Influence of the Menstrual Cycle on Blood Markers of Muscle Damage and Inflammation Following Eccentric Exercise

Nuria Romero-Parra, Laura Barba-Moreno, Beatriz Rael, Víctor M Alfaro-Magallanes, Rocío Cupeiro, Ángel E Díaz, Francisco J Calderón, Ana B Peinado, Nuria Romero-Parra, Laura Barba-Moreno, Beatriz Rael, Víctor M Alfaro-Magallanes, Rocío Cupeiro, Ángel E Díaz, Francisco J Calderón, Ana B Peinado

Abstract

The aim of this study was to evaluate whether the menstrual cycle and its underlying hormonal fluctuations affect muscle damage and inflammation in well-trained females following an eccentric exercise. Nineteen eumenorrheic women performed an eccentric squat-based exercise in the early follicular phase, late follicular phase and mid-luteal phase of their menstrual cycle. Sex hormones and blood markers of muscle damage and inflammation -creatine kinase, myoglobin, lactate dehydrogenase, interleukin-6, tumoral necrosis factor-, and C reactive protein- were analyzed in each phase. No effect of menstrual cycle phase was observed (p > 0.05), while an interaction for interleukin-6 was shown (p = 0.047). Accordingly, a moderate effect size [0.68 (0.53)-0.84 (0.74)], indicated that interleukin-6 values 2 h post-trial (2.07 1.26 pg/mL) were likely to be higher than baseline (1.59 0.33 pg/mL), 24 h (1.50 0.01 pg/mL) and 48 h (1.54 0.13 pg/mL) in the mid-luteal phase. Blood markers of muscle damage and inflammation were not affected by the menstrual cycle in well-trained women. The eccentric exercise barely triggered muscle damage and hence, no inflammation was observed, possibly due to participants training status. The mid-luteal phase was the only phase reflecting a possible inflammatory response in terms of interleukin-6, although further factors than sex hormones seem to be responsible for this finding.

Keywords: creatine kinase; female; inflammation; sex hormones.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Eccentric-based muscle damaging protocol performed in the EFP, LFP and MLP of the menstrual cycle. EFP: early follicular phase, LFP: late follicular phase, MLP: mid-luteal phase. LH: luteinizing hormone, FSH: follicle stimulating hormone.
Figure 2
Figure 2
Standardized mean differences (ES) and confidence intervals in muscle damage and inflammation markers among menstrual cycle phases. EFP: early follicular phase, LFP: late follicular phase, MLP: mid-luteal phase. CK: creatine kinase, LDH: lactate dehydrogenase, AST: aspartate aminotransferase, ALT: alanine aminotransferase, IL-6: interleukin-6, TNF-α: tumor necrosis factor α, CRP: c reactive protein.
Figure 3
Figure 3
Standardized mean differences (ES) and confidence intervals in muscle damage and inflammation markers among time-point measurements. (A)CK, myoglobin and LDH; (B)AST and ALT; (C)IL-6, TNF-α and CRP; EFP: early follicular phase, LFP: late follicular phase, MLP: mid-luteal phase. CK: creatine kinase, LDH: lactate dehydrogenase, AST: aspartate aminotransferase, ALT: alanine aminotransferase, IL-6: interleukin-6, TNF-α: tumor necrosis factor α, CRP: c reactive protein.

References

    1. Peake J.M., Neubauer O., Della Gatta P.A., Nosaka K. Muscle damage and inflammation during recovery from exercise. J. Appl. Phys. 2017;122:559–570. doi: 10.1152/japplphysiol.00971.2016.
    1. Koch A.J., Pereira R., Machado M. The creatine kinase response to resistance exercise. J. Musculoskelet. Neuronal Interact. 2014;14:68–77.
    1. Brancaccio P., Maffulli N., Limongelli F.M. Creatine kinase monitoring in sport medicine. Br. Med. Bull. 2007;81–82:209–230. doi: 10.1093/bmb/ldm014.
    1. Kendall B., Eston R. Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med. 2002;32:103–123. doi: 10.2165/00007256-200232020-00003.
    1. Enns D.L., Tiidus P.M. The influence of estrogen on skeletal muscle. Sports Med. 2010;40:41–58. doi: 10.2165/11319760-000000000-00000.
    1. Rankin P., Lawlor M.J., Hills F.A., Bell P.G., Stevenson E.J., Cockburn E. The effect of milk on recovery from repeat-sprint cycling in female team-sport athletes. Appl. Physiol. Nutr. Metab. 2018;43:113–122. doi: 10.1139/apnm-2017-0275.
    1. Greising S.M., Baltgalvis K.A., Lowe D.A., Warren G.L. Hormone therapy and skeletal muscle strength: A meta-analysis. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009;64:1071–1081. doi: 10.1093/gerona/glp082.
    1. Dieli-Conwright C.M., Spektor T.M., Rice J.C., Schroeder E.T. Hormone therapy attenuates exercise-induced skeletal muscle damage in postmenopausal women. J. Appl. Physiol. 2009;107:853–858. doi: 10.1152/japplphysiol.00404.2009.
    1. Bruinvels G., Burden R.J., McGregor A.J., Ackerman K.E., Dooley M., Richards T., Pedlar C. Sport, exercise and the menstrual cycle: Where is the research? Br. J. Sports Med. 2017;51:487–488. doi: 10.1136/bjsports-2016-096279.
    1. Hackney A.C., Kallman A.L., Ağgön E. Female sex hormones and the recovery from exercise: Menstrual cycle phase affects responses. Biomed. Hum. Kinet. 2019;11:87–89. doi: 10.2478/bhk-2019-0011.
    1. Janse de Jonge X.A.K. Effects of the menstrual cycle on exercise performance. Sports Med. 2003;33:833–851. doi: 10.2165/00007256-200333110-00004.
    1. Anderson L.J., Baker L.L., Schroeder E.T. Blunted myoglobin and quadriceps soreness after electrical stimulation during the luteal phase or oral contraception. Res. Q. Exerc. Sport. 2017;88:193–202. doi: 10.1080/02701367.2017.1300229.
    1. Oosthuyse T., Bosch A. The effect of gender and menstrual phase on serum creatine kinase activity and muscle soreness following downhill Running. Antioxidants. 2017;6:16. doi: 10.3390/antiox6010016.
    1. Williams T., Walz E., Lane A.R., Pebole M., Hackney A.C. The effect of estrogen on muscle damage biomarkers following prolonged aerobic exercise in eumenorrheic women. Biol. Sport. 2015;32:193–198. doi: 10.5604/20831862.1150300.
    1. Chaffin M.E., Davis J.E., Berg K.E., French J.A., Meendering J.R., Llewellyn T.L. Interleukin-6 and delayed onset muscle soreness do not vary during the menstrual cycle. Res. Q. Exerc. Sport. 2011;82:693–701. doi: 10.1080/02701367.2011.10599806.
    1. Sipavičienė S., Daniusevičiutė L., Klizienė I., Kamandulis S., Skurvydas A. Effects of estrogen fluctuation during the menstrual cycle on the response to stretch-shortening exercise in females. BioMed Res. Int. 2013;2013:1–6. doi: 10.1155/2013/243572.
    1. Hicks K.M., Onambele-Pearson G.L., Winwood K., Morse C.I. Muscle-tendon unit properties during eccentric exercise correlate with the creatine kinase response. Front. Physiol. 2017;8:657. doi: 10.3389/fphys.2017.00657.
    1. Minahan C., Joyce S., Bulmer A.C., Cronin N., Sabapathy S. The influence of estradiol on muscle damage and leg strength after intense eccentric exercise. Eur. J. Appl. Physiol. 2015;115:1493–1500. doi: 10.1007/s00421-015-3133-9.
    1. Hicks K.M., Onambélé G.L., Winwood K., Morse C.I. Muscle Damage following Maximal Eccentric Knee Extensions in Males and Females. PLoS ONE. 2016;11:e0150848. doi: 10.1371/journal.pone.0150848.
    1. Joyce S., Sabapathy S., Bulmer A.C., Minahan C. The effect of prior eccentric exercise on heavy-intensity cycling: The role of gender and oral contraceptives. Eur. J. Appl. Physiol. 2014;114:995–1003. doi: 10.1007/s00421-014-2832-y.
    1. Brown M.A., Howatson G., Keane K., Stevenson E.J. Undefined, Exercise-induced muscle damage following dance and sprint specific exercise in females. J. Sports Med. Phys. Fit. 2016;56:1376–1383.
    1. Nikolaidis M.G., Paschalis V., Giakas G., Fatouros I.G., Sakellariou G.K., Theodorou A.A., Koutedakis Y., Jamurtas A.Z. Favorable and prolonged changes in blood lipid profile after muscle-damaging exercise. Med. Sci. Sports Exerc. 2008;40:1483–1489. doi: 10.1249/MSS.0b013e31817356f2.
    1. Stupka N., Lowther S., Chorneyko K., Bourgeois J.M., Hogben C., Tarnopolsky M.A. Gender differences in muscle inflammation after eccentric exercise. J. Appl. Physiol. 2000;89:2325–2332. doi: 10.1152/jappl.2000.89.6.2325.
    1. Janse de Jonge X.A.K., Thompson B., Han A. Methodological Recommendations for Menstrual Cycle Research in Sports and Exercise. Med. Sci. Sports Exerc. 2019;51:2610–2617. doi: 10.1249/MSS.0000000000002073.
    1. Lebrun C.M., McKenzie D.C., Prior J.C., Taunton J.E. Effects of menstrual cycle phase on athletic performance. Med. Sci. Sports Exerc. 1995;27:437–444. doi: 10.1249/00005768-199503000-00022.
    1. Miller P.B., Soules M.R. The usefulness of a urinary LH kit for ovulation prediction during menstrual cycles of normal women. Obstet. Gynecol. 1996;87:13–17. doi: 10.1016/0029-7844(95)00352-5.
    1. Balsalobre-Fernández C., Marchante D., Baz-Valle E., Alonso-Molero I., Jiménez S.L., Muñóz-López M. Analysis of wearable and smartphone-based technologies for the measurement of barbell velocity in different resistance training exercises. Front. Physiol. 2017;8:649. doi: 10.3389/fphys.2017.00649.
    1. Balsalobre-Fernández C., Marchante D., Muñoz-López M., Jiménez S.L. Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. J. Sports Sci. 2018;36:64–70. doi: 10.1080/02640414.2017.1280610.
    1. Macdonald G.Z., Button D.C., Drinkwater E.J., Behm D.G. Foam rolling as a recovery tool after an intense bout of physical activity. Med. Sci. Sports Exerc. 2014;46:131–142. doi: 10.1249/MSS.0b013e3182a123db.
    1. Hopkins W.G., Marshall S.W., Batterham A.M., Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009;41:3–13. doi: 10.1249/MSS.0b013e31818cb278.
    1. Hyldahl R.D., Chen T.C., Nosaka K. Mechanisms and Mediators of the Skeletal Muscle Repeated Bout Effect. Exerc. Sport Sci. Rev. 2017;45:24–33. doi: 10.1249/JES.0000000000000095.
    1. Kamandulis S., Skurvydas A., Snieckus A., Masiulis N., Aagaard P., Dargeviciute G., Brazaitis M. Monitoring markers of muscle damage during a 3 week periodized drop-jump exercise programme. J. Sports Sci. 2011;29:345–353. doi: 10.1080/02640414.2010.530676.
    1. Abbasi A., de Paula Vieira R., Bischof F., Walter M., Movassaghi M., Berchtold N.C., Niess A.M., Cotman C.W., Northoff H. Sex-specific variation in signaling pathways and gene expression patterns in human leukocytes in response to endotoxin and exercise. J. Neuroinflamm. 2016;13:289. doi: 10.1186/s12974-016-0758-5.
    1. Fish E.N. The X-files in immunity: Sex-based differences predispose immune responses. Nat. Rev. Immunol. 2008;8:737–744. doi: 10.1038/nri2394.
    1. Northoff H., Symons S., Zieker D., Schaible E.V., Schaefer K., Thoma S., Loeffler M., Abbasi A., Simon P., Niess A.M., et al. Gender- and menstrual phase dependent regulation of inflammatory gene expression in response to aerobic exercise. Exerc. Immunol. Rev. 2008;14:86–103.
    1. Timmons B.W., Hamadeh M.J., Devries M.C., Tarnopolsky M.A. Influence of gender, menstrual phase, and oral contraceptive use on immunological changes in response to prolonged cycling. J. Appl. Physiol. 2005;99:979–985. doi: 10.1152/japplphysiol.00171.2005.
    1. Oosthuyse T., Bosch A.N. The Effect of the Menstrual Cycle on Exercise Metabolism. Sports Med. 2010;40:207–227. doi: 10.2165/11317090-000000000-00000.
    1. Pedersen B.K., Febbraio M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008;88:1379–1406. doi: 10.1152/physrev.90100.2007.
    1. Pedersen B.K., Fischer C.P. Beneficial health effects of exercise—The role of IL-6 as a myokine. Trends Pharmacol. Sci. 2007;28:152–156. doi: 10.1016/j.tips.2007.02.002.
    1. Pedersen B.K. Anti-inflammatory effects of exercise: Role in diabetes and cardiovascular disease. Eur. J. Clin. Investig. 2017;47:600–611. doi: 10.1111/eci.12781.
    1. Liu Z., Que S., Xu J., Peng T. Alanine aminotransferase-old biomarker and new concept: A review. Int. J. Med. Sci. 2014;11:925–935. doi: 10.7150/ijms.8951.
    1. Bekkelund S.I., Jorde R. Alanine Aminotransferase and Body Composition in Obese Men and Women. Dis. Markers. 2019;2019:1–9. doi: 10.1155/2019/1695874.
    1. Pal S., Chaki B., Chattopadhyay S., Bandyopadhyay A. High-Intensity Exercise Induced Oxidative Stress and Skeletal Muscle Damage in Postpubertal Boys and Girls. J. Strength Cond. Res. 2018;32:1045–1052. doi: 10.1519/JSC.0000000000002167.
    1. Wang I.L., Hsiao C.Y., Li Y.H., Meng F.B., Huang C.C., Chen Y.M. Nanobubbles Water Curcumin Extract Reduces Injury Risks on Drop Jumps in Women: A Pilot Study. Evid. Based Complement. Altern. Med. 2019;2019 doi: 10.1155/2019/8647587.

Source: PubMed

3
Subscribe