Aerobic fitness is associated with greater white matter integrity in children

Laura Chaddock-Heyman, Kirk I Erickson, Joseph L Holtrop, Michelle W Voss, Matthew B Pontifex, Lauren B Raine, Charles H Hillman, Arthur F Kramer, Laura Chaddock-Heyman, Kirk I Erickson, Joseph L Holtrop, Michelle W Voss, Matthew B Pontifex, Lauren B Raine, Charles H Hillman, Arthur F Kramer

Abstract

Aerobic fitness has been found to play a positive role in brain and cognitive health of children. Yet, many of the neural biomarkers related to aerobic fitness remain unknown. Here, using diffusion tensor imaging, we demonstrated that higher aerobic fitness was related to greater estimates of white matter microstructure in children. Higher fit 9- and 10-year-old children showed greater fractional anisotropy (FA) in sections of the corpus callosum, corona radiata, and superior longitudinal fasciculus, compared to lower fit children. The FA effects were primarily characterized by aerobic fitness differences in radial diffusivity, thereby raising the possibility that estimates of myelination may vary as a function of individual differences in fitness during childhood. White matter structure may be another potential neural mechanism of aerobic fitness that assists in efficient communication between gray matter regions as well as the integration of regions into networks.

Keywords: cardiorespiratory fitness; development; diffusion tensor imaging; fiber tracts; microstructure.

Figures

FIGURE 1
FIGURE 1
Illustrations of the white matter tract ROIs in the corpus callosum (white = genu; yellow = body; purple = splenium), corona radiata (anterior = green; superior = pink; posterior = peach), superior longitudinal fasciculus (blue), posterior thalamic radiation (light blue), and cerebral peduncle (red).

References

    1. American College of Sports Medicine. (2006). ACSM’s Guidelines for Exercise Testing and Prescription 7th Edn New York, NY: Lippincott Williams & Wilkins
    1. Andersson J. R., Jenkinson M., Smith S. (2007a). TR07JA1: Non-Linear Optimisation. Available at: (accessed March 1 2014)
    1. Andersson J. R., Jenkinson M., Smith S. (2007b). TR07JA2: Non-Linear Registration, Aka Spatial Normalisation. Available at: (accessed March 1 2014)
    1. Barnea-Goraly N., Menon V., Eckert M., Tamm L., Bammer R., Karchemskiy A., et al. (2005). White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb. Cortex 15 1848–1854 10.1093/cercor/bhi062
    1. Bar-Or O. (1983). Pediatric Sports Medicine For The Practitioner: From Physiologic Principles to Clinical Applications. New York, NY: Springer; 10.1007/978-1-4612-5593-2
    1. Basser P. J. (1995). Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 8 333–344 10.1002/nbm.1940080707
    1. Beaulieu C. (2002). The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed. 15 435–455 10.1002/nbm.782
    1. Bendlin B. B., Fitzgerald M. E., Ries M. L., Xul G., Kastman E. K., Thiel B. W., et al. (2010). White matter in aging and cognition: a cross-sectional study of microstructure in adults aged eighteen to eighty-three. Dev. Neuropsychol. 35 257–277 10.1080/87565641003696775
    1. Birnbaum A. S., Lytle L. A., Murray D. M., Story M., Perry C. L., Boutelle K. N. (2002). Survey development for assessing correlates of young adolescents’ eating. Am. J. Health Behav. 26 284–295 10.5993/AJHB.26.4.5
    1. Budde M. D., Kim J. H., Liang H. F., Schmidt R. E., Russell J. H., Cross A. al. (2007). Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magn. Reson. Med. 57 688–695 10.1002/mrm.21200
    1. Bunge S. A., Crone E. A. (2009). “Neural correlates of the development of cognitivecontrol,” in Neuroimaging in Developmental Clinical Neuroscience eds Rumsey J., Ernst M. (Cambridge: Cambridge University Press; ) 22–37 10.1017/CBO9780511757402.005
    1. Burzynska A. Z., Preuschhof C., Bäckman L., Nyberg L., Li S. C., Lindenberger U., et al. (2010). Age-related differences in white matter microstructure: region-specific patterns of diffusivity. Neuroimage 49 2104–2112 10.1016/j.neuroimage.2009.09.041
    1. Castelli D. M., Hillman C. H., Buck S. M., Erwin H. E. (2007). Physical fitness and academic achievement in third- and fifth-grade students. J. Sport Exerc. Psychol. 29 239–252
    1. Centers for Disease Control and Prevention. (2010). The Association Between School-Based Physical Activity, Including Physical Education, and Academic Performance. Available at: (accessed March 1 2014)
    1. Chaddock L., Erickson K. I., Prakash R. S., Kim J. S., Voss M. W., VanPatter M., et al. (2010a). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume and memory performance in preadolescent children. Brain Res. 1358 172–183 10.1016/j.brainres.2010.08.049
    1. Chaddock L., Erickson K. I., Prakash R. S., VanPatter M., Voss M. V., Pontifex M. B., et al. (2010b). Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev. Neurosci. 32 249–256 10.1159/000316648
    1. Chaddock L., Erickson K. I., Prakash R. S., Voss M. V., VanPatter M., Pontifex M. B., et al. (2012a). A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biol. Psychol. 89 260–268 10.1016/j.biopsycho.2011.10.017
    1. Chaddock L., Voss M. W., Kramer A. F. (2012b). Physical activity and fitness effects on cognition and brain health in children and older adults. Kinesiol. Rev. 1 37–45
    1. Chaddock L., Pontifex M., Hillman C. H., Kramer A. F. (2011). A review of the relation of aerobic fitness and physical activity to brain structure and function in children. J. Int. Neuropsychol. Soc. 17 975–985 10.1017/S1355617711000567
    1. Chaddock-Heyman L., Erickson K. I., Voss M. W., Powers J. P., Knecht A. M., Pontifex M. B., et al. (2013). White matter microstructure is associated with cognitive control in children. Biol. Psychol. 94 109–115 10.1016/j.biopsycho.2013.05.008
    1. Chomitz V. R., Slining M. M., McGowan R. J., Mitchell S. E., Dawson G. F., Hacker K. A. (2009). Is there a relationship between physical fitness and academic achievement? Positive results from public school children in the northeastern United States. J. Sch. Health 79 30–37 10.1111/j.1746-1561.2008.00371.x
    1. Coe D. P., Pivarnik J. M., Womack C. J., Reeves M. J., Malina R. M. (2006). Effect of physical education and activity levels on academic achievement in children. Med. Sci. Sports Exerc. 38 1515–1519 10.1249/01.mss.0000227537.13175.1b
    1. Colcombe S. J., Erickson K. I., Scalf P. E., Kim J. S., Prakash R., McAuley E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 61 1166–1170 10.1093/gerona/61.11.1166
    1. Colcombe S. J., Kramer A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14 125–130 10.1111/1467-9280.t01-1-01430
    1. Colcombe S. J., Kramer A. F., Erickson K. I., Scalf P., McAuley E., Cohen N. J., et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. U.S.A. 101 3316–3321 10.1073/pnas.0400266101
    1. Davis C. L., Tomporowski P. D., McDowell J. E., Austin B. P., Miller P. H., Yanasak N. E., et al. (2011). Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health Psychol. 30 91–98 10.1037/a0021766
    1. Diamond A., Lee K. (2011). Interventions shown to aid executive function development in children 4–12 years old. Science 333 959–964 10.1126/science.1204529
    1. Ding Y. H., Li J., Zhou Y., Rafols J. A., Clark J. C., Ding Y. (2006). Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr. Neurovasc. Res. 3 15–23 10.2174/156720206775541787
    1. DuPaul G. J., Power T. J., Anastopoulos A., Reid R. (1998). ADHD Rating Scale – IV: Checklists, Norms, And Clinical Interpretation. New York, NY: Guilford Press
    1. Freedson P. S., Goodman T. L. (1993). “Measurement of oxygen consumption,” in Pediatric Laboratory Exercise Testing: Clinical Guidelines ed.Rowland T. W. (Champaign, IL: Human Kinetics; ) 91–113
    1. Gazzaniga M. S. (1995). Principles of human brain organization derived from split-brain studies. Neuron 14 217–228 10.1016/0896-6273(95)90280-5
    1. Hillman C. H., Buck S. M., Themanson J. R., Pontifex M. B., Castelli D. M. (2009). Aerobic fitness and cognitive development: event-related brain potential and task performance of executive control in preadolescent children. Dev. Psychol. 45 114–129 10.1037/a0014437
    1. Hua K., Zhang J., Wakana S., Jiang H., Li X., Reich D. S., et al. (2008). Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantifcation. Neuroimage 39 336–347 10.1016/j.neuroimage.2007.07.053
    1. Johnson N. F., Kim C., Clasey J. L., Bailey A., Gold B. T. (2012). Cardiorespiratory fitness is positively correlated with cerebral white matter integrity in healthy seniors. Neuroimage 59 1514–1523 10.1016/j.neuroimage.2011.08.032
    1. Kaufman A. S., Kaufman N. L. (1990). Kaufman Brief Intelligence Test. Circle Pines: AGS
    1. Kramer A. F., Hahn S., Cohen N., Banich M., McAuley E., Harrison C., et al. (1999). Aging, fitness, and neurocognitive function. Nature 400 418–419 10.1038/22682
    1. Liston C., Watts R., Tottenham N., Davidson M. C., Niogi S., Ulug A. M., et al. (2006). Fronto-striatal microstructure modulates efficient recruitment of cognitive control. Cereb. Cortex 16 553–560 10.1093/cercor/bhj003
    1. Madsen K. S., Baare W. F., Vestergaard M., Skimminge A., Ejersbo L. R., Ramsøy T. Z., et al. (2010). Response inhibition is associated with white matter microstructure in children. Neuropsychologia 48 854–862 10.1016/j.neuropsychologia.2009.11.001
    1. Marks B. L., Madden D. J., Bucur B., Provenzale J. M., White L. E., Cabeza R., et al. (2007). Role of aerobic fitness and aging on cerebral white matter integrity. Ann. N. Y. Acad. Sci. 1097 171–174 10.1196/annals.1379.022
    1. Mori S., Wakana S., Van Zijl P. C. M. (2005). MRI Atlas of Human White Matter. Amsterdam: Elsevier
    1. Muetzel R. L., Collins P. F., Mueller B. A., Schissel A. M., Lim K. O., Luciana M. (2008). The development of corpus callosum microstructure and associations with bimanual task performance in healthy adolescents. Neuroimage 39 1918–1925 10.1016/j.neuroimage.2007.10.018
    1. Nagy Z., Westerberg H., Klingberg T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. J. Cogn. Neurosci. 16 1227–1233 10.1162/0898929041920441
    1. Nair G., Tanahashi Y., Low H. P., Billings-Gagliardi S., Schwartz W. J., Duong T. Q. (2005). Myelination and long diffusion times alter diffusion-tensor-imaging contrast in myelin-deficient shiverer mice. Neuroimage 28 165–174 10.1016/j.neuroimage.2005.05.049
    1. Niogi S., Mukherjee P., Ghajar J., McCandliss B. D. (2010). Individual differences in distinct components of attention are linked to anatomical variations in distinct white matter tracts. Front. Neuroanat. 4:2 10.3389/neuro.05.002.2010
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9 97–113 10.1016/0028-3932(71)90067-4
    1. Olesen P., Nagy Z., Westerberg H., Klingberg T. (2003). Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. Cogn. Brain Res. 18 48–57 10.1016/j.cogbrainres.2003.09.003
    1. Olson E. A., Collins P. F., Hooper C. J., Muetzel R., Lim K. O., Luciana M. (2009). White matter integrity predicts delay discounting behavior in 9- to 23-year-olds: a diffusion tensor imaging study. J. Cogn. Neurosci. 21 1406–1421 10.1162/jocn.2009.21107
    1. Paus T. (2010). Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn. 72 26–35 10.1016/j.bandc.2009.06.002
    1. Petrides M., Pandya D. N. (1984). Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228 105–116 10.1002/cne.902280110
    1. Pierpaoli C., Basser P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36 893–906 10.1002/mrm.1910360612
    1. Pierpaoli C., Jezzard P., Basser P. J., Barnett A., Di Chiro G. (1996). Diffusion tensor MR imaging of the human brain. Radiology 201 637–648 10.1148/radiology.201.3.8939209
    1. Pontifex M. B., Raine L. B., Johnson C. R., Chaddock L., Voss M. W., Cohen N. J., et al. (2011). Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. J. Cogn. Neurosci. 23 1332–1345 10.1162/jocn.2010.21528
    1. Rykhlevskaia E., Gratton G., Fabiani M. (2008). Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology 45 173–187 10.1111/j.1469-8986.2007.00621.x
    1. Schmahmann J. D., Pandya D. N. (2006). Fiber Pathways of The Brain. New York: Oxford University Press; 10.1093/acprof:oso/9780195104233.001.0001
    1. Schmithorst V. J., Yuan W. (2010). White matter development during adolescence as shown by diffusion MRI. Brain Cogn. 72 16–25 10.1016/j.bandc.2009.06.005
    1. Sen P. N., Basser P. J. (2005). A model for diffusion in white matter in the brain. Biophys. J. 89 2927–2938 10.1529/biophysj.105.063016
    1. Shvartz E., Reibold R. C. (1990). Aerobic fitness norms for males and females aged 6 to 75 years: a review. Aviat. Space Environ. Med. 61 3–11
    1. Smith S. M. (2002). Fast robust automated brain extraction. Hum. Brain Mapp. 17 143–155 10.1002/hbm.10062
    1. Smith S. M., Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T. E., Mackay C., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31 1487–1505 10.1016/j.neuroimage.2006.02.024
    1. Song S. K., Sun S. W., Ju W. K., Lin S. J., Cross A. H., Neufeld A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20 1714–1722 10.1016/j.neuroimage.2003.07.005
    1. Song S. K., Sun S. W., Ramsbottom M. J., Chang C., Russell J., Cross A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17 1429–1436 10.1006/nimg.2002.1267
    1. Song S. K., Yoshino J., Le T. Q., Lin S. J., Sun S. W., Cross A. H., et al. (2005). Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26 132–140 10.1016/j.neuroimage.2005.01.028
    1. Sun S. W., Liang H. F., Cross A. H., Song S. K. (2008). Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. Neuroimage 40 1–10 10.1016/j.neuroimage.2007.11.049
    1. Sun S. W., Liang H. F., Le T. Q., Armstrong R. C., Cross A. H., Song S. K. (2006). Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. Neuroimage 32 1195–1204 10.1016/j.neuroimage.2006.04.212
    1. Tamnes C. K., Fjell A. M., Westlye L. T., Ostby Y., Walhovd K. B. (2012). Becoming consistent: developmental reductions in intraindividual variability in reaction time are related to white matter integrity. J. Neurosci. 32 972–892 10.1523/JNEUROSCI.4779-11.2012
    1. Taylor S. J. C., Whincup P. H., Hindmarsh P. C., Lampe F., Odoki K., Cook D. G. (2001). Performance of a new pubertal self-assessment questionnaire: a preliminary study. Paediatr. Perinat. Epidemiol. 15 88–94 10.1046/j.1365-3016.2001.00317.x
    1. Trudeau F., Shephard R. J. (2008). Physical education, school physical activity, school sports and academic performance. Int. J. Behav. Nutr. Phys. Act. 5 10 10.1186/1479-5868-5-10
    1. Utter A. C., Robertson R. J., Nieman D. C., Kang J. (2002). Children’s OMNI scale of perceived exertion: walking/running evaluation. Med. Sci. Sporst Exerc. 34 139–144 10.1097/00005768-200201000-00021
    1. van Eimeren L., Niogi S. N., McCandliss B. D., Holloway I. D., Ansari D. (2008). White matter microstructures underlying mathematical abilities in children. Neuroreport 19 1117–1121 10.1097/WNR.0b013e328307f5c1
    1. Voss M. W., Chaddock L., Kim J. S., VanPatter M., Pontifex M. B., Raine L. B., et al. (2011). Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience 199 166–176 10.1016/j.neuroscience.2011.10.009
    1. Voss M. W., Heo S., Prakash R. S., Erickson K. I., Alves H., Chaddock L., et al. (2012). The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Hum. Brain Mapp. 34 2972–2985 10.1002/hbm.22119
    1. Wakana S., Caprihan A., Panzenboeck M. M., Fallon J. H., Perry M., Gollub R. L., et al. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36 630–644 10.1016/j.neuroimage.2007.02.049

Source: PubMed

3
Subscribe