Coupling relationship between glucose and oxygen metabolisms to differentiate preclinical Alzheimer's disease and normal individuals

Changchang Ding, Wenying Du, Qi Zhang, Luyao Wang, Ying Han, Jiehui Jiang, Changchang Ding, Wenying Du, Qi Zhang, Luyao Wang, Ying Han, Jiehui Jiang

Abstract

The discovery of preclinical Alzheimer's disease (preAD) provides a wide time window for the early intervention of AD. The coupling relationships between glucose and oxygen metabolisms from hybrid PET/MRI can provide complementary information on the brain's physiological state for preAD. In this study, we purpose to explore the change of coupling relationship among 27 normal controls (NCs), 20 preADs, and 15 cognitive impairments (CIs). For each subject, we calculated the Spearman partial correlation between the fractional amplitude of low-frequency fluctuations (fALFF) and the regional homogeneity (ReHo) from functional image (fMRI), and the standard uptake value ratio (SUVR) from [18F] fluorodeoxyglucose positron emission tomography (18 F-FDG PET), in the whole-brain and default mode network (DMN) as a novel potential biomarker. The diagnostic performance of this biomarker was evaluated by the receiver operating characteristic analysis. Significant Spearman correlations between the FDG SUVR and the fALFF/ReHo were found in 98% of subjects. For the DMN-based biomarker, there was a significant decreasing trend for the preAD and CI groups compared to the NC group, whereas no significant difference in preAD based on whole-brain. The correlation ρ value for the FDG SUVR/ReHo showed the highest area under curve of the preAD classification (0.787). The results imply the coupling relationship changed during the preAD stage in the DMN area.

Trial registration: ClinicalTrials.gov NCT03370744.

Keywords: default mode network; functional magnetic resonance imaging; position emission tomography; preclinical Alzheimer's disease.

Conflict of interest statement

The authors declare no conflict of interest that is directly relevant or directly related to the work described in this manuscript.

© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Figures

FIGURE 1
FIGURE 1
Voxel‐based spatial distribution differences among groups. Figure shows Montreal Neurological Institute (MNI) surface rendering with both transverse views, overlaid with results from between‐group statistical analysis using NC > CI contrast. Default mode network (DMN) is main area where CI decreases glucose metabolism and functional activities. Area of metabolic decline (FDG SUVR) in CI group compared with NC group (a), expressed as z‐scores (p < .05) and are corrected for Gaussian random field (GRF) correction method (voxel level p < .01, cluster level p < .05). The results of ReHo (b) and fALFF (c) were significant (cluster >30) without GRF correction. CI, cognitive impairment; FDG, fluorodeoxyglucose; fALFF, fractional amplitude of low‐frequency fluctuations; IPL, inferior parietal lobule; ITG, inferior temporal gyrus; MTG, middle temporal gyrus; NC, normal control; PCC, posterior cingulate cortex; ReHo, regional homogeneity; SUVR, standardized uptake value ratio
FIGURE 2
FIGURE 2
Resting‐state correlation between FDG SUVR and fMRI indicators within gray matter voxels in individual subjects (all 62). (a) Spearman rank correlation between FDG SUVR and fALFF in normal control (NC), preclinical Alzheimer's disease (preAD), and cognitive impairment (CI) at global brain level, respectively. (b) Same as (a), except that correlation is based on SUVR and ReHo. (c) Same as (a) but at default mode network (DMN) level instead of global brain. (d) Same as (b) but at DMN level instead of entire brain. FDG, fluorodeoxyglucose; fALFF, fractional amplitude of low‐frequency fluctuations; ReHo, regional homogeneity; SUVR, standardized uptake value ratio. *p < .05, **p < .01, ***p < .001
FIGURE 3
FIGURE 3
Location of high coupling and low coupling regions based on AAL template. The cold color shows low coupling region, and the warm color shows high coupling region. (a) The coupling strength of SUVR/fALFF (ρ) in NC and preAD groups. (b) The coupling strength of SUVR/ReHo (ρ) in NC and preAD groups. AAL, Anatomical Automatic Labeling; fALFF, fractional amplitude of low‐frequency fluctuations; NC, normal control; preAD, preclinical Alzheimer's disease; ReHo, regional homogeneity; SUVR, standardized uptake value ratio
FIGURE 4
FIGURE 4
Correlation between Amyloid‐β (Aβ) and FDG‐PET/fMRI correlation metrics. These figures depict partial correlation between FDG‐PET/fMRI correlation metrics and AV45 SUVR in cognitively normal and entire disease development population, respectively, which has statistical significance (p < .05). (a–c) figures show partial correlation between global SUVR/ReHo (ρ), DMN SUVR/fALFF (ρ), and DMN SUVR/ReHo (ρ) and AV45 SUVR, respectively, in cognitively normal group (NC + preAD). (d–f) figures are same as (a–c) but for entire disease development population (NC + preAD + CI). CI, cognitive impairment; DMN, Default Mode Network; FDG, fluorodeoxyglucose; fALFF, fractional amplitude of low‐frequency fluctuations; NC, normal control; preAD, preclinical Alzheimer's disease; ReHo, regional homogeneity; SUVR, standardized uptake value ratio
FIGURE 5
FIGURE 5
Receiver operating characteristic (ROC) curves. (a) ROC curves of fALFF, ReHo, DMN SUVR/fALFF (ρ) and SUVR/ReHo (ρ) between NC and preAD groups at global brain level. (b) ROC curves of fALFF, ReHo, DMN SUVR/fALFF (ρ) and SUVR/ReHo (ρ) between NC and CI groups at global brain level. (c) Same as (a) but at DMN level. (d) Same as (b) but at DMN level. CI, cognitive impairment; DMN, Default Mode Network; fALFF, fractional amplitude of low‐frequency fluctuations; NC, normal control; preAD, preclinical Alzheimer's disease; SUVR, standardized uptake value ratio; ReHo, regional homogeneity
FIGURE 6
FIGURE 6
Receiver operating characteristic (ROC) curve using lasso for clinical information to distinguish NC and preAD. AUC, area under the curve; NC, normal control; preAD, preclinical Alzheimer's disease

References

    1. Aiello, M., Salvatore, E., Cachia, A., Pappatà, S., Cavaliere, C., Prinster, A., … Quarantelli, M. (2015). Relationship between simultaneously acquired resting‐state regional cerebral glucose metabolism and functional MRI: A PET/MR hybrid scanner study. NeuroImage, 113, 111–121. 10.1016/j.neuroimage.2015.03.017.
    1. Balsis, S., Geraci, L., Benge, J., Lowe, D. A., Choudhury, T. K., Tirso, R., & Doody, R. S. (2018). Statistical model of dynamic markers of the Alzheimer's pathological cascade. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 73(6), 964–973. 10.1093/geronb/gbx156.
    1. Baron, J.‐C., Rougemont, D., Soussaline, F., Bustany, P., Crouzel, C., Bousser, M., & Comar, D. (1984). Local interrelationships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients: A positron tomography study. Journal of Cerebral Blood Flow and Metabolism, 4, 140–149. 10.1038/jcbfm.1984.22.
    1. Bondi, M. W., Edmonds, E. C., Jak, A. J., Clark, L. R., Delano‐Wood, L., McDonald, C. R., … Salmon, D. P. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. Journal of Alzheimer's Disease, 42, 275–289. 10.3233/jad-140276.
    1. Bu, X., Hu, X. Y., Zhang, L. Q., Li, B., Zhou, M., Lu, L., … Huang, X. Q. (2019). Investigating the predictive value of different resting‐state functional MRI parameters in obsessive‐compulsive disorder. Translational Psychiatry, 9(1), 17. 10.1038/s41398-018-0362-9
    1. Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., Fotenos, A. F., … Mintun, M. A. (2005). Molecular, structural, and functional characterization of Alzheimer's disease: Evidence for a relationship between default activity, amyloid, and memory. The Journal of Neuroscience, 25, 7709–7717. 10.1523/jneurosci.2177-05.2005.
    1. Chen, K. W., Roontiva, A., Thiyyagura, P., Lee, W., Liu, X. F., Ayutyanont, N., … Reiman, E. M. (2015). Improved power for characterizing longitudinal amyloid‐β PET changes and evaluating amyloid‐modifying treatments with a cerebral white matter reference region. Journal of Nuclear Medicine, 56(4), 560–566. 10.2967/jnumed.114.149732.
    1. Chételat, G. (2013). Alzheimer disease: Aβ‐independent processes‐rethinking preclinical AD. Nature Reviews. Neurology, 9(3), 123–124.
    1. Dong, Q. Y., Li, T. R., Jiang, X. Y., Wang, X. N., Han, Y., & Jiang, J. H. (2021). Glucose metabolism in the right middle temporal gyrus could be a potential biomarker for subjective cognitive decline: A study of a Han population. Alzheimer's Research & Therapy, 13(1), 74. 10.1186/s13195-021-00811-w.
    1. Duan, H. Q., Jiang, J. H., Xu, J., Zhou, H. C., Huang, Z. M., Yu, Z. H., & Yan, Z. Z. (2016). Differences in Aβ brain networks in Alzheimer's disease and healthy controls. Brain Research, 1655, 77–89. 10.1016/j.brainres.2016.11.019.
    1. Dubois, B., Feldman, H. H., Jacova, C., Hampel, H., Molinuevo, J. L., Blennow, K., … Cummings, J. L. (2014). Advancing research diagnostic criteria for Alzheimer's disease: The IWG‐2 criteria. Lancet Neurology 13(6), 614–629.
    1. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini‐mental state”. Journal of Psychiatric Research, 12(3), 189–198. 10.1016/0022-3956(75)90026-6.
    1. Gonzalez‐Escamilla, G., Lange, C., Teipel, S., Buchert, R., Grothe, M. J. (2017). PETPVE12: an SPM toolbox for Partial Volume Effects correction in brain PET – Application to amyloid imaging with AV45‐PET. NeuroImage, 147, 669–677. 10.1016/j.neuroimage.2016.12.077.
    1. Gordon, B. A., Blazey, T. M., Su, Y., Hari‐Raj, A., Dincer, A., Flores, S., … Benzinger, T. L. S. (2018). Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: A longitudinal study. Lancet Neurology, 17(3), 241–250. 10.1016/s1474-4422(18)30028-0.
    1. Grothe, M. J., & Teipel, S. J. (2016). Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks. Human Brain Mapping, 37(1), 35–53. 10.1002/hbm.23018.
    1. Gupta, V. (2020): Reader response: Neuropathological features associated with basal forebrain atrophy in Alzheimer's disease.
    1. Habib, M., Mak, E., Gabel, S., Su, L., Williams, G., Waldman, A., … O'Brien, J. T. (2017). Functional neuroimaging findings in healthy middle‐aged adults at risk of Alzheimer's disease. Ageing Research Reviews, 36, 88–104. 10.1016/j.arr.2017.03.004.
    1. Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., … Jia, J. (2011). Frequency‐dependent changes in the amplitude of low‐frequency fluctuations in amnestic mild cognitive impairment: A resting‐state fMRI study. NeuroImage, 55(1), 287–295. 10.1016/j.neuroimage.2010.11.059.
    1. Jack, C. R. J., Wiste, H. J., Weigand, S. D., Therneau, T. M., Lowe, V. J., Knopman, D. S., … Petersen, R. C. (2017). Defining imaging biomarker cut points for brain aging and Alzheimer's disease. Alzheimers Dement, 13(3), 205–216. 10.1016/j.jalz.2016.08.005.
    1. Jessen, F., Amariglio, R. E., Buckley, R. F., van der Flier, W. M., Han, Y., Molinuevo, J. L., … Wagner, M. (2020). The characterisation of subjective cognitive decline. Lancet Neurology, 19(3), 271–278. 10.1016/s1474-4422(19)30368-0.
    1. Jueptner, M., & Weiller, C. (1995). Review: Does measurement of regional cerebral blood flow reflect synaptic activity?—Implications for PET and fMRI. NeuroImage, 2(2), 148–156. 10.1006/nimg.1995.1017.
    1. Landau, S. M., Harvey, D., Madison, C. M., Koeppe, R. A., Reiman, E. M., Foster, N. L., … Jagust, W. J. (2011). Associations between cognitive, functional, and FDG‐PET measures of decline in AD and MCI. Neurobiology of Aging, 32(7), 1207–1218. 10.1016/j.neurobiolaging.2009.07.002.
    1. Li, J. C., Jin, D., Li, A., Liu, B., Song, C. Y., Wang, P., … Han, Y. (2019). ASAF: Altered spontaneous activity fingerprinting in Alzheimer's disease based on multisite fMRI. Scientific Bulletin, 64(14), 998–1010.
    1. Li, X. Y., Wang, X. N., Su, L, Hu, X. C., & Han, Y. (2019). Sino longitudinal study on cognitive decline (SILCODE): Protocol for a Chinese longitudinal observational study to develop risk prediction models of conversion to mild cognitive impairment in individuals with subjective cognitive decline. BMJ Open, 9(7), e028188.
    1. Malpas, C. B., Saling, M. M., Velakoulis, D., Desmond, P., Hicks, R. J., Zetterberg, H., … O'Brien, T. J. (2018). Cerebrospinal fluid biomarkers are differentially related to structural and functional changes in dementia of the Alzheimer's type. Journal of Alzheimer's Disease, 62(1), 417–427. 10.3233/jad-170250.
    1. Marchitelli, R., Aiello, M., Cachia, A., Quarantelli, M., Cavaliere, C., Postiglione, A., … Pappatà, S. (2018). Simultaneous resting‐state FDG‐PET/fMRI in Alzheimer disease: Relationship between glucose metabolism and intrinsic activity. NeuroImage, 176, 246–258. 10.1016/j.neuroimage.2018.04.048.
    1. McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., … Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 263–269.
    1. Molinuevo, J. L., Rabin, L. A., Amariglio, R., Buckley, R., Dubois, B., Ellis, K. A., … Jessen, F. (2017). Implementation of subjective cognitive decline criteria in research studies. Alzheimer's & Dementia, 13(3), 296–311. 10.1016/j.jalz.2016.09.012.
    1. Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69–71. Retrieved from
    1. Palaniyappan, L., & Liddle, P. F. (2014). Diagnostic discontinuity in psychosis: A combined study of cortical gyrification and functional connectivity. Schizophrenia Bulletin, 40(3), 675–684. 10.1093/schbul/sbt050.
    1. Pan, P. L., Zhu, L., Yu, T. T., Shi, H. C., Zhang, B., Qin, R. M., … Xu, Y. (2017). Aberrant spontaneous low‐frequency brain activity in amnestic mild cognitive impairment: A meta‐analysis of resting‐state fMRI studies. Ageing Research Reviews, 35, 12–21. 10.1016/j.arr.2016.12.001.
    1. Pegueroles, J., Vilaplana, E., Montal, V., Sampedro, F., Alcolea, D., Carmona‐Iragui, M., … Fortea, J. (2017). Longitudinal brain structural changes in preclinical Alzheimer's disease. Alzheimer's & Dementia, 13(5), 499–509. 10.1016/j.jalz.2016.08.010.
    1. Shin, J., Lee, S.‐Y., Kim, S. J., Kim, S.‐H., Cho, S.‐J., & Kim, Y.‐B. (2010). Voxel‐based analysis of Alzheimer's disease PET imaging using a triplet of radiotracers: PIB, FDDNP, and FDG. NeuroImage, 52(2), 488–496. 10.1016/j.neuroimage.2010.04.013.
    1. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., … Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 280–292. 10.1016/j.jalz.2011.03.003
    1. Sperling, R. A., Laviolette, P. S., O'Keefe, K., O'Brien, J., Rentz, D. M., Pihlajamaki, M., … Johnson, K. A. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 63(3), 178–188. 10.1016/j.neuron.2009.07.003.
    1. Sun, Y., Dai, Z., Li, Y., Sheng, C., Li, H., Wang, X., … Han, Y. (2016). Subjective cognitive decline: Mapping functional and structural brain changes‐a combined resting‐state functional and structural MR imaging study. Radiology, 281(1), 185–192. 10.1148/radiol.2016151771.
    1. Wang, M., Jiang, J. H., Yan, Z. Z., Alberts, I., Ge, J. J., Zhang, H. W, … Shi, K. Y. (2020). Individual brain metabolic connectome indicator based on Kullback‐Leibler divergence similarity estimation predicts progression from mild cognitive impairment to Alzheimer's dementia. European Journal of Nuclear Medicine and Molecular Imaging, 47(12), 2753–2764. 10.1007/s00259-020-04814-x
    1. Wang, X. Q., Huang, W. J., Su, L., Xing, Y., Jessen, F., Sun, Y., … Han, Y. (2020). Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer's disease. Molecular Neurodegeneration, 15(1), 55. 10.1186/s13024-020-00395-3
    1. Xie, C., Bai, F., Yuan, B., Yu, H., Shi, Y., Yuan, Y., … Zhang, Z.‐J. (2015). Joint effects of gray matter atrophy and altered functional connectivity on cognitive deficits in amnestic mild cognitive impairment patients. Psychological Medicine, 45(9), 1799–1810. 10.1017/s0033291714002876.
    1. Yan, S. Z., Zheng, C. J., Cui, B. X., Qi, Z. G., Zhao, Z. L., An, Y. H., … Lu, J. (2020). Multiparametric imaging hippocampal neurodegeneration and functional connectivity with simultaneous PET/MRI in Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging, 47(10), 2440–2452. 10.1007/s00259-020-04752-8
    1. Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. 10.1152/jn.00338.2011.
    1. Zang, Y. F., Jiang, T. Z., Lu, Y. L., He, Y., & Tian, L. X. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394–400. 10.1016/j.neuroimage.2003.12.030.
    1. Zou, Q. H., Zhu, C. Z., Yang, Y. H, Zuo, X. N., Long, X. Y., Cao, Q. J., … Zang, Y. F. (2008). An improved approach to detection of amplitude of low‐frequency fluctuation (ALFF) for resting‐state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172(1), 137–141. 10.1016/j.jneumeth.2008.04.012.
    1. Zuo, X. N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., … Milham, M. P. (2010). The oscillating brain: Complex and reliable. NeuroImage, 49(2), 1432–1445. 10.1016/j.neuroimage.2009.09.037.

Source: PubMed

3
Subscribe