Metab. 2003;88:4502–4505. doi: 10.1210/jc.2003-030570.
    1. Gooley J.J., Rajaratnam S.M., Brainard G.C., Kronauer R.E., Czeisler C.A., Lockley S.W. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci. Transl. Med. 2010;2:31ra33. doi: 10.1126/scitranslmed.3000741.
    1. Gamlin P.D., McDougal D.H., Pokorny J., Smith V.C., Yau K.W., Dacey D.M. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis. Res. 2007;47:946–954. doi: 10.1016/j.visres.2006.12.015.
    1. Lockley S.W., Evans E.E., Scheer F.A., Brainard G.C., Czeisler C.A., Aeschbach D. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep. 2006;29:161–168. doi: 10.1093/sleep/29.2.161.
    1. Cajochen C., Munch M., Kobialka S., Krauchi K., Steiner R., Oelhafen P., Orgul S., Wirz-Justice A. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J. Clin. Endocrinol. Metab. 2005;90:1311–1316. doi: 10.1210/jc.2004-0957.
    1. Revell V.L., Arendt J., Fogg L.F., Skene D.J. Alerting effects of light are sensitive to very short wavelengths. Neurosci. Lett. 2006;399:96–100. doi: 10.1016/j.neulet.2006.01.032.
    1. Borbely A.A., Daan S., Wirz-Justice A., Deboer T. The two-process model of sleep regulation: A reappraisal. J. Sleep Res. 2016;25:131–143. doi: 10.1111/jsr.12371.
    1. Phipps-Nelson J., Redman J.R., Schlangen L.J., Rajaratnam S.M. Blue light exposure reduces objective measures of sleepiness during prolonged nighttime performance testing. Chronobiol. Int. 2009;26:891–912. doi: 10.1080/07420520903044364.
    1. Rahman S.A., Flynn-Evans E.E., Aeschbach D., Brainard G.C., Czeisler C.A., Lockley S.W. Diurnal spectral sensitivity of the acute alerting effects of light. Sleep. 2014;37:271–281. doi: 10.5665/sleep.3396.
    1. Papamichael C., Skene D.J., Revell V.L. Human nonvisual responses to simultaneous presentation of blue and red monochromatic light. J. Biol. Rhythm. 2012;27:70–78. doi: 10.1177/0748730411431447.
    1. Figueiro M.G., Sahin L., Wood B., Plitnick B. Light at night and measures of alertness and performance: Implications for shift workers. Biol. Res. Nurs. 2016;18:90–100. doi: 10.1177/1099800415572873.
    1. Figueiro M.G., Bierman A., Plitnick B., Rea M.S. Preliminary evidence that both blue and red light can induce alertness at night. BMC Neurosci. 2009;10:105. doi: 10.1186/1471-2202-10-105.
    1. Sahin L., Figueiro M.G. Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon. Physiol. Behav. 2013;116–117:1–7. doi: 10.1016/j.physbeh.2013.03.014.
    1. Ganesan S., Magee M., Stone J.E., Mulhall M.D., Collins A., Howard M.E., Lockley S.W., Rajaratnam S.M.W., Sletten T.L. The impact of shift work on sleep, alertness and performance in healthcare workers. Sci. Rep. 2019;9:4635. doi: 10.1038/s41598-019-40914-x.
    1. Mulhall M.D., Sletten T.L., Magee M., Stone J.E., Ganesan S., Collins A., Anderson C., Lockley S.W., Howard M.E., Rajaratnam S.M.W. Sleepiness and driving events in shift workers: The impact of circadian and homeostatic factors. Sleep. 2019;42:zsz074. doi: 10.1093/sleep/zsz074.
    1. Cajochen C. Alerting effects of light. Sleep Med. Rev. 2007;11:453–464. doi: 10.1016/j.smrv.2007.07.009.
    1. Smith M.R., Cullnan E.E., Eastman C.I. Shaping the light/dark pattern for circadian adaptation to night shift work. Physiol. Behav. 2008;95:449–456. doi: 10.1016/j.physbeh.2008.07.012.
    1. Neil-Sztramko S.E., Pahwa M., Demers P.A., Gotay C.C. Health-related interventions among night shift workers: A critical review of the literature. Scand. J. Work Environ. Health. 2014;40:543–556. doi: 10.5271/sjweh.3445.
    1. Slanger T.E., Gross J.V., Pinger A., Morfeld P., Bellinger M., Duhme A.L., Reichardt Ortega R.A., Costa G., Driscoll T.R., Foster R.G., et al. Person-directed, non-pharmacological interventions for sleepiness at work and sleep disturbances caused by shift work. Cochrane Database Syst. Rev. 2016;23:CD010641. doi: 10.1002/14651858.CD010641.pub2.
    1. Aarts M.P.J., Hartmeyer S.L., Morsink K., Kort H.S.M., de Kort Y.A.W. Can special light glasses reduce sleepiness and improve sleep of nightshift workers? a placebo-controlled explorative field study. Clocks Sleep. 2020;2:225–245. doi: 10.3390/clockssleep2020018.
    1. Motamedzadeh M., Golmohammadi R., Kazemi R., Heidarimoghadam R. The effect of blue-enriched white light on cognitive performances and sleepiness of night-shift workers: A field study. Physiol. Behav. 2017;177:208–214. doi: 10.1016/j.physbeh.2017.05.008.
    1. Sletten T.L., Ftouni S., Nicholas C.L., Magee M., Grunstein R.R., Ferguson S., Kennaway D.j., O’Brien D., Lockley S.W., Rajaratnam S.M.W. Randomised controlled trial of the efficacy of a blue-enriched light intervention to improve alertness and performance in night shift workers. Occup. Environ. Med. 2017;74:792–801. doi: 10.1136/oemed-2016-103818.
    1. Sunde E., Pedersen T., Mrdalj J., Thun E., Grønli J., Harris A., Bjorvatn B., Waage S., Skene D.J., Pallesen S. Blue-enriched white light improves performance but not subjective alertness and circadian adaptation during three consecutive simulated night shifts. Front. Psychol. 2020;11:2172. doi: 10.3389/fpsyg.2020.02172.
    1. Touitou Y., Reinberg A., Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci. 2017;173:94–106. doi: 10.1016/j.lfs.2017.02.008.
    1. Touitou Y., Point S. Effects and mechanisms of action of light-emitting diodes on the human retina and internal clock. Environ. Res. 2020;190:109942. doi: 10.1016/j.envres.2020.109942.
    1. Van de Werken M., Gimenez M.C., de Vries B., Beersma D.G., Gordijn M.C. Short-wavelength attenuated polychromatic white light during work at night: Limited melatonin suppression without substantial decline of alertness. Chronobiol. Int. 2013;30:843–854. doi: 10.3109/07420528.2013.773440.
    1. Regente J., de Zeeuw J., Bes F., Nowozin C., Appelhoff S., Wahnschaffe A., Münch M., Kunz D. Can short-wavelength depleted bright light during single simulated night shifts prevent circadian phase shifts? Appl. Ergon. 2017;61:22–30. doi: 10.1016/j.apergo.2016.12.014.
    1. Souman J.L., Borra T., de Goijer I., Schlangen L.J.M., Vlaskamp B.N.S., Lucassen M.P. Spectral tuning of white light allows for strong reduction in melatonin suppression without changing illumination level or color temperature. J. Biol. Rhythm. 2018;33:420–431. doi: 10.1177/0748730418784041.
    1. Pattison P.M., Tsao J.Y., Brainard G.C., Bugbee B. LEDs for photons, physiology and food. Nature. 2018;563:493–500. doi: 10.1038/s41586-018-0706-x.
    1. Sunde E., Mrdalj J., Pedersen T., Thun E., Bjorvatn B., Gronli J., Harris A., Waage S., Pallesen S. Role of nocturnal light intensity on adaptation to three consecutive night shifts: A counterbalanced crossover study. Occup. Environ. Med. 2020;77:249–255. doi: 10.1136/oemed-2019-106049.
    1. Canazei M., Pohl W., Bliem H.R., Weiss E.M. Acute effects of different light spectra on simulated night-shift work without circadian alignment. Chronobiol. Int. 2017;34:303–317. doi: 10.1080/07420528.2016.1222414.
    1. Faul F., Erdfelder E., Lang A.G., Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146.
    1. Souman J.L., Tinga A.M., Te Pas S.F., van Ee R., Vlaskamp B.N.S. Acute alerting effects of light: A systematic literature review. Behav. Brain Res. 2018;337:228–239. doi: 10.1016/j.bbr.2017.09.016.
    1. Adan A., Almirall H. Horne and Östberg morningness eveningness questionnaire: A reduced scale. Personal. Individ. Differ. 1991;12:241–253. doi: 10.1016/0191-8869(91)90110-W.
    1. CIE . CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light. CIE; Vienna, Austria: 2018. International Standard CIE S 026/E:2018.
    1. Watson D., Clark L.A., Tellegen A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988;54:1063–1070. doi: 10.1037/0022-3514.54.6.1063.
    1. Åkerstedt T., Gillberg M. Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 1990;52:29–37. doi: 10.3109/00207459008994241.
    1. Lim J., Dinges D.F. Sleep deprivation and vigilant attention. Ann. N. Y. Acad. Sci. 2008;1129:305–322. doi: 10.1196/annals.1417.002.
    1. Basner M., Dinges D.F. Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. Sleep. 2011;34:581–591. doi: 10.1093/sleep/34.5.581.
    1. Jaeger J. Digit symbol substitution test: The case for sensitivity over specificity in neuropsychological testing. J. Clin. Psychopharmacol. 2018;38:513–519. doi: 10.1097/JCP.0000000000000941.
    1. Viola A.U., James L.M., Schlangen L.J., Dijk D.J. Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scand. J. Work Environ. Health. 2008;34:297–306. doi: 10.5271/sjweh.1268.
    1. Smolders K.C.H.J., de Kort Y.A.W. Bright light and mental fatigue: Effects on alertness, vitality, performance and physiological arousal. J. Environ. Psychol. 2014;39:77–91. doi: 10.1016/j.jenvp.2013.12.010.
    1. Smolders K.C.H.J., de Kort Y.A.W. Investigating daytime effects of correlated colour temperature on experiences, performance, and arousal. J. Environ. Psychol. 2017;50:80–93. doi: 10.1016/j.jenvp.2017.02.001.
    1. Saxvig I.W., Wilhelmsen-Langeland A., Pallesen S., Vedaa Ø., Nordhus I.H., Sørensen E., Bjorvatn B. Objective measures of sleep and dim light melatonin onset in adolescents and young adults with delayed sleep phase disorder compared to healthy controls. J. Sleep Res. 2013;22:365–372. doi: 10.1111/jsr.12030.
    1. Keijzer H., Smits M.G., Peeters T., Looman C.W., Endenburg S.C., Gunnewiek J.M. Evaluation of salivary melatonin measurements for dim light melatonin onset calculations in patients with possible sleep-wake rhythm disorders. Clin. Chim. Acta. 2011;412:1616–1620. doi: 10.1016/j.cca.2011.05.014.
    1. Phillips A.J.K., Vidafar P., Burns A.C., McGlashan E.M., Anderson C., Rajaratnam S.M.W., Lockley S.W., Cain S.W. High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc. Natl. Acad. Sci. USA. 2019;116:12019–12024. doi: 10.1073/pnas.1901824116.
    1. Khalsa S.B., Jewett M.E., Cajochen C., Czeisler C.A. A phase response curve to single bright light pulses in human subjects. J. Physiol. 2003;549:945–952. doi: 10.1113/jphysiol.2003.040477.
    1. Revell V.L., Molina T.A., Eastman C.I. Human phase response curve to intermittent blue light using a commercially available device. J. Physiol. 2012;590:4859–4868. doi: 10.1113/jphysiol.2012.235416.
    1. Stone J.E., Sletten T.L., Magee M., Ganesan S., Mulhall M.D., Collins A., Howard M., Lockley S.W., Rajaratnam S.M.W. Temporal dynamics of circadian phase shifting response to consecutive night shifts in healthcare workers: Role of light-dark exposure. J. Physiol. 2018;596:2381–2395. doi: 10.1113/JP275589.
    1. Fotios S.A. Lamp colour properties and apparent brightness: A review. Light Res. Technol. 2001;33:163–178. doi: 10.1177/136578280103300306.
    1. Bullough J.D., Radetsky L.C., Besenecker U.C., Rea M.S. Influence of spectral power distribution on scene brightness at different light levels. Leukos. 2014;10:3–9. doi: 10.1080/15502724.2013.827516.
    1. Noseda R., Bernstein C.A., Nir R.R., Lee A.J., Fulton A.B., Bertisch S.M., Hovaguimian A., Cestari D.M., Saavedra-Walker R., Borsook D., et al. Migraine photophobia originating in cone-driven retinal pathways. Brain. 2016;139:1971–1986. doi: 10.1093/brain/aww119.
    1. Gabel V., Reichert C.F., Maire M., Schmidt C., Schlangen L.J.M., Kolodyazhniy V., Garbazza C., Cajochen C., Viola A.U. Differential impact in young and older individuals of blue-enriched white light on circadian physiology and alertness during sustained wakefulness. Sci. Rep. 2017;7:7620. doi: 10.1038/s41598-017-07060-8.
    1. Chellappa S.L., Steiner R., Oelhafen P., Cajochen C. Sex differences in light sensitivity impact on brightness perception, vigilant attention and sleep in humans. Sci. Rep. 2017;7:14215. doi: 10.1038/s41598-017-13973-1.
    1. Chang A.M., Scheer F.A., Czeisler C.A., Aeschbach D. Direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans depend on prior light history. Sleep. 2013;36:1239–1246. doi: 10.5665/sleep.2894.

Source: PubMed

3
Subscribe