Blue-Enriched White Light Improves Performance but Not Subjective Alertness and Circadian Adaptation During Three Consecutive Simulated Night Shifts

Erlend Sunde, Torhild Pedersen, Jelena Mrdalj, Eirunn Thun, Janne Grønli, Anette Harris, Bjørn Bjorvatn, Siri Waage, Debra J Skene, Ståle Pallesen, Erlend Sunde, Torhild Pedersen, Jelena Mrdalj, Eirunn Thun, Janne Grønli, Anette Harris, Bjørn Bjorvatn, Siri Waage, Debra J Skene, Ståle Pallesen

Abstract

Use of blue-enriched light has received increasing interest regarding its activating and performance sustaining effects. However, studies assessing effects of such light during night work are few, and novel strategies for lighting using light emitting diode (LED) technology need to be researched. In a counterbalanced crossover design, we investigated the effects of a standard polychromatic blue-enriched white light (7000 K; ∼200 lx) compared to a warm white light (2500 K), of similar photon density (∼1.6 × 1014 photons/cm2/s), during three consecutive simulated night shifts. A total of 30 healthy participants [10 males, mean age 23.3 (SD = 2.9) years] were included in the study. Dependent variables comprised subjective alertness using the Karolinska Sleepiness Scale, a psychomotor vigilance task (PVT) and a digit symbol substitution test (DSST), all administered at five time points throughout each night shift. We also assessed dim-light melatonin onset (DLMO) before and after the night shifts, as well as participants' opinion of the light conditions. Subjective alertness and performance on the PVT and DSST deteriorated during the night shifts, but 7000 K light was more beneficial for performance, mainly in terms of fewer errors on the PVT, at the end of the first- and second- night shift, compared to 2500 K light. Blue-enriched light only had a minor impact on PVT response times (RTs), as only the fastest 10% of the RTs were significantly improved in 7000 K compared to 2500 K light. In both 7000 and 2500 K light, the DLMO was delayed in those participants with valid assessment of this parameter [n = 20 (69.0%) in 7000 K light, n = 22 (78.6%) in 2500 K light], with a mean of 2:34 (SE = 0:14) and 2:12 (SE = 0:14) hours, respectively, which was not significantly different between the light conditions. Both light conditions were positively rated, although participants found 7000 K to be more suitable for work yet evaluated 2500 K light as more pleasant. The data indicate minor, but beneficial, effects of 7000 K light compared to 2500 K light on performance during night work. Circadian adaptation did not differ significantly between light conditions, though caution should be taken when interpreting these findings due to missing data. Field studies are needed to investigate similar light interventions in real-life settings, to develop recommendations regarding illumination for night workers. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03203538.

Keywords: Fatigue; alertness; countermeasures; light; light emitting diode; night work; performance.

Copyright © 2020 Sunde, Pedersen, Mrdalj, Thun, Grønli, Harris, Bjorvatn, Waage, Skene and Pallesen.

Figures

FIGURE 1
FIGURE 1
Double-raster plot of the simulated night work protocol. Clock hour is indicated on the x-axis and study day on the y-axis. The night work protocol included two study periods with three simulated night shifts (from 23:00 to 06:45 h) performed in a laboratory with different lighting conditions. (A) 2500 K light. (B) 7000 K light. The study periods were separated by 4 weeks and the order of conditions was counterbalanced. White bars indicate enrollment and practice session (before the first study period only) in the laboratory. Black bars indicate assumed baseline sleep at home. Colored bars indicate night shifts in the laboratory. Gray hatched bars indicate assumed daytime sleep at home. Black dots indicate primary test bouts including the Karolinska Sleepiness Scale (KSS), a Psychomotor Vigilance Task (PVT), and a Digit Symbol Substitution Test (DSST). White diamonds indicate salivary dim-light melatonin sampling at home.
FIGURE 2
FIGURE 2
Spectral distribution of the 7000 K light (solid line) and the 2500 K light (dotted line).
FIGURE 3
FIGURE 3
Estimated marginal means and standard error plotted as a function of light condition (2500 K vs. 7000 K light), night shift, and time of testing. (A) Rating on the Karolinska Sleepiness Scale (KSS). (B) Mean reciprocal response time (1/RT) on the Psychomotor Vigilance Task (PVT). (C) Number of lapses (RTs ≥ 500 ms) on the PVT. (D) Number of false starts (response without stimulus) on the PVT. (E) Number of correct responses on the Digit Symbol Substitution Test (DSST). *p < 0.05 between light conditions (only for variables with significant light × night × time interactions).
FIGURE 4
FIGURE 4
Estimated marginal means and standard error plotted as a function of light condition (2500 K vs. 7000 K light) and time of testing (all night shifts included). (A) Response times (RT) for the 10% fastest RTs on the Psychomotor Vigilance Task (PVT). (B) Mean resiprocal RTs (1/RT) for the 10% slowest RTs on the PVT. *p < 0.05 between light conditions.
FIGURE 5
FIGURE 5
Phase markers for individual participants before (baseline) and after (final) three consecutive night shifts. (A) Night shifts in 2500 K light. (B) Night shifts in 7000 K light. Open circles indicate salivary dim-light melatonin onset (DLMO) for each participant. Filled diamond squares indicate estimated temperature minimum (DLMO + 7 h) for each participant. Lines are drawn between the baseline and final markers for each participant with complete baseline and final markers. The vertical dotted lines and the horizontal bars indicates the start and end times of the night shifts and light exposure.
FIGURE 6
FIGURE 6
Estimated marginal means and standard error plotted as a function of light condition (2500 K vs. 7000 K light) and daytime sleep period (after night shift 1–3). Sleep variables were derived from actigraphy. Estimates are provided as clock time (hh:mm) for (A,C) and duration (h:mm) for (B,D). No statistically significant differences between light conditions were found.

References

    1. Adan A., Almirall H. (1991). Horne and Östberg morningness eveningness questionnaire: a reduced scale. Pers. Indiv. Differ. 12 241–253. 10.1016/0191-8869(91)90110-W
    1. Åkerstedt T., Gillberg M. (1990). Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 52 29–37. 10.3109/00207459008994241
    1. Åkerstedt T., Wright K. P. (2009). Sleep loss and fatigue in shift work and shift work disorder. Sleep Med. Clin. 4 257–271. 10.1016/j.jsmc.2009.03.001
    1. Bailes H. J., Lucas R. J. (2013). Human melanopsin forms a pigment maximally sensitive to blue light (lambdamax approximately 479 nm) supporting activation of G(q/11) and G(i/o) signalling cascades. Proc. Biol. Sci. 280:20122987. 10.1098/rspb.2012.2987
    1. Basner M., Dinges D. F. (2011). Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. Sleep 34 581–591. 10.1093/sleep/34.5.581
    1. Borbely A. A., Daan S., Wirz-Justice A., Deboer T. (2016). The two-process model of sleep regulation: a reappraisal. J. Sleep Res. 25 131–143. 10.1111/jsr.12371
    1. Brainard G. C., Hanifin J. P., Greeson J. M., Byrne B., Glickman G., Gerner E., et al. (2001). Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J. Neurosci. 21 6405–6412. 10.1523/JNEUROSCI.21-16-06405.2001
    1. Brainard G. C., Hanifin J. P., Warfield B., Stone M. K., James M. E., Ayers M., et al. (2015). Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency. J. Pineal. Res. 58 352–361. 10.1111/jpi.12221
    1. Bullough J. D., Bierman A., Rea M. S. (2019). Evaluating the blue-light hazard from solid state lighting. Int. J. Occup. Saf. Ergon. 25 311–320. 10.1080/10803548.2017.1375172
    1. Cajochen C. (2007). Alerting effects of light. Sleep Med. Rev. 11 453–464. 10.1016/j.smrv.2007.07.009
    1. Cajochen C., Munch M., Kobialka S., Krauchi K., Steiner R., Oelhafen P., et al. (2005). High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J. Clin. Endocrinol. Metab. 90 1311–1316. 10.1210/jc.2004-0957
    1. Cajochen C., Reichert C., Maire M., Schlangen L. J. M., Schmidt C., Viola A. U., et al. (2019). Evidence that homeostatic sleep regulation depends on ambient lighting conditions during wakefulness. Clocks Sleep 1 517–531. 10.3390/clockssleep1040040
    1. Cajochen C., Zeitzer J. M., Czeisler C. A., Dijk D. J. (2000). Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav. Brain Res. 115 75–83. 10.1016/s0166-4328(00)00236-9
    1. Canazei M., Pohl W., Bliem H. R., Weiss E. M. (2017). Acute effects of different light spectra on simulated night-shift work without circadian alignment. Chronobiol. Int. 34 303–317. 10.1080/07420528.2016.1222414
    1. CEN (2011). Light and Lighting - Lighting of Work places - Part 1: Indoor work Places. Brussels: European commitee for standardization.
    1. Chang A. M., Santhi N., St Hilaire M., Gronfier C., Bradstreet D. S., Duffy J. F., et al. (2012). Human responses to bright light of different durations. J. Physiol. 590 3103–3112. 10.1113/jphysiol.2011.226555
    1. Chang A. M., Scheer F. A., Czeisler C. A., Aeschbach D. (2013). Direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans depend on prior light history. Sleep 36 1239–1246. 10.5665/sleep.2894
    1. Chellappa S. L., Steiner R., Blattner P., Oelhafen P., Gotz T., Cajochen C. (2011). Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert? PLoS One 6:e16429. 10.1371/journal.pone.0016429
    1. Chellappa S. L., Steiner R., Oelhafen P., Cajochen C. (2017). Sex differences in light sensitivity impact on brightness perception, vigilant attention and sleep in humans. Sci. Rep. 7:14215. 10.1038/s41598-017-13973-1
    1. Dinges D. F., Powell J. W. (1985). Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav. Res. Methods Instrum. Comput. 17 652–655. 10.3758/Bf03200977
    1. Drummond S. P., Bischoff-Grethe A., Dinges D. F., Ayalon L., Mednick S. C., Meloy M. J. (2005). The neural basis of the psychomotor vigilance task. Sleep 28 1059–1068. 10.1093/sleep/28.9.1059
    1. Eurofound (2017). Sixth European Working Conditions Survey: Overview Report (2017 update). Luxembourg: Publication Office of the European Union, 10.2806/422172
    1. Figueiro M. G., Nagare R., Price L. (2018). Non-visual effects of light: how to use light to promote circadian entrainment and elicit alertness. Light Res. Technol. 50 38–62. 10.1177/1477153517721598
    1. Fischer D., Lombardi D. A., Folkard S., Willetts J., Christiani D. C. (2017). Updating the “Risk Index”: a systematic review and meta-analysis of occupational injuries and work schedule characteristics. Chronobiol. Int. 34 1423–1438. 10.1080/07420528.2017.1367305
    1. Gabel V., Reichert C. F., Maire M., Schmidt C., Schlangen L. J. M., Kolodyazhniy V., et al. (2017). Differential impact in young and older individuals of blue-enriched white light on circadian physiology and alertness during sustained wakefulness. Sci. Rep. 7:7620. 10.1038/s41598-017-07060-8
    1. Ganesan S., Magee M., Stone J. E., Mulhall M. D., Collins A., Howard M. E., et al. (2019). The impact of shift work on sleep, alertness and performance in healthcare workers. Sci. Rep. 9:4635. 10.1038/s41598-019-40914-x
    1. Hanifin J. P., Lockley S. W., Cecil K., West K., Jablonski M., Warfield B., et al. (2019). Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses. Physiol. Behav. 198 57–66. 10.1016/j.physbeh.2018.10.004
    1. International Commission on Non-Ionizing Radiation Protection (2020). Light-emitting diodes (LEDs): implications for safety. Health Phys. 118 549–561. 10.1097/HP.0000000000001259
    1. Jacobs G. H. (2018). Photopigments and the dimensionality of animal color vision. Neurosci. Biobehav. Rev. 86 108–130. 10.1016/j.neubiorev.2017.12.006
    1. Jaeger J. (2018). Digit symbol substitution test: the case for sensitivity over specificity in neuropsychological testing. J. Clin. Psychopharmacol. 38 513–519. 10.1097/JCP.0000000000000941
    1. Kazemi R., Hemmatjo R., Mokarami H., Hamidreza M. (2018). The effect of a blue enriched white light on salivary antioxidant capacity and melatonin among night shift workers: a field study. Ann. Occup. Environ. Med. 30:61. 10.1186/s40557-018-0275-3
    1. Kecklund G., Axelsson J. (2016). Health consequences of shift work and insufficient sleep. BMJ 355:i5210. 10.1136/bmj.i5210
    1. Keijzer H., Smits M. G., Peeters T., Looman C. W., Endenburg S. C., Gunnewiek J. M. (2011). Evaluation of salivary melatonin measurements for dim light melatonin onset calculations in patients with possible sleep-wake rhythm disorders. Clin. Chim. Acta 412 1616–1620. 10.1016/j.cca.2011.05.014
    1. Khalsa S. B., Jewett M. E., Cajochen C., Czeisler C. A. (2003). A phase response curve to single bright light pulses in human subjects. J. Physiol. 549 945–952. 10.1113/jphysiol.2003.040477
    1. Lim J., Dinges D. F. (2008). Sleep deprivation and vigilant attention. Ann. N. Y. Acad. Sci. 1129 305–322. 10.1196/annals.1417.002
    1. Lockley S. W., Brainard G. C., Czeisler C. A. (2003). High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J. Clin. Endocrinol. Metab. 88 4502–4505. 10.1210/jc.2003-030570
    1. Lockley S. W., Evans E. E., Scheer F. A., Brainard G. C., Czeisler C. A., Aeschbach D. (2006). Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep 29 161–168. 10.1093/sleep/29.2.161
    1. Lucas R. J., Peirson S. N., Berson D. M., Brown T. M., Cooper H. M., Czeisler C. A., et al. (2014). Measuring and using light in the melanopsin age. Trends Neurosci. 37 1–9. 10.1016/j.tins.2013.10.004
    1. Motamedzadeh M., Golmohammadi R., Kazemi R., Heidarimoghadam R. (2017). The effect of blue-enriched white light on cognitive performances and sleepiness of night-shift workers: a field study. Physiol. Behav. 177 208–214. 10.1016/j.physbeh.2017.05.008
    1. Mulhall M. D., Sletten T. L., Magee M., Stone J. E., Ganesan S., Collins A., et al. (2019). Sleepiness and driving events in shift workers: the impact of circadian and homeostatic factors. Sleep 42:zsz074. 10.1093/sleep/zsz074
    1. Perrin F., Peigneux P., Fuchs S., Verhaeghe S., Laureys S., Middleton B., et al. (2004). Nonvisual responses to light exposure in the human brain during the circadian night. Curr. Biol. 14 1842–1846. 10.1016/j.cub.2004.09.082
    1. Phillips A. J. K., Vidafar P., Burns A. C., Mcglashan E. M., Anderson C., Rajaratnam S. M. W., et al. (2019). High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc. Natl. Acad. Sci. U.S.A. 116 12019–12024. 10.1073/pnas.1901824116
    1. Prayag A. S., Münch M., Aeschbach D., Chellappa S. L., Gronfier C. (2019). Light modulation of human clocks, wake, and sleep. Clocks Sleep 1 193–208. 10.3390/clockssleep1010017
    1. Rajaratnam S. M., Arendt J. (2001). Health in a 24-h society. Lancet 358 999–1005. 10.1016/S0140-6736(01)06108-6
    1. Revell V. L., Barrett D. C., Schlangen L. J., Skene D. J. (2010). Predicting human nocturnal nonvisual responses to monochromatic and polychromatic light with a melanopsin photosensitivity function. Chronobiol. Int. 27 1762–1777. 10.3109/07420528.2010.516048
    1. Revell V. L., Molina T. A., Eastman C. I. (2012). Human phase response curve to intermittent blue light using a commercially available device. J. Physiol. 590 4859–4868. 10.1113/jphysiol.2012.235416
    1. Roenneberg T., Foster R. G. (1997). Twilight times: light and the circadian system. Photochem. Photobiol. 66 549–561. 10.1111/j.1751-1097.1997.tb03188.x
    1. Santhi N., Horowitz T. S., Duffy J. F., Czeisler C. A. (2007). Acute sleep deprivation and circadian misalignment associated with transition onto the first night of work impairs visual selective attention. PLoS One 2:e1233. 10.1371/journal.pone.0001233
    1. Saxvig I. W., Wilhelmsen-Langeland A., Pallesen S., Vedaa Ø, Nordhus I. H., Sørensen E., et al. (2013). Objective measures of sleep and dim light melatonin onset in adolescents and young adults with delayed sleep phase disorder compared to healthy controls. J. Sleep Res. 22 365–372. 10.1111/jsr.12030
    1. Schubert E. F., Kim J. K. (2005). Solid-state light sources getting smart. Science 308 1274–1278. 10.1126/science.1108712
    1. Sletten T. L., Ftouni S., Nicholas C. L., Magee M., Grunstein R. R., Ferguson S., et al. (2017). Randomised controlled trial of the efficacy of a blue-enriched light intervention to improve alertness and performance in night shift workers. Occup. Environ. Med. 74 792–801. 10.1136/oemed-2016-103818
    1. Smith M. R., Cullnan E. E., Eastman C. I. (2008). Shaping the light/dark pattern for circadian adaptation to night shift work. Physiol. Behav. 95 449–456. 10.1016/j.physbeh.2008.07.012
    1. Smith M. R., Eastman C. I. (2009). Phase delaying the human circadian clock with blue-enriched polychromatic light. Chronobiol. Int. 26 709–725. 10.1080/07420520902927742
    1. Smith M. T., Mccrae C. S., Cheung J., Martin J. L., Harrod C. G., Heald J. L., et al. (2018). Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: an american academy of sleep medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep Med. 14 1209–1230. 10.5664/jcsm.7228
    1. Smolders K. C. H. J., de Kort Y. A. W. (2014). Bright light and mental fatigue: effects on alertness, vitality, performance and physiological arousal. J. Environ. Psychol. 39 77–91. 10.1016/j.jenvp.2013.12.010
    1. Smolders K. C. H. J., de Kort Y. A. W. (2017). Investigating daytime effects of correlated colour temperature on experiences, performance, and arousal. J. Environ. Psychol. 50 80–93. 10.1016/j.jenvp.2017.02.001
    1. Souman J. L., Tinga A. M., Te Pas S. F., Van Ee R., Vlaskamp B. N. S. (2018). Acute alerting effects of light: a systematic literature review. Behav. Brain Res. 337 228–239. 10.1016/j.bbr.2017.09.016
    1. Stone J. E., Sletten T. L., Magee M., Ganesan S., Mulhall M. D., Collins A., et al. (2018). Temporal dynamics of circadian phase shifting response to consecutive night shifts in healthcare workers: role of light-dark exposure. J. Physiol. 596 2381–2395. 10.1113/JP275589
    1. Sunde E., Mrdalj J., Pedersen T., Thun E., Bjorvatn B., Grønli J., et al. (2020). Role of nocturnal light intensity on adaptation to three consecutive night shifts: a counterbalanced crossover study. Occup. Environ. Med. 77 249–255. 10.1136/oemed-2019-106049
    1. Thapan K., Arendt J., Skene D. J. (2001). An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J. Physiol. 535 261–267. 10.1111/j.1469-7793.2001.t01-1-00261.x
    1. Vandewalle G., Maquet P., Dijk D. J. (2009). Light as a modulator of cognitive brain function. Trends Cogn. Sci. 13 429–438. 10.1016/j.tics.2009.07.004
    1. Vidafar P., Gooley J. J., Burns A. C., Rajaratnam S. M. W., Rueger M., Van Reen E., et al. (2018). Increased vulnerability to attentional failure during acute sleep deprivation in women depends on menstrual phase. Sleep 41:zsy098. 10.1093/sleep/zsy098
    1. Warthen D. M., Provencio I. (2012). The role of intrinsically photosensitive retinal ganglion cells in nonimage-forming responses to light. Eye Brain 4 43–48. 10.2147/EB.S27839
    1. Zeitzer J. M., Dijk D. J., Kronauer R., Brown E., Czeisler C. (2000). Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J. Physiol. 526(Pt 3) 695–702. 10.1111/j.1469-7793.2000.00695.x

Source: PubMed

3
Subscribe