Iron Deficiency in Heart Failure and Effect of Dapagliflozin: Findings From DAPA-HF

Kieran F Docherty, Paul Welsh, Subodh Verma, Rudolf A De Boer, Eileen O'Meara, Olof Bengtsson, Lars Køber, Mikhail N Kosiborod, Ann Hammarstedt, Anna Maria Langkilde, Daniel Lindholm, Dustin J Little, Mikaela Sjöstrand, Felipe A Martinez, Piotr Ponikowski, Marc S Sabatine, David A Morrow, Morten Schou, Scott D Solomon, Naveed Sattar, Pardeep S Jhund, John J V McMurray, DAPA-HF Investigators and Committees, Kieran F Docherty, Paul Welsh, Subodh Verma, Rudolf A De Boer, Eileen O'Meara, Olof Bengtsson, Lars Køber, Mikhail N Kosiborod, Ann Hammarstedt, Anna Maria Langkilde, Daniel Lindholm, Dustin J Little, Mikaela Sjöstrand, Felipe A Martinez, Piotr Ponikowski, Marc S Sabatine, David A Morrow, Morten Schou, Scott D Solomon, Naveed Sattar, Pardeep S Jhund, John J V McMurray, DAPA-HF Investigators and Committees

Abstract

Background: Iron deficiency is common in heart failure and associated with worse outcomes. We examined the prevalence and consequences of iron deficiency in the DAPA-HF trial (Dapagliflozin and Prevention of Adverse-Outcomes in Heart Failure) and the effect of dapagliflozin on markers of iron metabolism. We also analyzed the effect of dapagliflozin on outcomes, according to iron status at baseline.

Methods: Iron deficiency was defined as a ferritin level <100 ng/mL or a transferrin saturation <20% and a ferritin level 100 to 299 ng/mL. Additional biomarkers of iron metabolism, including soluble transferrin receptor, erythropoietin, and hepcidin were measured at baseline and 12 months after randomization. The primary outcome was a composite of worsening heart failure (hospitalization or urgent visit requiring intravenous therapy) or cardiovascular death.

Results: Of the 4744 patients randomized in DAPA-HF, 3009 had ferritin and transferrin saturation measurements available at baseline, and 1314 of these participants (43.7%) were iron deficient. The rate of the primary outcome was higher in patients with iron deficiency (16.6 per 100 person-years) compared with those without (10.4 per 100 person-years; P<0.0001). The effect of dapagliflozin on the primary outcome was consistent in iron-deficient compared with iron-replete patients (hazard ratio, 0.74 [95% CI, 0.58-0.92] versus 0.81 [95% CI, 0.63-1.03]; P-interaction=0.59). Similar findings were observed for cardiovascular death, heart failure hospitalization, and all-cause mortality. Transferrin saturation, ferritin, and hepcidin were reduced and total iron-binding capacity and soluble transferrin receptor increased with dapagliflozin compared with placebo.

Conclusions: Iron deficiency was common in DAPA-HF and associated with worse outcomes. Dapagliflozin appeared to increase iron use but improved outcomes, irrespective of iron status at baseline.

Registration: URL: https://www.

Clinicaltrials: gov; Unique identifier: NCT03036124.

Keywords: anemia; erythropoiesis; ferritin; heart failure; hepcidin; iron; sodium-glucose cotransporter 2 inhibitor; transferrin.

Figures

Figure 1.
Figure 1.
Cardiovascular outcomes according to the presence of iron deficiency. The primary outcome was a composite of death from cardiovascular causes, hospitalization for heart failure, or an urgent visit resulting in intravenous therapy for heart failure. The cumulative incidences of the primary outcome, worsening heart failure event, death from cardiovascular causes, and death from any cause were estimated with the use of the Kaplan-Meier method.
Figure 2.
Figure 2.
Effect of dapagliflozin, compared with placebo, on cardiovascular outcomes according to the presence of iron deficiency. A, Primary composite outcome. B, Cardiovascular death. C, Worsening heart failure event. D, All-cause death. The primary outcome was a composite of death from cardiovascular causes, hospitalization for heart failure, or an urgent visit resulting in intravenous therapy for heart failure. The cumulative incidences of the primary outcome, worsening heart failure event, death from cardiovascular causes, and death from any cause were estimated with the use of the Kaplan-Meier method. The interaction P value presented represents a treatment–by–iron deficiency interaction term.
Figure 3.
Figure 3.
Effect of dapagliflozin on the primary outcome according to baseline levels of iron metabolism biomarkers. The solid black line represents a continuous hazard ratio, and the solid red line represents a hazard ratio of 1 (ie, no difference between treatments). The shaded area represents the 95% CI around the hazard ratio. The hazard ratio represents the treatment effect of dapagliflozin compared with placebo for the primary composite outcome.
Figure 4.
Figure 4.
Effect of dapagliflozin, compared with placebo, on hematocrit according to the presence of iron deficiency. Means and 95% CIs were derived from a mixed-effect model adjusted for baseline values, visit, randomized treatment, and interaction of treatment and visit with a random intercept and slope per patient. Least-square mean changes along with 95% CI are shown.

References

    1. Alnuwaysir RIS, Hoes MF, van Veldhuisen DJ, van der Meer P, Beverborg NG. Iron deficiency in heart failure: mechanisms and pathophysiology. J Clin Med. 2021;11:125. doi: 10.3390/jcm11010125
    1. Sawicki KT, Ardehali H. Intravenous iron therapy in heart failure with reduced ejection fraction: tackling the deficiency. Circulation. 2021;144:253–255. doi: 10.1161/CIRCULATIONAHA.121.054271
    1. von Haehling S, Ebner N, Evertz R, Ponikowski P, Anker SD. Iron deficiency in heart failure: an overview. JACC Heart Fail. 2019;7:36–46. doi: 10.1016/j.jchf.2018.07.015
    1. Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B, Borodulin-Nadzieja L, Banasiak W, Polonski L, Filippatos G, et al.. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J. 2010;31:1872–1880. doi: 10.1093/eurheartj/ehq158
    1. Khan MS, Usman MS, von Haehling S, Doehner W, Stewart Coats AJ. Ferric carboxymaltose for the treatment of iron-deficient heart failure patients: a systematic review and meta-analysis. ESC Heart Fail. 2020;7:3392–3400. doi: 10.1002/ehf2.13146
    1. Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, Lüscher TF, Bart B, Banasiak W, Niegowska J, et al.. FAIR-HF Trial Investigators. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361:2436–2448. doi: 10.1056/NEJMoa0908355
    1. van Veldhuisen DJ, Ponikowski P, van der Meer P, Metra M, Böhm M, Doletsky A, Voors AA, Macdougall IC, Anker SD, Roubert B, et al.. EFFECT-HF Investigators. Effect of ferric carboxymaltose on exercise capacity in patients with chronic heart failure and iron deficiency. Circulation. 2017;136:1374–1383. doi: 10.1161/CIRCULATIONAHA.117.027497
    1. Ponikowski P, van Veldhuisen DJ, Comin-Colet J, Ertl G, Komajda M, Mareev V, McDonagh T, Parkhomenko A, Tavazzi L, Levesque V, et al.; CONFIRM-HF Investigators. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J. 2015;36:657–668. doi: 10.1093/eurheartj/ehu385
    1. Ponikowski P, Kirwan BA, Anker SD, McDonagh T, Dorobantu M, Drozdz J, Fabien V, Filippatos G, Göhring UM, Keren A, et al.. AFFIRM-AHF investigators. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet. 2020;396:1895–1904. doi: 10.1016/S0140-6736(20)32339-4
    1. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, et al.. ESC Scientific Document Group. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2022;24:4–131. doi: 10.1002/ejhf.2333
    1. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, et al.; Writing Committee Members. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022;79:e263–e421. doi: 10.1016/j.jacc.2021.12.012
    1. Oshima M, Neuen BL, Jardine MJ, Bakris G, Edwards R, Levin A, Mahaffey KW, Neal B, Pollock C, Rosenthal N, et al. . Effects of canagliflozin on anaemia in patients with type 2 diabetes and chronic kidney disease: a post-hoc analysis from the CREDENCE trial. Lancet Diabetes Endocrinol. 2020;8:903–914. doi: 110.1016/S2213-8587(20)30300-4
    1. Ferreira JP, Anker SD, Butler J, Filippatos G, Iwata T, Salsali A, Zeller C, Pocock SJ, Zannad F, Packer M. Impact of anaemia and the effect of empagliflozin in heart failure with reduced ejection fraction: findings from EMPEROR-Reduced. Eur J Heart Fail. 2022;24:708–715. doi: 10.1002/ejhf.2409
    1. Docherty KF, Curtain JP, Anand IS, Bengtsson O, Inzucchi SE, Køber L, Kosiborod MN, Langkilde AM, Martinez FA, Ponikowski P, et al.; DAPA-HF Investigators and Committees. Effect of dapagliflozin on anaemia in DAPA-HF. Eur J Heart Fail. 2021;23:617–628. doi: 10.1002/ejhf.2132
    1. Marathias KP, Lambadiari VA, Markakis KP, Vlahakos VD, Bacharaki D, Raptis AE, Dimitriadis GD, Vlahakos DV. Competing effects of renin angiotensin system blockade and sodium-glucose cotransporter-2 inhibitors on erythropoietin secretion in diabetes. Am J Nephrol. 2020;51:349–356. doi: 10.1159/000507272
    1. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15:853–862. doi: 10.1111/dom.12127
    1. Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, Teoh H, Leiter LA, Zinman B, Jüni P, et al.. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation.2020;141:704–707. doi: 10.1161/CIRCULATIONAHA.119.044235
    1. Maruyama T, Takashima H, Oguma H, Nakamura Y, Ohno M, Utsunomiya K, Furukawa T, Tei R, Abe M. Canagliflozin improves erythropoiesis in diabetes patients with anaemia of chronic kidney disease. Diabetes Technol Ther. 2019;21:713–720. doi: 10.1089/dia.2019.0212
    1. Ghanim H, Abuaysheh S, Hejna J, Green K, Batra M, Makdissi A, Chaudhuri A, Dandona P. Dapagliflozin suppresses hepcidin and increases erythropoiesis. J Clin Endocrinol Metab. 2020;105:dgaa057. doi: 10.1210/clinem/dgaa057
    1. Tkaczyszyn M, Comín-Colet J, Voors AA, van Veldhuisen DJ, Enjuanes C, Moliner P, Drozd M, Sierpiński R, Rozentryt P, Nowak J, et al.. Iron deficiency contributes to resistance to endogenous erythropoietin in anaemic heart failure patients. Eur J Heart Fail. 2021;23:1677–1686. doi: 10.1002/ejhf.2253
    1. Macdougall IC, White C, Anker SD, Bhandari S, Farrington K, Kalra PA, McMurray JJV, Murray H, Tomson CRV, Wheeler DC, et al.. PIVOTAL Investigators and Committees. Intravenous iron in patients undergoing maintenance hemodialysis. N Engl J Med. 2019;380:447–458. doi: 10.1056/NEJMoa1810742
    1. McMurray JJV, DeMets DL, Inzucchi SE, Køber L, Kosiborod MN, Langkilde AM, Martinez FA, Bengtsson O, Ponikowski P, Sabatine MS, et al.. DAPA-HF Committees and Investigators. A trial to evaluate the effect of the sodium-glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF). Eur J Heart Fail. 2019;21:665–675. doi: 10.1002/ejhf.1432
    1. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, et al.. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008. doi: 10.1056/NEJMoa1911303
    1. Royston P, Sauerbrei W. A new approach to modelling interactions between treatment and continuous covariates in clinical trials by using fractional polynomials. Stat Med. 2004;23:2509–2525. doi: 10.1002/sim.1815
    1. Lin DY, Wei LJ, Yang I, Ying Z. Semiparametric regression for the mean and rate functions of recurrent events. J R Stat Soc Series B Stat Methodol. 2000;62:711–730. doi: 10.1093/biostatistics/kxv050
    1. Becher PM, Schrage B, Benson L, Fudim M, Corovic Cabrera C, Dahlström U, Rosano GMC, Jankowska EA, Anker SD, Lund LH, et al.. Phenotyping heart failure patients for iron deficiency and use of intravenous iron therapy: data from the Swedish Heart Failure Registry. Eur J Heart Fail. 2021;23:1844–1854. doi: 10.1002/ejhf.2338
    1. Sindone AP, Haikerwal D, Audehm RG, Neville AM, Lim K, Parsons RW, Piazza P, Liew D. Clinical characteristics of people with heart failure in Australian general practice: results from a retrospective cohort study. ESC Heart Fail. 2021;8:4497–4505. doi: 10.1002/ehf2.13661
    1. Chobufo MD, Rahman E, Gayam V, Bei Foryoung J, Agbor VN, Farah F, Dufresne A, Nfor T, El-Hamdani M. Prevalence and association of iron deficiency with anemia among patients with heart failure in the USA: NHANES 2017-2018. J Commun Hosp Intern Med Perspect. 2021;11:124–127. doi: 10.1080/20009666.2020.1854927
    1. Masini G, Graham FJ, Pellicori P, Cleland JGF, Cuthbert JJ, Kazmi S, Inciardi RM, Clark AL. Criteria for iron deficiency in patients with heart failure. J Am Coll Cardiol. 2022;79:341–351. doi: 10.1016/j.jacc.2021.11.039
    1. Anand IS, Gupta P. Anemia and iron deficiency in heart failure: current concepts and emerging therapies. Circulation. 2018;138:80–98. doi: 10.1161/CIRCULATIONAHA.118.030099
    1. Sierpinski R, Josiak K, Suchocki T, Wojtas-Polc K, Mazur G, Butrym A, Rozentryt P, van der Meer P, Comin-Colet J, von Haehling S, et al.. High soluble transferrin receptor in patients with heart failure: a measure of iron deficiency and a strong predictor of mortality. Eur J Heart Fail. 2021;23:919–932. doi: 10.1002/ejhf.2036
    1. Grote Beverborg N, Klip IT, Meijers WC, Voors AA, Vegter EL, van der Wal HH, Swinkels DW, van Pelt J, Mulder AB, Bulstra SK, et al.. Definition of iron deficiency based on the gold standard of bone marrow iron staining in heart failure patients. Circ Heart Fail. 2018;11:e004519. doi: 10.1161/CIRCHEARTFAILURE.117.004519
    1. Graham FJ, Masini G, Pellicori P, Cleland JGF, Greenlaw N, Friday J, Kazmi S, Clark AL. Natural history and prognostic significance of iron deficiency and anaemia in ambulatory patients with chronic heart failure. Eur J Heart Fail. 2022;24:807–817. doi: 10.1002/ejhf.2251
    1. Fitzsimons S, Yeo TJ, Ling LH, Sim D, Leong KTG, Yeo PSD, Ong HY, Jaufeerally F, Ng TP, Poppe K, et al.. Impact of change in iron status over time on clinical outcomes in heart failure according to ejection fraction phenotype. ESC Heart Fail. 2021;8:4572–4583. doi: 10.1002/ehf2.13617
    1. Fitzsimons S, Poppe KK, Choi Y, Devlin G, Lund M, Lam CS, Troughton R, Richards AM, Doughty RN. Relationship between soluble transferrin receptor and clinical outcomes in patients with heart failure according to ejection fraction phenotype: the New Zealand PEOPLE study. J Card Fail. 2022;S1071–9164(22)00003-3. doi: 10.1016/j.cardfail.2021.12.018
    1. Klip IT, Comin-Colet J, Voors AA, Ponikowski P, Enjuanes C, Banasiak W, Lok DJ, Rosentryt P, Torrens A, Polonski L, et al.. Iron deficiency in chronic heart failure: an international pooled analysis. Am Heart J. 2013;165:575–582.e3. doi: 10.1016/j.ahj.2013.01.017
    1. Nakano H, Nagai T, Sundaram V, Nakai M, Nishimura K, Honda Y, Honda S, Iwakami N, Sugano Y, Asaumi Y, et al.. NaDEF investigators. Impact of iron deficiency on long-term clinical outcomes of hospitalized patients with heart failure. Int J Cardiol. 2018;261:114–118. doi: 10.1016/j.ijcard.2018.03.039
    1. Thiele K, Rau M, Hartmann NK, Möllmann J, Jankowski J, Böhm M, Keszei AP, Marx N, Lehrke M. Effects of empagliflozin on erythropoiesis in patients with type 2 diabetes: data from a randomized, placebo-controlled study. Diabetes Obes Metab. 2021;23:2814–2818. doi: 10.1111/dom.14517
    1. Li J, Neal B, Perkovic V, de Zeeuw D, Neuen BL, Arnott C, Simpson R, Oh R, Mahaffey KW, Heerspink HJL. Mediators of the effects of canagliflozin on kidney protection in patients with type 2 diabetes. Kidney Int. 2020;98:769–777. doi: 10.1016/j.kint.2020.04.051
    1. Fitchett D, Inzucchi SE, Zinman B, Wanner C, Schumacher M, Schmoor C, Ohneberg K, Ofstad AP, Salsali A, George JT, et al. . Mediators of the improvement in heart failure outcomes with empagliflozin in the EMPA-REG OUTCOME trial. ESC Heart Fail. 2021;8:4517–4527. doi: 110.1002/ehf2.13615
    1. Itani T, Ishihara T. Efficacy of canagliflozin against nonalcoholic fatty liver disease: a prospective cohort study. Obes Sci Pract. 2018;4:477–482. doi: 10.1002/osp4.294
    1. Phrueksotsai S, Pinyopornpanish K, Euathrongchit J, Leerapun A, Phrommintikul A, Buranapin S, Chattipakorn N, Thongsawat S. The effects of dapagliflozin on hepatic and visceral fat in type 2 diabetes patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2021;36:2952–2959. doi: 10.1111/jgh.15580

Source: PubMed

3
Subscribe