The Characteristics of Natural Killer Cells in Chronic Hepatitis B Patients Who Received PEGylated-Interferon versus Entecavir Therapy

Weihua Cao, Minghui Li, Lu Zhang, Yao Lu, Shuling Wu, Ge Shen, Min Chang, Ruyu Liu, Yuanjiao Gao, Hongxiao Hao, Leiping Hu, Wei Yi, Calvin Q Pan, Yao Xie, Weihua Cao, Minghui Li, Lu Zhang, Yao Lu, Shuling Wu, Ge Shen, Min Chang, Ruyu Liu, Yuanjiao Gao, Hongxiao Hao, Leiping Hu, Wei Yi, Calvin Q Pan, Yao Xie

Abstract

Background: To explore the role of natural killer (NK) cells in the process of hepatitis B virus (HBV) clearance and whether their phenotype is related to antiviral treatment outcome in chronic hepatitis B (CHB) patients.

Method: We performed a single-center prospective cohort study to analyze changes of NK cells at weeks 12 and 24 from baseline in CHB patients who received PEGylated-interferon- (PEG-IFN-) α-2a versus entecavir. The frequencies of NK, CD56bright, CD56dim, IFNAR2+, NKp46+, NKp46bright, and NKp46dim NK cells and mean fluorescence intensity (MFI) of receptors NKp46 and IFNAR2 on the surface of NK cells were measured. Subgroup analyses were performed by comparing treatment responders versus nonresponders with aforementioned parameters in each group.

Results: In PEG-IFN-α-treated patients, posttreatment CD56bright NK cell frequency increased, but CD56dim NK cell frequency decreased. Additionally, receptor NKp46 and IFNAR2 expression enhanced. In entecavir-treated patients, although NK cell frequency increased, CD56bright and CD56dim NK cell frequencies and IFNAR2 expression did not differ between baseline and posttreatment. In subgroup analyses, posttreatment CD56bright NK cell frequency and IFNAR2 expression significantly increased in PEG-IFN-α responders from baseline, while changes were absent in PEG-IFN-α nonresponders and entecavir treatment responders. Among patients with HBV viremia after entecavir therapy, NK cell frequency significantly increased, whereas NKp46bright and IFNAR2+ NK frequency and IFNAR2 MFI significantly decreased at 12 and 24 weeks from baseline.

Conclusions: In CHB patients, PEG-IFN-α treatment significantly enhanced NK cell frequency and function when compared to entacavir. Positive treatment responses to either interferon or entecavir were associated with NK cell function improvement. This trial is registered with clinical trial registration no. NCT03208998.

Conflict of interest statement

All authors have no conflicts of interest to declare.

Copyright © 2021 Weihua Cao et al.

Figures

Figure 1
Figure 1
Relationship between the frequencies of NK cells and subpopulations of NK cells and clinical parameters at baseline. The correlation between HBsAg level and NK% (a), CD56bright NK% (b), and CD56dim NK% (c); the correlation between HBV DNA load and NK% (d), CD56bright NK% (e), and CD56dim NK% (f); the correlation between the level of HBeAg and NK% (g), CD56bright NK% (h), and CD56dim NK% (i); the correlation between ALT level and NK% (j), CD56bright NK% (k), and CD56dim NK% (l).
Figure 2
Figure 2
Relationship between the frequencies of IFNAR2+ NK and NKp46+ NK cells including their subpopulations and clinical parameters at baseline. The correlation between HBsAg level and IFNAR2+ NK% and HBsAg level (a), HBV DNA load (b), the level of HBeAg (c), and ALT level (d); the correlation between IFNAR2-MFI and HBsAg level (e), HBV DNA load (f), the level of HBeAg (g), and ALT level (h); the correlation between NKp46+ NK% and HBsAg level (i), HBV DNA load (j), the level of HBeAg (k), and ALT level (l); the correlation between NKp46bright NK% and HBsAg level (m), HBV DNA load (n), the level of HBeAg (o), and ALT level (p); the correlation between NKp46dim NK% and HBsAg level (q), HBV DNA load (r), the level of HBeAg (s), and ALT level (t); the correlation between NKp46-MFI and HBsAg level (u), HBV DNA load (v), the level of HBeAg (w), and ALT level (x).
Figure 3
Figure 3
Tendencies of the frequencies and function of NK cells and their subpopulations before treatment and after therapy weeks 12 and 24 in the PEG-IFN and ETV group. The parameters include NK% (A1, A2), CD56bright NK% (B1, B2), CD56dim NK% (C1, C2), IFNAR2+ NK% (D1, D2), IFNAR2-MFI (E1, E2), NKp46+ NK% (F1, F2), NKp46bright NK% (G1, G2), NKp46dim NK% (H1, H2) cells, and NKp46-MFI (I1, I2). ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ns: not significant.
Figure 4
Figure 4
Correlation between the frequency of NKp46bright NK and the decrease in HBsAg levels. The association of NKp46bright NK frequency at baseline (a) and after PEG-IFN treatment for 12 weeks (b) and the decrease of HBsAg level after PEG-IFN treatment for 48 weeks.
Figure 5
Figure 5
Tendencies of the frequency and function of NK cells and their subpopulations before PEG-IFN therapy and at treatment weeks 12 and 24 in the HBsAg response group versus nonresponse group. The parameters include NK% (A1, A2), CD56bright NK% (B1, B2), CD56dim NK% (C1, C2), IFNAR2+ NK% (D1, D2), IFNAR2-MFI (E1, E2), NKp46+ NK% (F1, F2), NKp46bright NK% (G1, G2), NKp46dim NK% (H1, H2) cells, and NKp46-MFI (I1, I2). ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ns: not significant.
Figure 6
Figure 6
Tendencies of the frequency and function of NK cells and their subpopulations before ETV therapy and after treatment weeks 12 and 24 in the HBV DNA response versus nonresponse group. The parameters include NK% (A1, A2), CD56bright NK% (B1, B2), CD56dim NK% (C1, C2), IFNAR2+ NK% (D1, D2), IFNAR2-MFI (E1, E2), NKp46+ NK% (F1, F2), NKp46bright NK% (G1, G2), NKp46dim NK% (H1, H2) cells, and NKp46-MFI (I1, I2). ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ns: not significant.

References

    1. Maini M. K., Peppa D. NK cells: a double-edged sword in chronic hepatitis B virus infection. Frontiers in Immunology. 2013;4:57–64. doi: 10.3389/fimmu.2013.00057.
    1. Zheng Q., Zhu Y. Y., Chen J., et al. Activated natural killer cells accelerate liver damage in patients with chronic hepatitis B virus infection. Clinical & Experimental Immunology. 2015;180(3):499–508. doi: 10.1111/cei.12597.
    1. Zheng M. J., Sun H. Y., Tian Z. G. Natural killer cells in liver diseases. Frontiers of Medicine. 2018;12(3):269–279. doi: 10.1007/s11684-018-0621-4.
    1. Wu S. F., Wang W. J., Gao Y. Q. Natural killer cells in hepatitis B virus infection. The Brazilian Journal of Infectious Diseases. 2015;19:417–425. doi: 10.1016/j.bjid.2015.05.006.
    1. Ratnam D. T., Sievert W., Visvanathan K. Natural killer cells display impaired responses to toll like receptor 9 that support viral persistence in chronic hepatitis B. Cellular Immunology. 2012;279(1):109–115. doi: 10.1016/j.cellimm.2012.09.005.
    1. Golsaz-Shirazi F., Amiri M. M., Shokri F. Immune function of plasmacytoid dendritic cells, natural killer cells, and their crosstalk in HBV infection. Reviews in Medical Virology. 2018;28(6, article e2007) doi: 10.1002/rmv.2007.
    1. Fisicaro P., Rossi M., Vecchi A., et al. The good and the bad of natural killer cells in virus control: perspective for anti-HBV therapy. International Journal of Molecular Sciences. 2019;20(20):p. 5080. doi: 10.3390/ijms20205080.
    1. Dunn C., Brunetto M., Reynolds G., et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell–mediated liver damage. Journal of Experimental Medicine. 2007;204(3):667–680. doi: 10.1084/jem.20061287.
    1. Rehermann B. Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nature Medicine. 2013;19:859–868. doi: 10.1038/nm.3251.
    1. Yang Y., Han Q., Zhang C., Xiao M., Zhang J. Hepatitis B virus antigens impair NK cell function. International Immunopharmacology. 2016;38:291–297. doi: 10.1016/j.intimp.2016.06.015.
    1. Kondo Y., Ninomiya M., Kakazu E., Kimura O., Shimosegawa T. Hepatitis B surface antigen could contribute to the immunopathogenesis of hepatitis B virus infection. ISRN Gastroenterology. 2013;2013:8. doi: 10.1155/2013/935295.935295
    1. Ma Q., Dong X., Liu S., et al. Hepatitis B e antigen induces NKG2A+ natural killer cell dysfunction via regulatory T cell-derived interleukin 10 in chronic hepatitis B virus infection. Frontiers in Cell and Developmental Biology. 2020;8:p. 421. doi: 10.3389/fcell.2020.00421.
    1. Zhao J., Li Y., Jin L., et al. Natural killer cells are characterized by the concomitantly increased interferon-gamma and cytotoxicity in acute resolved hepatitis B patients. PLoS One. 2012;7, article e49135 doi: 10.1371/journal.pone.0049135.
    1. Waggoner S. N., Cornberg M., Selin L. K., Welsh R. M. Natural killer cells act as rheostats modulating antiviral T cells. Nature. 2011;481:394–398. doi: 10.1038/nature10624.
    1. Oliviero B., Varchetta S., Paudice E., et al. Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology. 2009;137:1151–1160. doi: 10.1053/j.gastro.2009.05.047.
    1. Tjwa E. T., van Oord G. W., Hegmans J. P., Janssen H. L. A., Woltman A. M. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. Journal of Hepatology. 2011;54:209–218. doi: 10.1016/j.jhep.2010.07.009.
    1. Zhang Z., Zhang S., Zou Z., et al. Hypercytolytic activity of hepatic natural killer cells correlates with liver injury in chronic hepatitis B patients. Hepatology. 2011;53:73–85. doi: 10.1002/hep.23977.
    1. Yoshioka T., Tatsumi T., Miyagi T., et al. Frequency and role of NKp46 and NKG2A in hepatitis B virus infection. PLoS One. 2017;12(3, article e0174103) doi: 10.1371/journal.pone.0174103.
    1. Guidotti L. G., Chisari F. V. Immunobiology and pathogenesis of viral hepatitis. Annual Review of Pathology: Mechanisms of Disease. 2006;1(1):23–61. doi: 10.1146/annurev.pathol.1.110304.100230.
    1. Locarnini S., Hatzalis A., Chen D. S., Lok A. Strategies to control hepatitis B: public policy, epidemiology, vaccine and drugs. Journal of Hepatology. 2015;62:S76–S86. doi: 10.1016/j.jhep.2015.01.018.
    1. Shimizu Y. T cell immunopathogenesis and immunotherapeutic strategies for chronic hepatitis B virus infection. World Journal of Gastroenterology. 2012;18(20):2443–2451. doi: 10.3748/wjg.v18.i20.2443.
    1. Boni C., Laccabue D., Lampertico P., et al. Restored Function of HBV-Specific T Cells After Long-term Effective Therapy With Nucleos(t)ide Analogues. Gastroenterology. 2012;143(4):963–973.e9. doi: 10.1053/j.gastro.2012.07.014.
    1. European Association For The Study Of The Liver. EASL clinical practice guidelines: management of chronic hepatitis B virus infection. Journal of Hepatology. 2012;57(1):167–185. doi: 10.1016/j.jhep.2012.02.010.
    1. Yang H. C., Kao J. H. Revisiting the natural history of chronic HBV infection. Current Hepatology Reports. 2016;15(3):141–149. doi: 10.1007/s11901-016-0304-z.
    1. Li T. Y., Yang Y., Zhou G., Tu Z. K. Immune suppression in chronic hepatitis B infection associated liver disease: a review. World Journal of Gastroenterology. 2019;25(27):3527–3537. doi: 10.3748/wjg.v25.i27.3527.
    1. Li H., Yan L., Shi Y., et al. Hepatitis B virus infection: overview. In: Tang H., editor. Hepatitis B Virus Infection. Advances in Experimental Medicine and Biology, vol 1179. Singapore: Springer; 2020. pp. 1–16.
    1. Shabani Z., Bagheri M., Zare-Bidaki M., et al. NK cells in hepatitis B virus infection: a potent target for immunotherapy. Archives of Virology. 2014;159(7):1555–1565. doi: 10.1007/s00705-013-1965-3.
    1. Gill U. S., Peppa D., Micco L., et al. Interferon alpha induces sustained changes in NK cell responsiveness to hepatitis B viral load suppression in vivo. PLOS Pathogens. 2016;12(8, article e1005788) doi: 10.1371/journal.ppat.1005788.
    1. Micco L., Peppa D., Loggi E., et al. Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B. Journal of Hepatology. 2013;58(2):225–233. doi: 10.1016/j.jhep.2012.09.029.
    1. Costa J. B., Dufeu-Duchesne T., Leroy V., et al. Pegylated interferon α-2a triggers NK-cell functionality and specific T-cell responses in patients with chronic HBV infection without HBsAg seroconversion. PLoS One. 2016;11(6, article e0158297) doi: 10.1371/journal.pone.0158297.
    1. Krämer B., Körner C., Kebschull M., et al. Natural killer p46High expression defines a natural killer cell subset that is potentially involved in control of hepatitis C virus replication and modulation of liver fibrosis. Hepatology. 2012;56(4):1201–1213. doi: 10.1002/hep.25804.
    1. Meng F., Wang J., Ge J., et al. Alteration of interferon-α/β receptors in chronic hepatitis B patients. Journal of Clinical Immunology. 2011;31(3):521–532. doi: 10.1007/s10875-011-9518-6.
    1. Li M.-H., Zhang L., Qu X.-J., et al. Kinetics of hepatitis B surface antigen level in chronic hepatitis B patients who achieved hepatitis B surface antigen loss during pegylated interferon alpha-2a treatment. Chinese Medical Journal. 2017;130:p. 559. doi: 10.4103/0366-6999.200554.
    1. Li M. H., Zhang L., Qu X. J., et al. The predictive value of baseline HBsAg level and early response for HBsAg loss in patients with HBeAg-positive chronic hepatitis B during pegylated interferon alpha-2a treatment. Biomedical and Environmental Sciences. 2017;30:177–184. doi: 10.3967/bes2017.025.
    1. Sonneveld M. J., Hansen B. E., Piratvisuth T., et al. Response-guided peginterferon therapy in hepatitis B e antigen-positive chronic hepatitis B using serum hepatitis B surface antigen levels. Hepatology. 2013;58(3):872–880. doi: 10.1002/hep.26436.
    1. Moucari R., Mackiewicz V., Lada O., et al. Early serum HBsAg drop: a strong predictor of sustained virological response to pegylated interferon alfa-2a in HBeAg-negative patients. Hepatology. 2009;49(4):1151–1157. doi: 10.1002/hep.22744.
    1. Dusheiko G. Treatment of HBeAg positive chronic hepatitis B: interferon or nucleoside analogues. Liver International. 2013;33:137–150. doi: 10.1111/liv.12078.
    1. Fung J., Lai C.-L., Seto W.-K., Yuen M.-F. Nucleoside/nucleotide analogues in the treatment of chronic hepatitis B. Journal of Antimicrobial Chemotherapy. 2011;66(12):2715–2725. doi: 10.1093/jac/dkr388.
    1. Shen X., Fu B., Liu Y., et al. NKp30+ NK cells are associated with HBV control during pegylatedinterferon- alpha-2b therapy of chronic hepatitis B. Scientific Reports. 2016;6(1, article 38778) doi: 10.1038/srep38778.
    1. Yan W., Di Wu X. W., Chen T., et al. Upregulation of NKG2C+ natural killer cells, TLR-2 expression on monocytes and downregulation of regulatory T-cells influence PEG-IFN treatment efficacy in entecavir-suppressed patients with CHB. Antiviral Therapy. 2015;20(6, article 25814467):591–602. doi: 10.3851/IMP2953.
    1. Viganò M., Invernizzi F., Grossi G., Lampertico P. Review article: The potential of interferon and nucleos(t)ide analogue combination therapy in chronic hepatitis B infection. Alimentary Pharmacology & Therapeutics. 2016;44(7):653–661. doi: 10.1111/apt.13751.
    1. Gill U. S., Bert N. L., Kunasegaran K., et al. Transcriptome profiles of NK and T cells associated with immune control in chronic hepatitis B patients treated with pegylated interferon alpha-nucleos (t) ide analogue sequential therapy. Journal of Hepatology. 2017;66, article S542 doi: 10.1016/s0168-8278(17)31491-5.

Source: PubMed

3
Subscribe