High-flow nasal therapy versus noninvasive ventilation in COPD patients with mild-to-moderate hypercapnic acute respiratory failure: study protocol for a noninferiority randomized clinical trial

Andrea Cortegiani, Federico Longhini, Annalisa Carlucci, Raffaele Scala, Paolo Groff, Andrea Bruni, Eugenio Garofalo, Maria Rita Taliani, Uberto Maccari, Luigi Vetrugno, Enrico Lupia, Giovanni Misseri, Vittoria Comellini, Antonino Giarratano, Stefano Nava, Paolo Navalesi, Cesare Gregoretti, Andrea Cortegiani, Federico Longhini, Annalisa Carlucci, Raffaele Scala, Paolo Groff, Andrea Bruni, Eugenio Garofalo, Maria Rita Taliani, Uberto Maccari, Luigi Vetrugno, Enrico Lupia, Giovanni Misseri, Vittoria Comellini, Antonino Giarratano, Stefano Nava, Paolo Navalesi, Cesare Gregoretti

Abstract

Background: Noninvasive ventilation (NIV) is indicated to treat respiratory acidosis due to exacerbation of chronic obstructive pulmonary disease (COPD). Recent nonrandomized studies also demonstrated some physiological effects of high-flow nasal therapy (HFNT) in COPD patients. We designed a prospective, unblinded, multicenter, randomized controlled trial to assess the noninferiority of HFNT compared to NIV with respect to the reduction of arterial partial pressure of carbon dioxide (PaCO2) in patients with hypercapnic acute respiratory failure with mild-to-moderate respiratory acidosis.

Methods: We will enroll adult patients with acute hypercapnic respiratory failure, as defined by arterial pH between 7.25 and 7.35 and PaCO2 ≥ 55 mmHg. Patients will be randomly assigned 1:1 to receive NIV or HFNT. NIV will be applied through a mask with a dedicated ventilator in pressure support mode. Positive end-expiratory pressure will be set at 3-5 cmH2O with inspiratory support to obtain a tidal volume between 6 and 8 ml/kg of ideal body weight. HFNT will be initially set at a temperature of 37 °C and a flow of 60 L/min. At 2 and 6 h we will assess arterial blood gases, vital parameters, respiratory rate, treatment intolerance and failure, need for endotracheal intubation, time spent under mechanical ventilation (both invasive and NIV), intensive care unit and hospital length of stay, and hospital mortality. Based on an α error of 5% and a β error of 80%, with a standard deviation for PaCO2 equal to 15 mmHg and a noninferiority limit of 10 mmHg, we computed a sample size of 56 patients. Considering potential drop-outs and nonparametric analysis, the final computed sample size was 80 patients (40 per group).

Discussion: HFNT is more comfortable than NIV in COPD patients recovering from an episode of exacerbation. If HFNT would not be inferior to NIV, HFNT could be considered as an alternative to NIV to treat COPD patients with mild-to-moderate respiratory acidosis.

Trial registration: ClinicalTrials.gov, NCT03370666 . Registered on December 12, 2017.

Keywords: Acute respiratory failure; Carbon dioxide; Chronic obstructive pulmonary disease; Emergency department; High-flow oxygen therapy through nasal cannula; Intensive care unit; Noninvasive ventilation.

Conflict of interest statement

Prof. Stefano Nava’s institution received an unrestricted research grant from Fisher and Paykel. Prof. Paolo Navalesi’s institution received funding from Maquet Critical Care, Draeger and Intersurgical S.p.A.; he received honoraria/speaking fees from Maquet Critical Care, Orionpharma, Philips, Resmed, Merck Sharp & Dome and Novartis; and he discloses that he contributed to the development of the helmet Next, whose license for patent belongs to Intersurgical S.P.A., and receives royalties for that invention.

Prof. Federico Longhini and Prof. Paolo Navalesi contributed to the development of a device not discussed in the present study whose patent is in progress (European Patent application number EP20170199831). Dr Paolo Groff received fees for lectures from Aspen Pharmaceuticals and Menarini Pharmaceuticals (not relevant to this protocol). Prof. Cesare Gregoretti received fees for lectures or consultancies from Philips, Resmed, Vivisol, OrionPharma and Origin (not relevant to this protocol). The remaining authors disclose that they have no conflicts of interest.

Figures

Fig. 1
Fig. 1
A schedule for enrolment, intervention and assessment according to the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) indications. HFNT high-flow nasal therapy through nasal cannula, ICU intensive care unit, NIV noninvasive ventilation
Fig. 2
Fig. 2
Study flow chart according to CONsolidated Standards of Reporting Trials. COPD chronic obstructive pulmonary disease, HFNT high-flow nasal therapy through nasal cannula, ICU intensive care unit, NIV noninvasive ventilation, PaCO2 arterial partial pressure of carbon dioxide

References

    1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD Executive Summary. Eur Respir J. 2017;49:1700214. doi: 10.1183/13993003.00214-2017.
    1. Plant PK, Owen JL, Elliott MW. Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomised controlled trial. Lancet. 2000;355:1931–1935. doi: 10.1016/S0140-6736(00)02323-0.
    1. Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50:1602426. doi: 10.1183/13993003.02426-2016.
    1. Gregoretti C, Pisani L, Cortegiani A, Ranieri VM. Noninvasive ventilation in critically ill patients. Crit Care Clin. 2015;31:435–457. doi: 10.1016/j.ccc.2015.03.002.
    1. Diaz O, Iglesia R, Ferrer M, Zavala E, Santos C, Wagner PD, et al. Effects of noninvasive ventilation on pulmonary gas exchange and hemodynamics during acute hypercapnic exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997;156:1840–1845. doi: 10.1164/ajrccm.156.6.9701027.
    1. Appendini L, Patessio A, Zanaboni S, Carone M, Gukov B, Donner CF, et al. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149:1069–1076. doi: 10.1164/ajrccm.149.5.8173743.
    1. Bott J, Carroll MP, Conway JH, Keilty SE, Ward EM, Brown AM, et al. Randomised controlled trial of nasal ventilation in acute ventilatory failure due to chronic obstructive airways disease. Lancet. 1993;341:1555–1557. doi: 10.1016/0140-6736(93)90696-E.
    1. Brochard L, Mancebo J, Wysocki M, Lofaso F, Conti G, Rauss A, et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995;333:817–822. doi: 10.1056/NEJM199509283331301.
    1. Kramer N, Meyer TJ, Meharg J, Cece RD, Hill NS. Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 1995;151:1799–1806. doi: 10.1164/ajrccm.151.6.7767523.
    1. Cortegiani A, Russotto V, Antonelli M, Azoulay E, Carlucci A, Conti G, et al. Ten important articles on noninvasive ventilation in critically ill patients and insights for the future: a report of expert opinions. BMC Anesthesiol. 2017;17:122. doi: 10.1186/s12871-017-0409-0.
    1. Longhini F, Colombo D, Pisani L, Idone F, Chun P, Doorduin J, et al. Efficacy of ventilator waveform observation for detection of patient-ventilator asynchrony during NIV: a multicentre study. ERJ Open Res. 2017;3:00075–02017. doi: 10.1183/23120541.00075-2017.
    1. Nava S, Hill N. Non-invasive ventilation in acute respiratory failure. Lancet. 2009;374:250–259. doi: 10.1016/S0140-6736(09)60496-7.
    1. Bruni A, Garofalo E, Pelaia C, Messina A, Cammarota G, Murabito P, et al. Patient-ventilator asynchrony in adult critically ill patients. Minerva Anestesiol. 2019;85(6):676–688. doi: 10.23736/S0375-9393.19.13436-0.
    1. Cortegiani A, Madotto F, Gregoretti C, Bellani G, Laffey JG, Pham T, et al. Immunocompromised patients with acute respiratory distress syndrome: secondary analysis of the LUNG SAFE database. Crit Care. 2018;22:157. doi: 10.1186/s13054-018-2079-9.
    1. Longhini F, Liu L, Pan C, Xie J, Cammarota G, Bruni A, et al. Neurally-adjusted ventilatory assist for noninvasive ventilation via a helmet in subjects with COPD exacerbation: a physiologic study. Respir Care. 2019;64(5):582–589. doi: 10.4187/respcare.06502.
    1. Garofalo E, Bruni A, Pelaia C, Liparota L, Lombardo N, Longhini F, et al. Recognizing, quantifying and managing patient-ventilator asynchrony in invasive and noninvasive ventilation. Expert Rev Respir Med. 2018;12:557–567. doi: 10.1080/17476348.2018.1480941.
    1. Liu L, Xia F, Yang Y, Longhini F, Navalesi P, Beck J, et al. Neural versus pneumatic control of pressure support in patients with chronic obstructive pulmonary diseases at different levels of positive end expiratory pressure: a physiological study. Crit Care. 2015;19:244. doi: 10.1186/s13054-015-0971-0.
    1. Carlucci A, Schreiber A, Mattei A, Malovini A, Bellinati J, Ceriana P, et al. The configuration of bi-level ventilator circuits may affect compensation for non-intentional leaks during volume-targeted ventilation. Intensive Care Med. 2013;39:59–65. doi: 10.1007/s00134-012-2696-8.
    1. Cortegiani A, Accurso G, Mercadante S, Giarratano A, Gregoretti C. High flow nasal therapy in perioperative medicine: from operating room to general ward. BMC Anesthesiol. 2018;18:166. doi: 10.1186/s12871-018-0623-4.
    1. Spoletini Giulia, Cortegiani Andrea, Gregoretti Cesare. Physiopathological rationale of using high-flow nasal therapy in the acute and chronic setting: A narrative review. Trends in Anaesthesia and Critical Care. 2019;26-27:22–29. doi: 10.1016/j.tacc.2019.02.001.
    1. Mundel T, Feng S, Tatkov S, Schneider H. Mechanisms of nasal high flow on ventilation during wakefulness and sleep. J Appl Physiol (1985) 2013;114:1058–1065. doi: 10.1152/japplphysiol.01308.2012.
    1. Longhini Federico, Pisani Lara, Lungu Ramona, Comellini Vittoria, Bruni Andrea, Garofalo Eugenio, Laura Vega Maria, Cammarota Gianmaria, Nava Stefano, Navalesi Paolo. High-Flow Oxygen Therapy After Noninvasive Ventilation Interruption in Patients Recovering From Hypercapnic Acute Respiratory Failure. Critical Care Medicine. 2019;47(6):e506–e511. doi: 10.1097/CCM.0000000000003740.
    1. Renda T, Corrado A, Iskandar G, Pelaia G, Abdalla K, Navalesi P. High-flow nasal oxygen therapy in intensive care and anaesthesia. Br J Anaesth. 2018;120:18–27. doi: 10.1016/j.bja.2017.11.010.
    1. Pisani L, Fasano L, Corcione N, Comellini V, Musti MA, Brandao M, et al. Change in pulmonary mechanics and the effect on breathing pattern of high flow oxygen therapy in stable hypercapnic COPD. Thorax. 2017;72:373–375. doi: 10.1136/thoraxjnl-2016-209673.
    1. Russotto V, Cortegiani A, Raineri SM, Gregoretti C, Giarratano A. Respiratory support techniques to avoid desaturation in critically ill patients requiring endotracheal intubation: a systematic review and meta-analysis. J Crit Care. 2017;41:98–106. doi: 10.1016/j.jcrc.2017.05.003.
    1. Cortegiani A, Crimi C, Sanfilippo F, Noto A, Di Falco D, Grasselli G, et al. High flow nasal therapy in immunocompromised patients with acute respiratory failure: a systematic review and meta-analysis. J Crit Care. 2019;50:250–256. doi: 10.1016/j.jcrc.2018.12.015.
    1. Rochwerg B, Granton D, Wang DX, Helviz Y, Einav S, Frat JP, et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: a systematic review and meta-analysis. Intensive Care Med. 2019;45:563-72.
    1. Cortegiani A, Crimi C, Noto A, Helviz Y, Giarratano A, Gregoretti C, et al. Effect of high-flow nasal therapy on dyspnea, comfort, and respiratory rate. Crit Care. 2019;23:201. doi: 10.1186/s13054-019-2473-y.
    1. Fraser JF, Spooner AJ, Dunster KR, Anstey CM, Corley A. Nasal high flow oxygen therapy in patients with COPD reduces respiratory rate and tissue carbon dioxide while increasing tidal and end-expiratory lung volumes: a randomised crossover trial. Thorax. 2016;71:759–761. doi: 10.1136/thoraxjnl-2015-207962.
    1. Vogelsinger H, Halank M, Braun S, Wilkens H, Geiser T, Ott S, et al. Efficacy and safety of nasal high-flow oxygen in COPD patients. BMC Pulm Med. 2017;17:143. doi: 10.1186/s12890-017-0486-3.
    1. Braunlich J, Kohler M, Wirtz H. Nasal highflow improves ventilation in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:1077–85.
    1. Fricke K, Tatkov S, Domanski U, Franke K-J, Nilius G, Schneider H. Nasal high flow reduces hypercapnia by clearance of anatomical dead space in a COPD patient. Respir Med Case Rep. 2016;19:115–117.
    1. Di Mussi R, Spadaro S, Stripoli T, Volta CA, Trerotoli P, Pierucci P, et al. High-flow nasal cannula oxygen therapy decreases postextubation neuroventilatory drive and work of breathing in patients with chronic obstructive pulmonary disease. Crit Care. 2018;22:180. doi: 10.1186/s13054-018-2107-9.
    1. Lee MK, Choi J, Park B, Kim B, Lee SJ, Kim S-H, et al. High flow nasal cannulae oxygen therapy in acute-moderate hypercapnic respiratory failure. Clin Respir J. 2018;12:2046–2056. doi: 10.1111/crj.12772.
    1. Pisani L, Mega C, Vaschetto R, Bellone A, Scala R, Cosentini R, et al. Oronasal mask versushelmet in acute hypercapnic respiratory failure. Eur Respir J. 2015;45:691–699. doi: 10.1183/09031936.00053814.
    1. Kelly BJ, Matthay MA. Prevalence and severity of neurologic dysfunction in critically ill patients. Influence on need for continued mechanical ventilation. Chest. 1993;104:1818–1824. doi: 10.1378/chest.104.6.1818.
    1. Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173:676–682. doi: 10.1093/aje/kwq433.
    1. Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O'Neal PV, Keane KA, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166:1338–1344. doi: 10.1164/rccm.2107138.
    1. Kendrick KR, Baxi SC, Smith RM. Usefulness of the modified 0-10 Borg scale in assessing the degree of dyspnea in patients with COPD and asthma. J Emerg Nurs. 2000;26:216–222. doi: 10.1016/S0099-1767(00)90093-X.
    1. Hilbert G, Navalesi P, Girault C. Is sedation safe and beneficial in patients receiving NIV? Yes. Intensive Care Med. 2015;41:1688–1691. doi: 10.1007/s00134-015-3935-6.
    1. Costa R, Navalesi P, Cammarota G, Longhini F, Spinazzola G, Cipriani F, et al. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist. Respir Physiol Neurobiol. 2017;244:10–16. doi: 10.1016/j.resp.2017.06.007.
    1. Maggiore SM, Idone FA, Vaschetto R, Festa R, Cataldo A, Antonicelli F, et al. Nasal high-flow versus Venturi mask oxygen therapy after extubation. Effects on oxygenation, comfort, and clinical outcome. Am J Respir Crit Care Med. 2014;190:282–288. doi: 10.1164/rccm.201402-0364OC.
    1. Cammarota G, Longhini F, Perucca R, Ronco C, Colombo D, Messina A, et al. New setting of neurally adjusted ventilatory assist during noninvasive ventilation through a helmet. Anesthesiology. 2016;125:1181–1189. doi: 10.1097/ALN.0000000000001354.
    1. Antonelli M, Conti G, Pelosi P, Gregoretti C, Pennisi MA, Costa R, et al. New treatment of acute hypoxemic respiratory failure: noninvasive pressure support ventilation delivered by helmet—a pilot controlled trial. Crit Care Med. 2002;30:602–608. doi: 10.1097/00003246-200203000-00019.
    1. Gregoretti C, Confalonieri M, Navalesi P, Squadrone V, Frigerio P, Beltrame F, et al. Evaluation of patient skin breakdown and comfort with a new face mask for non-invasive ventilation: a multi-center study. Intensive Care Med. 2002;28:278–284. doi: 10.1007/s00134-002-1208-7.
    1. Zhang Z. Univariate description and bivariate statistical inference: the first step delving into data. Ann Transl Med. 2016;4:91. doi: 10.21037/atm.2016.02.11.
    1. Vaschetto R, Longhini F, Persona P, Ori C, Stefani G, Liu S, et al. Early extubation followed by immediate noninvasive ventilation vs. standard extubation in hypoxemic patients: a randomized clinical trial. Intensive Care Med. 2019;45:62–71. doi: 10.1007/s00134-018-5478-0.
    1. Nava S, Navalesi P, Carlucci A. Non-invasive ventilation. Minerva Anestesiol. 2009;75:31–6.

Source: PubMed

3
Subscribe