Melanoma Brain Metastases in the Era of Target Therapies: An Overview

Paolo Becco, Susanna Gallo, Stefano Poletto, Mirko Pio Manlio Frascione, Luca Crotto, Alessandro Zaccagna, Luca Paruzzo, Daniela Caravelli, Fabrizio Carnevale-Schianca, Massimo Aglietta, Paolo Becco, Susanna Gallo, Stefano Poletto, Mirko Pio Manlio Frascione, Luca Crotto, Alessandro Zaccagna, Luca Paruzzo, Daniela Caravelli, Fabrizio Carnevale-Schianca, Massimo Aglietta

Abstract

Malignant melanoma is the third most common type of tumor that causes brain metastases. Patients with cerebral involvement have a dismal prognosis and their treatment is an unmet medical need. Brain involvement is a multistep process involving several signaling pathways such as Janus kinase/signal Transducer and Activator of Transcription (JAK/STAT), Phosphoinositide 3-kinase/Protein Kinase B (PI3K/AKT), Vascular Endothelial Growth Factor and Phosphatase and Tensin Homolog (PTEN). Recently therapy that targets the MAPK signaling (BRAF/MEK inhibitors) and immunotherapy (anti-CTLA4 and anti-PD1 agents) have changed the therapeutic approaches to stage IV melanoma. In contrast, there are no solid data about patients with brain metastases, who are usually excluded from clinical trials. Retrospective data showed that BRAF-inhibitors, alone or in combination with MEK-inhibitors have interesting clinical activity in this setting. Prospective data about the combinations of BRAF/MEK inhibitors have been recently published, showing an improved overall response rate. Short intracranial disease control is still a challenge. Several attempts have been made in order to improve it with combinations between local and systemic therapies. Immunotherapy approaches seem to retain promising activity in the treatment of melanoma brain metastasis as showed by the results of clinical trials investigating the combination of anti-CTL4 (Ipilimumab) and anti-PD1(Nivolumab). Studies about the combination or the sequential approach of target therapy and immunotherapy are ongoing, with immature results. Several clinical trials are ongoing trying to explore new approaches in order to overcome tumor resistance. At this moment the correct therapeutic choices for melanoma with intracranial involvement is still a challenge and new strategies are needed.

Keywords: brain metastases; metastatic melanoma; target therapy.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Bottoni U., Clerico R., Paolino G., Ambrifi M., Corsetti P., Calvieri S. Predictors and survival in patients with melanoma brain metastases. Med. Oncol. 2013;30:466. doi: 10.1007/s12032-013-0466-2.
    1. Patel J.K., Didolkar M.S., Pickren J.W., Moore R.H. Metastatic pattern of malignant melanoma. A study of 216 autopsy cases. Am. J. Surg. 1978;135:807–810. doi: 10.1016/0002-9610(78)90171-X.
    1. Davies M.A., Liu P., McIntyre S., Kim K.B., Papadopoulos N., Hwu W.J., Hwu P., Bedikian A. Prognostic factors for survival in melanoma patients with brain metastases. Cancer. 2011;117:1687–1696. doi: 10.1002/cncr.25634.
    1. Raizer J.J., Hwu W.J., Panageas K.S., Wilton A., Baldwin D.E., Bailey E., von Althann C., Lamb L.A., Alvarado G., Bilsky M.H., et al. Brain and leptomeningeal metastases from cutaneous melanoma: Survival outcomes based on clinical features. Neuro Oncol. 2008;10:199–207. doi: 10.1215/15228517-2007-058.
    1. Atkins M.B., Sosman J.A., Agarwala S., Logan T., Clark J.I., Ernstoff M.S., Lawson D., Dutcher J.P., Weiss G., Curti B., et al. Temozolomide, thalidomide, and whole brain radiation therapy for patients with brain metastasis from metastatic melanoma: A phase II Cytokine Working Group study. Cancer. 2008;113:2139–2145. doi: 10.1002/cncr.23805.
    1. Margolin K., Atkins B., Thompson A., Ernstoff S., Weber J., Flaherty L., Clark I., Weiss G., Sosman J., II Smith W., et al. Temozolomide and whole brain irradiation in melanoma metastatic to the brain: A phase II trial of the Cytokine Working Group. J. Cancer Res. Clin. Oncol. 2002;128:214–218. doi: 10.1007/s00432-002-0323-8.
    1. Sloot S., Chen Y.A., Zhao X., Weber J.L., Benedict J.J., Mulé J.J., Smalley K.S., Weber J.S., Zager J.S., Forsyth P.A., et al. Improved survival of patients with melanoma brain metastases in the era of targeted BRAF and immune checkpoint therapies. Cancer. 2018;124:297–305. doi: 10.1002/cncr.30946.
    1. Tawbi H.A., Forsyth P.A., Algazi A., Hamid O., Hodi F.S., Moschos S.J., Khushalani N.I., Lewis K., Lao C.D., Postow M.A., et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 2018;379:722–730. doi: 10.1056/NEJMoa1805453.
    1. Cohn-Cedermark G., Månsson-Brahme E., Rutqvist L.E., Larsson O., Johansson H., Ringborg U. Central nervous system metastases of cutaneous malignant melanoma—A population-based study. Acta Oncol. 1998;37:463–470. doi: 10.1080/028418698430412.
    1. Redmer T. Deciphering mechanisms of brain metastasis in melanoma—The gist of the matter. Mol. Cancer. 2018;17:106. doi: 10.1186/s12943-018-0854-5.
    1. Tawbi H.A., Boutros C., Kok D., Robert C., McArthur G. New era in the management of melanoma brain metastases. Am. Soc. Clin. Oncol. Educ. Book. 2018;38:741–750. doi: 10.1200/EDBK_200819.
    1. Kienast Y., von Baumgarten L., Fuhrmann M., Klinkert W.E., Goldbrunner R., Herms J., Winkler F. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 2010;16:116–122. doi: 10.1038/nm.2072.
    1. Molnár J., Fazakas C., Haskó J., Sipos O., Nagy K., Nyúl-Tóth Á., Farkas A.E., Végh A.G., Váró G., Galajda P., et al. Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K. Cell Adhes. Migr. 2016;10:269–281. doi: 10.1080/19336918.2015.1122156.
    1. Klein A., Sagi-Assif O., Meshel T., Telerman A., Izraely S., Ben-Menachem S., Bayry J., Marzese D.M., Ohe S., Hoon D.S.B., et al. CCR4 is a determinant of melanoma brain metastasis. Oncotarget. 2017;8:31079–31091. doi: 10.18632/oncotarget.16076.
    1. Fazakas C., Wilhelm I., Nagyoszi P., Farkas A.E., Haskó J., Molnár J., Bauer H., Bauer H.C., Ayaydin F., Dung N.T., et al. Transmigration of melanoma cells through the blood-brain barrier: Role of endothelial tight junctions and melanoma-released serine proteases. PLoS ONE. 2011;6:e20758. doi: 10.1371/journal.pone.0020758.
    1. Hawkins B.T., Davis T.P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 2005;57:173–185. doi: 10.1124/pr.57.2.4.
    1. Xie T.X., Huang F.J., Aldape K.D., Kang S.H., Liu M., Gershenwald J.E., Xie K., Sawaya R., Huang S. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res. 2006;66:3188–3196. doi: 10.1158/0008-5472.CAN-05-2674.
    1. Berghoff A.S., Schur S., Füreder L.M., Gatterbauer B., Dieckmann K., Widhalm G., Hainfellner J., Zielinski C.C., Birner P., Bartsch R., et al. Descriptive statistical analysis of a real life cohort of 2419 patients with brain metastases of solid cancers. ESMO Open. 2016;1:e000024. doi: 10.1136/esmoopen-2015-000024.
    1. Niessner H., Forschner A., Klumpp B., Honegger J.B., Witte M., Bornemann A., Dummer R., Adam A., Bauer J., Tabatabai G., et al. Targeting hyperactivation of the AKT survival pathway to overcome therapy resistance of melanoma brain metastases. Cancer Med. 2013;2:76–85. doi: 10.1002/cam4.50.
    1. Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., Bottomley W., et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–954. doi: 10.1038/nature00766.
    1. Yaman B., Akalin T., Kandiloğlu G. Clinicopathological characteristics and mutation profiling in primary cutaneous melanoma. Am. J. Dermatopathol. 2015;37:389–397. doi: 10.1097/DAD.0000000000000241.
    1. Colombino M., Capone M., Lissia A., Cossu A., Rubino C., De Giorgi V., Massi D., Fonsatti E., Staibano S., Nappi O., et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J. Clin. Oncol. 2012;30:2522–2529. doi: 10.1200/JCO.2011.41.2452.
    1. Dankort D., Curley D.P., Cartlidge R.A., Nelson B., Karnezis A.N., Damsky W.E., You M.J., DePinho R.A., McMahon M., Bosenberg M. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 2009;41:544–552. doi: 10.1038/ng.356.
    1. Chen G., Chakravarti N., Aardalen K., Lazar A.J., Tetzlaff M.T., Wubbenhorst B., Kim S.B., Kopetz S., Ledoux A.A., Gopal Y.N., et al. Molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target. Clin. Cancer Res. 2014;20:5537–5546. doi: 10.1158/1078-0432.CCR-13-3003.
    1. Kircher D.A., Trombetti K.A., Silvis M.R., Parkman G.L., Fischer G.M., Angel S.N., Stehn C.M., Strain S.C., Grossmann A.H., Duffy K.L., et al. AKT1. Mol. Cancer Res. 2019;17:1787–1800. doi: 10.1158/1541-7786.MCR-18-1372.
    1. Izraely S., Klein A., Sagi-Assif O., Meshel T., Tsarfaty G., Hoon D.S., Witz I.P. Chemokine-chemokine receptor axes in melanoma brain metastasis. Immunol. Lett. 2010;130:107–114. doi: 10.1016/j.imlet.2009.12.003.
    1. Murry B.P., Blust B.E., Singh A., Foster T.P., Marchetti D. Heparanase mechanisms of melanoma metastasis to the brain: Development and use of a brain slice model. J. Cell Biochem. 2006;97:217–225. doi: 10.1002/jcb.20714.
    1. Vogt P.K., Hart J.R. PI3K and STAT3: A new alliance. Cancer Discov. 2011;1:481–486. doi: 10.1158/-11-0218.
    1. Davies M.A., Saiag P., Robert C., Grob J.J., Flaherty K.T., Arance A., Chiarion-Sileni V., Thomas L., Lesimple T., Mortier L., et al. Dabrafenib plus trametinib in patients with BRAF. Lancet Oncol. 2017;18:863–873. doi: 10.1016/S1470-2045(17)30429-1.
    1. Puzanov I., Amaravadi R.K., McArthur G.A., Flaherty K.T., Chapman P.B., Sosman J.A., Ribas A., Shackleton M., Hwu P., Chmielowski B., et al. Long-term outcome in BRAF(V600E) melanoma patients treated with vemurafenib: Patterns of disease progression and clinical management of limited progression. Eur. J. Cancer. 2015;51:1435–1443. doi: 10.1016/j.ejca.2015.04.010.
    1. Harding J.J., Catalanotti F., Munhoz R.R., Cheng D.T., Yaqubie A., Kelly N., McDermott G.C., Kersellius R., Merghoub T., Lacouture M.E., et al. A Retrospective evaluation of vemurafenib as treatment for braf-mutant melanoma brain metastases. Oncologist. 2015;20:789–797. doi: 10.1634/theoncologist.2014-0012.
    1. Villanueva J., Vultur A., Lee J.T., Somasundaram R., Fukunaga-Kalabis M., Cipolla A.K., Wubbenhorst B., Xu X., Gimotty P.A., Kee D., et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18:683–695. doi: 10.1016/j.ccr.2010.11.023.
    1. Shi H., Hong A., Kong X., Koya R.C., Song C., Moriceau G., Hugo W., Yu C.C., Ng C., Chodon T., et al. A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition. Cancer Discov. 2014;4:69–79. doi: 10.1158/-13-0279.
    1. Gorka E., Fabó D., Gézsi A., Czirbesz K., Fedorcsák I., Liszkay G. Dabrafenib therapy in 30 patients with melanoma metastatic to the brain: A single-centre controlled retrospective study in hungary. Pathol. Oncol. Res. 2018;24:401–406. doi: 10.1007/s12253-017-0256-9.
    1. Dzienis M.R., Atkinson V.G. Response rate to vemurafenib in patients with B-RAF-positive melanoma brain metastases: A retrospective review. Melanoma Res. 2014;24:349–353. doi: 10.1097/CMR.0000000000000068.
    1. Gibney G.T., Gauthier G., Ayas C., Galebach P., Wu E.Q., Abhyankar S., Reyes C., Guérin A., Yim Y.M. Treatment patterns and outcomes in BRAF V600E-mutant melanoma patients with brain metastases receiving vemurafenib in the real-world setting. Cancer Med. 2015;4:1205–1213. doi: 10.1002/cam4.475.
    1. Martin-Algarra S., Hinshelwood R., Mesnage S., Cebon J., Ferrucci P.F., Aglietta M., Neyns B., Chiarion-Sileni V., Lindsay C.R., Del Vecchio M., et al. Effectiveness of dabrafenib in the treatment of patients with BRAF V600-mutated metastatic melanoma in a Named Patient Program. Melanoma Res. 2019;29:527–532. doi: 10.1097/CMR.0000000000000608.
    1. Geukes Foppen M.H., Boogerd W., Blank C.U., van Thienen J.V., Haanen J.B., Brandsma D. Clinical and radiological response of BRAF inhibition and MEK inhibition in patients with brain metastases from BRAF-mutated melanoma. Melanoma Res. 2018;28:126–133. doi: 10.1097/CMR.0000000000000429.
    1. Drago J.Z., Lawrence D., Livingstone E., Zimmer L., Chen T., Giobbie-Hurder A., Amann V.C., Mangana J., Siano M., Zippelius A., et al. Clinical experience with combination BRAF/MEK inhibitors for melanoma with brain metastases: A real-life multicenter study. Melanoma Res. 2019;29:65–69. doi: 10.1097/CMR.0000000000000527.
    1. Holbrook K., Lutzky J., Davies M.A., Davis J.M., Glitza I.C., Amaria R.N., Diab A., Patel S.P., Amin A., Tawbi H. Intracranial antitumor activity with encorafenib plus binimetinib in patients with melanoma brain metastases: A case series. Cancer. 2020;126:523–530. doi: 10.1002/cncr.32547.
    1. Seghers A.C., Wilgenhof S., Lebbé C., Neyns B. Successful rechallenge in two patients with BRAF-V600-mutant melanoma who experienced previous progression during treatment with a selective BRAF inhibitor. Melanoma Res. 2012;22:466–472. doi: 10.1097/CMR.0b013e3283541541.
    1. Valpione S., Carlino M.S., Mangana J., Mooradian M.J., McArthur G., Schadendorf D., Hauschild A., Menzies A.M., Arance A., Ascierto P.A., et al. Rechallenge with BRAF-directed treatment in metastatic melanoma: A multi-institutional retrospective study. Eur. J. Cancer. 2018;91:116–124. doi: 10.1016/j.ejca.2017.12.007.
    1. Viñal D., Martinez D., Espinosa E. Efficacy of rechallenge with BRAF inhibition therapy in patients with advanced BRAFV600 mutant melanoma. Clin. Transl. Oncol. 2019;21:1061–1066. doi: 10.1007/s12094-018-02028-0.
    1. Long G.V., Trefzer U., Davies M.A., Kefford R.F., Ascierto P.A., Chapman P.B., Puzanov I., Hauschild A., Robert C., Algazi A., et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): A multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:1087–1095. doi: 10.1016/S1470-2045(12)70431-X.
    1. McArthur G.A., Maio M., Arance A., Nathan P., Blank C., Avril M.F., Garbe C., Hauschild A., Schadendorf D., Hamid O., et al. Vemurafenib in metastatic melanoma patients with brain metastases: An open-label, single-arm, phase 2, multicentre study. Ann. Oncol. 2017;28:634–641. doi: 10.1093/annonc/mdw641.
    1. Long G.V., Stroyakovskiy D., Gogas H., Levchenko E., de Braud F., Larkin J., Garbe C., Jouary T., Hauschild A., Grob J.J., et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386:444–451. doi: 10.1016/S0140-6736(15)60898-4.
    1. Long G.V., Flaherty K.T., Stroyakovskiy D., Gogas H., Levchenko E., de Braud F., Larkin J., Garbe C., Jouary T., Hauschild A., et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: Long-term survival and safety analysis of a phase 3 study. Ann. Oncol. 2017;28:1631–1639. doi: 10.1093/annonc/mdx176.
    1. Robert C., Karaszewska B., Schachter J., Rutkowski P., Mackiewicz A., Stroyakovskiy D., Drucis K. Three-year estimate of overall survival in COMBI-v, a randomized phase 3 study evaluating first-line dabrafenib (D) + trametinib (T) in patients (pts) with unresectable or metastatic BRAF V600E/K-mutant cutaneous melanoma. Ann. Oncol. 2016;27:552–587. doi: 10.1093/annonc/mdw435.37.
    1. Dummer R., Goldinger S.M., Turtschi C.P., Eggmann N.B., Michielin O., Mitchell L., Veronese L., Hilfiker P.R., Felderer L., Rinderknecht J.D. Vemurafenib in patients with BRAF(V600) mutation-positive melanoma with symptomatic brain metastases: Final results of an open-label pilot study. Eur. J. Cancer. 2014;50:611–621. doi: 10.1016/j.ejca.2013.11.002.
    1. Falchook G.S., Long G.V., Kurzrock R., Kim K.B., Arkenau T.H., Brown M.P., Hamid O., Infante J.R., Millward M., Pavlick A.C., et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: A phase 1 dose-escalation trial. Lancet. 2012;379:1893–1901. doi: 10.1016/S0140-6736(12)60398-5.
    1. Arance A.M., Berrocal A., Lopez-Martin J.A., de la Cruz-Merino L., Soriano V., Martín Algarra S., Alonso L., Cerezuela P., La Orden B., Espinosa E. Safety of vemurafenib in patients with BRAF. Clin. Transl. Oncol. 2016;18:1147–1157. doi: 10.1007/s12094-016-1498-9.
    1. How J., Mann J., Laczniak A.N., Baggstrom M.Q. Pulsatile erlotinib in EGFR-Positive non-small-cell lung cancer patients with leptomeningeal and brain metastases: Review of the literature. Clin. Lung Cancer. 2017;18:354–363. doi: 10.1016/j.cllc.2017.01.013.
    1. Goldinger S.M., Valeska Matter A., Urner-Bloch U., Narainsing J., Micaletto S., Blume I., Mangana J., Dummer R. Binimetinib in heavily pretreated patients with NRAS-mutant melanoma with brain metastases. Br. J. Dermatol. 2020;182:488–490. doi: 10.1111/bjd.18449.
    1. Cagney D.N., Alexander B.M., Hodi F.S., Buchbinder E.I., Ott P.A., Aizer A.A. Rapid progression of intracranial melanoma metastases controlled with combined BRAF/MEK inhibition after discontinuation of therapy: A clinical challenge. J. Neurooncol. 2016;129:389–393. doi: 10.1007/s11060-016-2196-8.
    1. Sambade M.J., Peters E.C., Thomas N.E., Kaufmann W.K., Kimple R.J., Shields J.M. Melanoma cells show a heterogeneous range of sensitivity to ionizing radiation and are radiosensitized by inhibition of B-RAF with PLX-4032. Radiother. Oncol. 2011;98:394–399. doi: 10.1016/j.radonc.2010.12.017.
    1. Narayana A., Mathew M., Tam M., Kannan R., Madden K.M., Golfinos J.G., Parker E.C., Ott P.A., Pavlick A.C. Vemurafenib and radiation therapy in melanoma brain metastases. J. Neurooncol. 2013;113:411–416. doi: 10.1007/s11060-013-1127-1.
    1. Ahmed K.A., Freilich J.M., Sloot S., Figura N., Gibney G.T., Weber J.S., Sarangkasiri S., Chinnaiyan P., Forsyth P.A., Etame A.B., et al. LINAC-based stereotactic radiosurgery to the brain with concurrent vemurafenib for melanoma metastases. J. Neurooncol. 2015;122:121–126. doi: 10.1007/s11060-014-1685-x.
    1. Gaudy-Marqueste C., Carron R., Delsanti C., Loundou A., Monestier S., Archier E., Richard M.A., Regis J., Grob J.J. On demand Gamma-Knife strategy can be safely combined with BRAF inhibitors for the treatment of melanoma brain metastases. Ann. Oncol. 2014;25:2086–2091. doi: 10.1093/annonc/mdu266.
    1. Xu Z., Lee C.C., Ramesh A., Mueller A.C., Schlesinger D., Cohen-Inbar O., Shih H.H., Sheehan J.P. BRAF V600E mutation and BRAF kinase inhibitors in conjunction with stereotactic radiosurgery for intracranial melanoma metastases. J. Neurosurg. 2017;126:726–734. doi: 10.3171/2016.2.JNS1633.
    1. Ly D., Bagshaw H.P., Anker C.J., Tward J.D., Grossmann K.F., Jensen R.L., Shrieve D.C. Local control after stereotactic radiosurgery for brain metastases in patients with melanoma with and without BRAF mutation and treatment. J. Neurosurg. 2015;123:395–401. doi: 10.3171/2014.9.JNS141425.
    1. Liebner D.A., Walston S.A., Cavaliere R., Powers C.J., Sauvageau E., Lehman N.L., Wayne Slone H., Xu-Welliver M., Xia F., Kendra K.L. Radiation necrosis mimicking rapid intracranial progression of melanoma metastasis in two patients treated with vemurafenib. Melanoma Res. 2014;24:172–176. doi: 10.1097/CMR.0000000000000044.
    1. Peuvrel L., Ruellan A.L., Thillays F., Quereux G., Brocard A., Saint-Jean M., Aumont M., Drouet F., Dreno B. Severe radiotherapy-induced extracutaneous toxicity under vemurafenib. Eur. J. Dermatol. 2013;23:879–881. doi: 10.1684/ejd.2013.2193.
    1. Patel K.R., Chowdhary M., Switchenko J.M., Kudchadkar R., Lawson D.H., Cassidy R.J., Prabhu R.S., Khan M.K. BRAF inhibitor and stereotactic radiosurgery is associated with an increased risk of radiation necrosis. Melanoma Res. 2016;26:387–394. doi: 10.1097/CMR.0000000000000268.
    1. Wolf A., Zia S., Verma R., Pavlick A., Wilson M., Golfinos J.G., Silverman J.S., Kondziolka D. Impact on overall survival of the combination of BRAF inhibitors and stereotactic radiosurgery in patients with melanoma brain metastases. J. Neurooncol. 2016;127:607–615. doi: 10.1007/s11060-016-2072-6.
    1. Gillet J.P., Gottesman M.M. Mechanisms of multidrug resistance in cancer. Methods Mol. Biol. 2010;596:47–76. doi: 10.1007/978-1-60761-416-6_4.
    1. Larkin J.M., Hughes S.A., Beirne D.A., Patel P.M., Gibbens I.M., Bate S.C., Thomas K., Eisen T.G., Gore M.E. A phase I/II study of lomustine and temozolomide in patients with cerebral metastases from malignant melanoma. Br. J. Cancer. 2007;96:44–48. doi: 10.1038/sj.bjc.6603503.
    1. Agarwala S.S., Kirkwood J.M., Gore M., Dreno B., Thatcher N., Czarnetski B., Atkins M., Buzaid A., Skarlos D., Rankin E.M. Temozolomide for the treatment of brain metastases associated with metastatic melanoma: A phase II study. J. Clin. Oncol. 2004;22:2101–2107. doi: 10.1200/JCO.2004.11.044.
    1. Schadendorf D., Hauschild A., Ugurel S., Thoelke A., Egberts F., Kreissig M., Linse R., Trefzer U., Vogt T., Tilgen W., et al. Dose-intensified bi-weekly temozolomide in patients with asymptomatic brain metastases from malignant melanoma: A phase II DeCOG/ADO study. Ann. Oncol. 2006;17:1592–1597. doi: 10.1093/annonc/mdl148.
    1. Hofmann M., Kiecker F., Wurm R., Schlenger L., Budach V., Sterry W., Trefzer U. Temozolomide with or without radiotherapy in melanoma with unresectable brain metastases. J. Neurooncol. 2006;76:59–64. doi: 10.1007/s11060-005-2914-0.
    1. Hwu W.J., Lis E., Menell J.H., Panageas K.S., Lamb L.A., Merrell J., Williams L.J., Krown S.E., Chapman P.B., Livingston P.O., et al. Temozolomide plus thalidomide in patients with brain metastases from melanoma: A phase II study. Cancer. 2005;103:2590–2597. doi: 10.1002/cncr.21081.
    1. Queirolo P., Spagnolo F., Picasso V., Spano L., Tanda E., Fontana V., Giorello L., Merlo D.F., Simeone E., Grimaldi A.M., et al. Combined vemurafenib and fotemustine in patients with BRAF V600 melanoma progressing on vemurafenib. Oncotarget. 2018;9:12408–12417. doi: 10.18632/oncotarget.10589.
    1. Margolin K., Ernstoff M.S., Hamid O., Lawrence D., McDermott D., Puzanov I., Wolchok J.D., Clark J.I., Sznol M., Logan T.F., et al. Ipilimumab in patients with melanoma and brain metastases: An open-label, phase 2 trial. Lancet Oncol. 2012;13:459–465. doi: 10.1016/S1470-2045(12)70090-6.
    1. Di Giacomo A.M., Ascierto P.A., Pilla L., Santinami M., Ferrucci P.F., Giannarelli D., Marasco A., Rivoltini L., Simeone E., Nicoletti S.V., et al. Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): An open-label, single-arm phase 2 trial. Lancet Oncol. 2012;13:879–886. doi: 10.1016/S1470-2045(12)70324-8.
    1. Goldberg S.B., Gettinger S.N., Mahajan A., Chiang A.C., Herbst R.S., Sznol M., Tsiouris A.J., Cohen J., Vortmeyer A., Jilaveanu L., et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: Early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016;17:976–983. doi: 10.1016/S1470-2045(16)30053-5.
    1. Kluger H.M., Chiang V., Mahajan A., Zito C.R., Sznol M., Tran T., Weiss S.A., Cohen J.V., Yu J., Hegde U., et al. Long-term survival of patients with melanoma with active brain metastases treated with pembrolizumab on a Phase II Trial. J. Clin. Oncol. 2019;37:52–60. doi: 10.1200/JCO.18.00204.
    1. Tawbi H.A.H., Forsyth P.A., Hodi F.S., Lao C.D., Moschos S.J., Hamid O., Jang S. Efficacy and safety of the combination of nivolumab (NIVO) plus ipilimumab (IPI) inpatients with symptomatic melanoma brain metastases (CheckMate 204); Presented at ASCO 2019 Annual Meeting; Chicago, IL, USA. 31 May–4 June 2019.
    1. Long G.V., Atkinson V., Lo S., Sandhu S., Guminski A.D., Brown M.P., Wilmott J.S., Edwards J., Gonzalez M., Scolyer R.A., et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncol. 2018;19:672–681. doi: 10.1016/S1470-2045(18)30139-6.
    1. Mandalà M., De Logu F., Merelli B., Nassini R., Massi D. Immunomodulating property of MAPK inhibitors: From translational knowledge to clinical implementation. Lab. Investig. 2017;97:166–175. doi: 10.1038/labinvest.2016.132.
    1. Hu-Lieskovan S., Mok S., Homet Moreno B., Tsoi J., Robert L., Goedert L., Pinheiro E.M., Koya R.C., Graeber T.G., Comin-Anduix B., et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci. Transl. Med. 2015;7:279ra241. doi: 10.1126/scitranslmed.aaa4691.
    1. Ascierto P.A., Ferrucci P.F., Fisher R., Del Vecchio M., Atkinson V., Schmidt H., Schachter J., Queirolo P., Long G.V., Di Giacomo A.M., et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat. Med. 2019;25:941–946. doi: 10.1038/s41591-019-0448-9.
    1. Ribas A., Lawrence D., Atkinson V., Agarwal S., Miller W.H., Carlino M.S., Fisher R., Long G.V., Hodi F.S., Tsoi J., et al. Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nat. Med. 2019;25:936–940. doi: 10.1038/s41591-019-0476-5.
    1. Gutzmer R., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., Pereira R.P., Eigentler T., Rutkowski P., Demidov L., et al. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF. Lancet. 2020;395:1835–1844. doi: 10.1016/S0140-6736(20)30934-X.
    1. Glitza I.C., Smalley K.S.M., Brastianos P.K., Davies M.A., McCutcheon I., Liu J.K.C., Ahmed K.A., Arrington J.A., Evernden B.R., Smalley I., et al. Leptomeningeal disease in melanoma patients: An update to treatment, challenges, and future directions. Pigment Cell Melanoma Res. 2020 doi: 10.1111/pcmr.12861.
    1. Le Rhun E., Taillibert S., Chamberlain M.C. Carcinomatous meningitis: Leptomeningeal metastases in solid tumors. Surg. Neurol. Int. 2013;4:S265–S288. doi: 10.4103/2152-7806.111304.
    1. Sakji-Dupré L., Le Rhun E., Templier C., Desmedt E., Blanchet B., Mortier L. Cerebrospinal fluid concentrations of vemurafenib in patients treated for brain metastatic BRAF-V600 mutated melanoma. Melanoma Res. 2015;25:302–305. doi: 10.1097/CMR.0000000000000162.
    1. Arasaratnam M., Hong A., Shivalingam B., Wheeler H., Guminksi A.D., Long G.V., Menzies A.M. Leptomeningeal melanoma-A case series in the era of modern systemic therapy. Pigment Cell Melanoma Res. 2018;31:120–124. doi: 10.1111/pcmr.12652.
    1. Glitza I.C., Ferguson S.D., Guha-Thakurta N. Rapid resolution of leptomeningeal disease with targeted therapy in a metastatic melanoma patient. J. Neurooncol. 2017;133:663–665. doi: 10.1007/s11060-017-2472-2.
    1. Kim D.W., Barcena E., Mehta U.N., Rohlfs M.L., Kumar A.J., Penas-Prado M., Kim K.B. Prolonged survival of a patient with metastatic leptomeningeal melanoma treated with BRAF inhibition-based therapy: A case report. BMC Cancer. 2015;15:400. doi: 10.1186/s12885-015-1391-x.
    1. Wilgenhof S., Neyns B. Complete cytologic remission of V600E BRAF-mutant melanoma-associated leptomeningeal carcinomatosis upon treatment with dabrafenib. J. Clin. Oncol. 2015;33:e109–e111. doi: 10.1200/JCO.2013.48.7298.
    1. Papadatos-Pastos D., Januszewski A., Dalgleish A. Revisiting the role of systemic therapies in patients with metastatic melanoma to the CNS. Expert Rev. Anticancer Ther. 2013;13:559–567. doi: 10.1586/era.13.33.
    1. Mittapalli R.K., Vaidhyanathan S., Dudek A.Z., Elmquist W.F. Mechanisms limiting distribution of the threonine-protein kinase B-RaF(V600E) inhibitor dabrafenib to the brain: Implications for the treatment of melanoma brain metastases. J. Pharmacol. Exp. Ther. 2013;344:655–664. doi: 10.1124/jpet.112.201475.
    1. Wager T.T., Villalobos A., Verhoest P.R., Hou X., Shaffer C.L. Strategies to optimize the brain availability of central nervous system drug candidates. Expert Opin. Drug Discov. 2011;6:371–381. doi: 10.1517/17460441.2011.564158.
    1. Cao Y., Tsien C.I., Shen Z., Tatro D.S., Ten Haken R., Kessler M.L., Chenevert T.L., Lawrence T.S. Use of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapy. J. Clin. Oncol. 2005;23:4127–4136. doi: 10.1200/JCO.2005.07.144.
    1. Smalley K.S., Fedorenko I.V., Kenchappa R.S., Sahebjam S., Forsyth P.A. Managing leptomeningeal melanoma metastases in the era of immune and targeted therapy. Int. J. Cancer. 2016;139:1195–1201. doi: 10.1002/ijc.30147.
    1. Glitza I.C., Bucheit A.D. Clinical response of central nervous system melanoma to anti-PD1 therapy in 2 melanoma patients. Arch. Immunol. 2017;1:1–3.
    1. Glitza I.C., Phillips S., Brown C., Haymaker C.L., Bassett R.L., Lee J.J., McCutcheon I.E. Single-center phase I/Ib study of concurrent intrathecal (IT) and intravenous (IV) nivolumab (N) for metastatic melanoma (MM) patients (pts) with leptomeningeal disease (LMD); Presented at ASCO 2020; Chicago, IL, USA. 29–31 May 2020.
    1. Lim S.Y., Menzies A.M., Rizos H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer. 2017;123:2118–2129. doi: 10.1002/cncr.30435.
    1. Johnson D.B., Menzies A.M., Zimmer L., Eroglu Z., Ye F., Zhao S., Rizos H., Sucker A., Scolyer R.A., Gutzmer R., et al. Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur. J. Cancer. 2015;51:2792–2799. doi: 10.1016/j.ejca.2015.08.022.
    1. Welsh S.J., Rizos H., Scolyer R.A., Long G.V. Resistance to combination BRAF and MEK inhibition in metastatic melanoma: Where to next? Eur. J. Cancer. 2016;62:76–85. doi: 10.1016/j.ejca.2016.04.005.
    1. Carlino M.S., Todd J.R., Gowrishankar K., Mijatov B., Pupo G.M., Fung C., Snoyman S., Hersey P., Long G.V., Kefford R.F., et al. Differential activity of MEK and ERK inhibitors in BRAF inhibitor resistant melanoma. Mol. Oncol. 2014;8:544–554. doi: 10.1016/j.molonc.2014.01.003.
    1. Wong D.J., Robert L., Atefi M.S., Lassen A., Avarappatt G., Cerniglia M., Avramis E., Tsoi J., Foulad D., Graeber T.G., et al. Antitumor activity of the ERK inhibitor SCH772984 [corrected] against BRAF mutant, NRAS mutant and wild-type melanoma. Mol. Cancer. 2014;13:194. doi: 10.1186/1476-4598-13-194.
    1. Rebecca V.W., Alicea G.M., Paraiso K.H., Lawrence H., Gibney G.T., Smalley K.S. Vertical inhibition of the MAPK pathway enhances therapeutic responses in NRAS-mutant melanoma. Pigment Cell Melanoma Res. 2014;27:1154–1158. doi: 10.1111/pcmr.12303.
    1. Shi H., Hugo W., Kong X., Hong A., Koya R.C., Moriceau G., Chodon T., Guo R., Johnson D.B., Dahlman K.B., et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4:80–93. doi: 10.1158/-13-0642.
    1. Aguissa-Touré A.H., Li G. Genetic alterations of PTEN in human melanoma. Cell. Mol. Life Sci. 2012;69:1475–1491. doi: 10.1007/s00018-011-0878-0.
    1. Frederick D.T., Piris A., Cogdill A.P., Cooper Z.A., Lezcano C., Ferrone C.R., Mitra D., Boni A., Newton L.P., Liu C., et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 2013;19:1225–1231. doi: 10.1158/1078-0432.CCR-12-1630.
    1. Cooper Z.A., Frederick D.T., Juneja V.R., Sullivan R.J., Lawrence D.P., Piris A., Sharpe A.H., Fisher D.E., Flaherty K.T., Wargo J.A. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology. 2013;2:e26615. doi: 10.4161/onci.26615.
    1. Choo E.F., Ly J., Chan J., Shahidi-Latham S.K., Messick K., Plise E., Quiason C.M., Yang L. Role of P-glycoprotein on the brain penetration and brain pharmacodynamic activity of the MEK inhibitor cobimetinib. Mol. Pharm. 2014;11:4199–4207. doi: 10.1021/mp500435s.
    1. Gampa G., Vaidhyanathan S., Sarkaria J.N., Elmquist W.F. Drug delivery to melanoma brain metastases: Can current challenges lead to new opportunities? Pharmacol. Res. 2017;123:10–25. doi: 10.1016/j.phrs.2017.06.008.
    1. Almeida F.V., Douglass S.M., Fane M.E., Weeraratna A.T. Bad company: Microenvironmentally mediated resistance to targeted therapy in melanoma. Pigment Cell Melanoma Res. 2019;32:237–247. doi: 10.1111/pcmr.12736.
    1. Gatenby R.A., Gillies R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer. 2004;4:891–899. doi: 10.1038/nrc1478.
    1. Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 2009;324:1029–1033. doi: 10.1126/science.1160809.
    1. Peppicelli S., Bianchini F., Calorini L. Dynamic scenario of metabolic pathway adaptation in tumors and therapeutic approach. Oncoscience. 2015;2:225–232. doi: 10.18632/oncoscience.123.
    1. Ruzzolini J., Peppicelli S., Andreucci E., Bianchini F., Margheri F., Laurenzana A., Fibbi G., Pimpinelli N., Calorini L. Everolimus selectively targets vemurafenib resistant BRAF. Cancer Lett. 2017;408:43–54. doi: 10.1016/j.canlet.2017.08.010.
    1. Barcellos-Hoff M.H., Ravani S.A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000;60:1254–1260.
    1. Krtolica A., Parrinello S., Lockett S., Desprez P.Y., Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proc. Natl. Acad. Sci. USA. 2001;98:12072–12077. doi: 10.1073/pnas.211053698.
    1. Ohuchida K., Mizumoto K., Murakami M., Qian L.W., Sato N., Nagai E., Matsumoto K., Nakamura T., Tanaka M. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 2004;64:3215–3222. doi: 10.1158/0008-5472.CAN-03-2464.
    1. Straussman R., Morikawa T., Shee K., Barzily-Rokni M., Qian Z.R., Du J., Davis A., Mongare M.M., Gould J., Frederick D.T., et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–504. doi: 10.1038/nature11183.
    1. Capparelli C., Rosenbaum S., Berger A.C., Aplin A.E. Fibroblast-derived neuregulin 1 promotes compensatory ErbB3 receptor signaling in mutant BRAF melanoma. J. Biol. Chem. 2015;290:24267–24277. doi: 10.1074/jbc.M115.657270.
    1. Kim M.H., Kim J., Hong H., Lee S.H., Lee J.K., Jung E. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J. 2016;35:462–478. doi: 10.15252/embj.201592081.
    1. Titz B., Lomova A., Le A., Hugo W., Kong X., Ten Hoeve J., Friedman M., Shi H., Moriceau G., Song C., et al. JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma. Cell Discov. 2016;2:16028. doi: 10.1038/celldisc.2016.28.
    1. Fedorenko I.V., Wargo J.A., Flaherty K.T., Messina J.L., Smalley K.S.M. BRAF Inhibition generates a host-tumor niche that mediates therapeutic escape. J. Investig. Dermatol. 2015;135:3115–3124. doi: 10.1038/jid.2015.329.
    1. Fedorenko I.V., Abel E.V., Koomen J.M., Fang B., Wood E.R., Chen Y.A., Fisher K.J., Iyengar S., Dahlman K.B., Wargo J.A., et al. Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene. 2016;35:1225–1235. doi: 10.1038/onc.2015.188.
    1. Bendell J.C., Rodon J., Burris H.A., de Jonge M., Verweij J., Birle D., Demanse D., De Buck S.S., Ru Q.C., Peters M., et al. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 2012;30:282–290. doi: 10.1200/JCO.2011.36.1360.
    1. Algazi A.P., Rotow J., Posch C., Ortiz-Urda S., Pelayo A., Munster P.N., Daud A. A dual pathway inhibition strategy using BKM120 combined with vemurafenib is poorly tolerated in BRAF V600. Pigment Cell. Melanoma Res. 2019;32:603–606. doi: 10.1111/pcmr.12777.
    1. Ferrara N., Gerber H.P., LeCouter J. The biology of VEGF and its receptors. Nat. Med. 2003;9:669–676. doi: 10.1038/nm0603-669.
    1. Flaherty K., Davies M.A., Grob J.J., Long G.V., Nathan P.D., Ribas A., Jane-Valbuena J. Genomic analysis and 3-y efficacy and safety update of COMBI-d: A phase 3 study of dabrafenib (D) + trametinib (T) vs. D monotherapy in patients (pts) with unresectable or metastatic BRAF V600E/K-mutant cutaneous melanoma. J. Clin. Oncol. 2016;34:9502. doi: 10.1200/JCO.2016.34.15_suppl.9502.
    1. Sheppard K.E., McArthur G.A. The cell-cycle regulator CDK4: An emerging therapeutic target in melanoma. Clin. Cancer Res. 2013;19:5320–5328. doi: 10.1158/1078-0432.CCR-13-0259.
    1. Young R.J., Waldeck K., Martin C., Foo J.H., Cameron D.P., Kirby L., Do H., Mitchell C., Cullinane C., Liu W., et al. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines. Pigment Cell Melanoma Res. 2014;27:590–600. doi: 10.1111/pcmr.12228.
    1. Sullivan R.J., Amaria R.N. AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, Boston, MA, USA, 5–9 November 2015. American Association for Cancer Research; Philadelphia, PA, USA: Dec, 2015. Abstract PR06: Phase 1b dose-escalation study of trametinib (MEKi) plus palbociclib (CDK4/6i) in patients with advanced solid tumors.
    1. Haq R., Shoag J., Andreu-Perez P., Yokoyama S., Edelman H., Rowe G.C., Frederick D.T., Hurley A.D., Nellore A., Kung A.L., et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell. 2013;23:302–315. doi: 10.1016/j.ccr.2013.02.003.
    1. Yuan P., Ito K., Perez-Lorenzo R., Del Guzzo C., Lee J.H., Shen C.H., Bosenberg M.W., McMahon M., Cantley L.C., Zheng B. Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma. Proc. Natl. Acad. Sci. USA. 2013;110:18226–18231. doi: 10.1073/pnas.1317577110.
    1. Lezcano C., Shoushtari A.N., Ariyan C., Hollmann T.J., Busam K.J. Primary and Metastatic Melanoma With NTRK Fusions. Am. J. Surg. Pathol. 2018;42:1052–1058. doi: 10.1097/PAS.0000000000001070.
    1. Siena S., Doebele R.C., Shaw A.T., Karapetis C.S., Tan D.S.W., Cho B.C., Garrido Lopez P. Efficacy of entrectinib in patients (pts) with solid tumors and central nervous system (CNS) metastases: Integrated analysis from three clinical trials. J. Clin. Oncol. 2019;37(Suppl. 15):3017. doi: 10.1200/JCO.2019.37.15_suppl.3017.

Source: PubMed

3
Subscribe