Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery

Luigi Boni, Giulia David, Alberto Mangano, Gianlorenzo Dionigi, Stefano Rausei, Sebastiano Spampatti, Elisa Cassinotti, Abe Fingerhut, Luigi Boni, Giulia David, Alberto Mangano, Gianlorenzo Dionigi, Stefano Rausei, Sebastiano Spampatti, Elisa Cassinotti, Abe Fingerhut

Abstract

Background: Recently major developments in video imaging have been achieved: among these, the use of high definition and 3D imaging systems, and more recently indocyanine green (ICG) fluorescence imaging are emerging as major contributions to intraoperative decision making during surgical procedures. The aim of this study was to present our experience with different laparoscopic procedures using ICG fluorescence imaging.

Patients and methods: 108 ICG-enhanced fluorescence-guided laparoscopic procedures were performed: 52 laparoscopic cholecystectomies, 38 colorectal resections, 8 living-donor nephrectomies, 1 laparoscopic kidney autotransplantation, 3 inguino-iliac/obturator lymph node dissections for melanoma, and 6 miscellanea procedures. Visualization of structures was provided by a high definition stereoscopic camera connected to a 30° 10 mm scope equipped with a specific lens and light source emitting both visible and near infra-red (NIR) light (KARL STORZ GmbH & Co. KG, Tuttlingen, Germany). After injection of ICG, the system projected high-resolution NIR real-time images of blood flow in vessels and organs as well as highlighted biliary excretion .

Results: No intraoperataive or injection-related adverse effects were reported, and the biliary/vascular anatomy was always clearly identified. The imaging system provided invaluable information to conduct a safe cholecystectomy and ensure adequate vascular supply for colectomy, nephrectomy, or find lymph nodes. There were no bile duct injuries or anastomotic leaks.

Conclusions: In our experience, the ICG fluorescence imaging system seems to be simple, safe, and useful. The technique may well become a standard in the near future in view of its different diagnostic and oncological capabilities. Larger studies and more specific evaluations are needed to confirm its role and to address its disadvantages.

Figures

Fig. 1
Fig. 1
Identification of the biliary anatomy during laparoscopic cholecystectomy in non-acute setting. Insert in the upper right corner shows the operative view using a standard light
Fig. 2
Fig. 2
Use of ICG-enhanced fluorescence during laparoscopic cholecystectomy for acute cholecystitis. Insert in upper right corner shows the operative view using standard light
Fig. 3
Fig. 3
Identification of the cystic artery during laparoscopic cholecystectomy for acute cholecystitis. In the upper right corner, the operative view using standard light
Fig. 4
Fig. 4
Identification of the ischemic bowel after mesenteric division during laparoscopic anterior resection. On the leftside, the external view using standard light (notice no difference in the two segments). On the rightside, the view using near infra-red light after injection of 5 ml of ICG
Fig. 5
Fig. 5
Fluorescent perfusion control during anterior resection with identification of a distal ischemic part using near infra-red light after injection of 5 ml of ICG (rightside)
Fig. 6
Fig. 6
Peri-tumoral lymphatic mapping after ICG injection during laparoscopic right colectomy
Fig. 7
Fig. 7
ICG-enhanced fluorescent lymphatic mapping during laparoscopic right colectomy. On the leftside, the view using standard light. On the rightside, identification of lymph node at the origin of the ileo-colic vessels using NIR light
Fig. 8
Fig. 8
The use of ICG during inguino-iliac/obturator lymph node dissection. On the leftside, the view using standard light on the right the lymph node enhancement with ICG
Fig. 9
Fig. 9
Vascular anatomy study using ICG-mediated fluorescence during right laparoscopic living-donor nephrectomy after injection of 5 ml of ICG. In the upper left corner, operative view using standard light
Fig. 10
Fig. 10
Vascular anatomy study of the hepatic artery using ICG-mediated fluorescence during laparoscopic liver resection using near infra-red light after injection of 5 milliliters of ICG. In the upper left corner, the view using standard light
Fig. 11
Fig. 11
Vascular anatomy study of the spleen using ICG-enhanced fluorescence during laparoscopic splenectomy. On the right side, view using near infra-red light after injection of 5 ml of ICG. On the left side, view using standard light
Fig. 12
Fig. 12
Vascular anatomy study of the inferior mesenteric artery using ICG-mediated fluorescence laparoscopic treatment of type II endoleak. On the left side, view using standard light. On the right side, view using near infra-red light after injection of 5 ml of ICG
Fig. 13
Fig. 13
Parenchymal perfusion assessment of the kidney after transplantation (injection of 5 ml of ICG). In the upper left corner, the operative view using standard light

References

    1. Hagiike M, Phillips EH, Berci G. Performance differences in laparoscopic surgical skills between true high-definition and three-chip CCD video systems. Surg Endosc. 2007;21:1849–1854. doi: 10.1007/s00464-007-9541-0.
    1. Kunert W, Storz P, Müller S, Axt S, Kirschniak A. 3D in laparoscopy: state of the art. Chirurg. 2013;84:202–207. doi: 10.1007/s00104-012-2459-7.
    1. Honeck P, Wendt-Nordahl G, Rassweiler J, Knoll T. Three-dimensional laparoscopic imaging improves surgical performance on standardized ex vivo laparoscopic tasks. J Endourol. 2012;26:1085–1088. doi: 10.1089/end.2011.0670.
    1. Wilhelm D, Reiser S, Kohn N, Witte M, Leiner U, Mühlbach L, Ruschin D, Reiner W, Feussner H. Comparative evaluation of HD 2D/3D laparoscopic monitors and benchmarking to a theoretically ideal 3D pseudodisplay: even well-experienced laparoscopists perform better with 3D. Surg Endosc. 2014
    1. Schaafsma BE, Mieog JS, Hutteman M, van der Vorst JR, Kuppen PJ, Löwik CW, Frangioni JV, van de Velde CJ, Vahrmeijer AL. The clinical use of Indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol. 2011;1(104):323–332. doi: 10.1002/jso.21943.
    1. Verbeek FP, Schaafsma BE, Tummers QR, van der Vorst JR, van der Made WJ, Baeten CI, Bonsing BA, Frangioni JV, van de Velde CJ, Vahrmeijer AL, Swijnenburg RJ. Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery. Surg Endosc. 2014;28:1076–1082. doi: 10.1007/s00464-013-3305-9.
    1. Baillif S, Wolff B, Paoli V, Gastaud P, Mauget-Faÿsse M. Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis. Retina. 2011;31:1156–1163. doi: 10.1097/IAE.0b013e3181fbcea5.
    1. Mordon S, Devoisselle JM, Soulie-Begu S, Desmettre T. Indocyanine green; physiochemical factors affecting its fluorescence in vivo. Microvasc Res. 1998;55:146–152. doi: 10.1006/mvre.1998.2068.
    1. Noura S, Ohue M, Seki Y, Tanaka K, Motoori M, Kishi K, Miyashiro I, Ohigashi H, Yano M, Ishikawa O, Miyamoto Y. Feasibility of a lateral region sentinel node biopsy of lower rectal cancer guided by indocyanine green using a near-infrared camera system. Ann Surg Oncol. 2010;17:144–151. doi: 10.1245/s10434-009-0711-2.
    1. Desai ND, Miwa S, Kodama D, Koyama T, Cohen G, Pelletier MP, Cohen EA, Christakis GT, Goldman BS, Fremes SE. A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect errors in coronary artery grafts. J Thorac Cardiovasc Surg. 2006;132:585–594. doi: 10.1016/j.jtcvs.2005.09.061.
    1. Reuthebuch O, Häussler A, Genoni M, Tavakoli R, Odavic D, Kadner A, Turina M. Novadaq SPY: intraoperative quality assessment in off-pump coronary artery by-pass grafting. Chest. 2004;125:418–424. doi: 10.1378/chest.125.2.418.
    1. Lim C, Vibert E, Azoulay D, Salloum C, Ishizawa T, Yoshioka R, Mise Y, Sakamoto Y, Aoki T, Sugawara Y, Hasegawa K, Kokudo N. Indocyanine green fluorescence imaging in the surgical management of liver cancers: current facts and future implications. J Visc Surg. 2014;151:117–124. doi: 10.1016/j.jviscsurg.2013.11.003.
    1. Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, Venermo M, Välisuo P. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:940585. doi: 10.1155/2012/940585.
    1. Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials. 2011;32:7127–7138. doi: 10.1016/j.biomaterials.2011.06.024.
    1. Daskalaki D, Fernandes E, Wang X, Bianco FM, Elli EF, Ayloo S, Masrur M, Milone L, Giulianotti PC. Indocyanine green (icg) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution. Surg Innov. 2014
    1. Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, Grosso F, Quarati R, Ravazzoni F, Lenti LM. Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc. 2012;27:2156–2162. doi: 10.1007/s00464-012-2733-2.
    1. Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, Hasegawa K, Beck Y, Fukayama M, Kokudo N. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;1(115):2491–2504. doi: 10.1002/cncr.24291.
    1. Tajima Y, Murakami M, Yamazaki K, Masuda Y, Kato M, Sato A, Goto S, Otsuka K, Kato T, Kusano M. Sentinel node mapping guided by indocyanine green fluorescence imaging during laparoscopic surgery in gastric cancer. Ann Surg Oncol. 2010;17:1787–1793. doi: 10.1245/s10434-010-0944-0.
    1. Korn JM, Tellez-Diaz A, Bartz-Kurycki M, Gastman B. Indocyanine green SPY elite-assisted sentinel lymph node biopsy in cutaneous melanoma. Plast Reconstr Surg. 2014;133:914–922. doi: 10.1097/PRS.0000000000000006.
    1. Tanaka E, Choi HS, Fujii H, Bawendi MG, Frangioni JV. Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann Surg Oncol. 2006;13:1671–1681. doi: 10.1245/s10434-006-9194-6.
    1. Ishizawa T, Bandai Y, Ijichi M, Kaneko J, Hasegawa K, Kokudo N. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg. 2010;97:1369–1377. doi: 10.1002/bjs.7125.
    1. Kawaguchi Y, Ishizawa T, Miyata Y, Yamashita S, Masuda K, Satou S, Tamura S, Kaneko J, Sakamoto Y, Aoki T, Hasegawa K, Sugawara Y, Kokudo N. Portal uptake function in veno-occlusive regions evaluated by real-time fluorescent imaging using indocyanine green. J Hepatol. 2013;58:247–253. doi: 10.1016/j.jhep.2012.09.028.
    1. Gurusamy KS, Vaughan J, Rossi M, Davidson BR. Fewer-than-four ports versus four ports for laparoscopic cholecystectomy. Cochrane Database Syst Rev. 2014;2:CD007109.
    1. Ding J, Liao GQ, Xia Y, Zhang ZM, Pan Y, Liu S, Zhang Y, Yan ZS. Medial versus lateral approach in laparoscopic colorectal resection: a systematic review and meta-analysis. World J Surg. 2013;37:863–872. doi: 10.1007/s00268-012-1888-2.
    1. Rovera F, Dionigi G, Boni L, Masciocchi P, Carcano G, Benevento A, Diurni M, Dionigi R. Colorectal cancer: the role of laparoscopy. Surg Oncol. 2007;16(Suppl 1):S65–S67. doi: 10.1016/j.suronc.2007.10.044.
    1. Törnqvist B, Strömberg C, Persson G, Nilsson M. Effect of intended intraoperative cholangiography and early detection of bile duct injury on survival after cholecystectomy: population based cohort study. BMJ. 2012;11(345):e6457. doi: 10.1136/bmj.e6457.
    1. Flum DR, Dellinger EP, Cheadle A, Chan L, Koepsell T. Intraoperative cholangiography and risk of common bile duct injury during cholecystechtomy. JAMA. 2003;289:1639–1644. doi: 10.1001/jama.289.13.1639.
    1. Ishiwaza T, Tamura S, Masuda K, Aoki T, Hasegawa K, Imamura H, Beck Y, Kokudo N. Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery. J Am Coll Surg. 2009;208:1–4. doi: 10.1016/j.jamcollsurg.2008.09.024.
    1. Strasberg SM. Biliary injury in laparoscopic surgery: part 2. Changing the culture of cholecystectomy. JACS. 2005;201(4):604–611.
    1. Buchs NC, Pugin F, Azagury DE, Jung M, Volonte F, Hagen ME, Morel P. Real-time near-infrared fluorescent cholangiography could shorten operative time during robotic single-site cholecystectomy. Surg Endosc. 2013;27:3897–3901. doi: 10.1007/s00464-013-3005-5.
    1. Tacchino R, Greco F, Matera D. Single incision laparoscopic cholecystectomy: surgery without a visible scar. Surg Endosc. 2009;23:896–899. doi: 10.1007/s00464-008-0147-y.
    1. Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, Grosso F, Quarati R, Ravazzoni F, Lenti LM. Real-time near-infrared (NIR) fluorescent cholangiography in a single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc. 2013;27:2156–2162. doi: 10.1007/s00464-012-2733-2.
    1. Dip FD, Asbun D, Rosales-Velderrain A, Lo Menzo E, Simpfendorfer CH, Szomstein S, Rosenthal RJ. Cost analysis and effectiveness comparing the routine use of intraoperative fluorescent cholangiography with fluoroscopic cholangiogram in patients undergoing laparoscopic cholecystectomy. Surg Endosc. 2014;28:1838–1843. doi: 10.1007/s00464-013-3394-5.
    1. Diana M, Noll E, Diemunsch P, Dallemagne B, Benahmed MA, Agnus V, Soler L, Barry B, Namer IJ, Demartines N, Charles AL, Geny B, Marescaux J. Enhanced-reality video fluorescence a real-time assessment of intestinal viability. Ann Surg. 2014;259:700–707. doi: 10.1097/SLA.0b013e31828d4ab3.
    1. Morita K, Ishizawa T, Tani K, Harada N, Shimizu A, Yamamoto S, Takemura N, Kaneko J, Aoki T, Sakamoto Y, Sugawara Y, Hasegawa K, Kokudo N. Application of indocyanine green-fluorescence imaging to full-thickness cholecystectomy. Asian J Endosc Surg. 2014;7:193–195. doi: 10.1111/ases.12083.
    1. Sheng QS, Lang R, He Q, Yang YJ, Zhao DF, Chen DZ. Indocyanine green clearance test and model for end-stage liver disease score of patients with liver cirrhosis. Hepatobiliary Pancreat Dis Int. 2009;8:46–49.
    1. Daams F, Wu Z, Lahaye MJ, Jeekel J, Lange JF. Prediction and diagnosis of colorectal anastomotic leakage: a systematic review of literature. World J Gastrointest Surg. 2014;27(6):14–26. doi: 10.4240/wjgs.v6.i2.14.
    1. Shogan BD, Carlisle EM, Alverdy JC, Umanskiy K. Do we really know why colorectal anastomoses leak? J Gastrointest Surg. 2013;17:1698–1707. doi: 10.1007/s11605-013-2227-0.
    1. Nachiappan S, Askari A, Currie A, Kennedy RH, Faiz O. Intraoperative assessment of colorectal anastomotic integrity: a systematic review. Surg Endosc. 2014
    1. Kudszus S, Roesel C, Schachtrupp A, Höer JJ. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg. 2010;395:1025–1030. doi: 10.1007/s00423-010-0699-x.
    1. Jafari MD, Lee KH, Halabi WJ, Mills SD, Carmichael JC, Stamos MJ, Pigazzi A. The use of indocyanine green fluorescence to assess ananstomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc. 2013;27:3003–3008. doi: 10.1007/s00464-013-2832-8.
    1. Stamos MJ, on behalf of the PILLAR II Study Investigators Pinpoint endoscopic fluorescence perfusion assessment of colorectal anastomoses: will this impact outcomes? Surg Endosc. 2013;27:S304–S503. doi: 10.1007/s00464-013-2881-z.
    1. Kudo H, Ishizawa T, Tani K, Harada N, Ichida A, Shimuzu A, Kaneko J, Aoki T, Sakamoto Y, Sugawara Y, Hasegawa K, Kokudo N. Visualization of subcapsular hepatic malignancy by indocyanine-green fluorescence imaging during laparoscopic hepatectomy. Surg Endosc. 2014
    1. Mieog JSD, Troyan SL, Hutteman M, Donohoe KJ, van der Vorst JR, Stockdale A, Liefers GJ, Choi HS, Gibbs-Strauss SL, Putter H, Gioux S, Kuppen PJ, Ashitate Y, Löwik CW, Smit VT, Oketokoun R, Ngo LH, van de Velde CJ, Frangioni JV, Vahrmeijer AL. Towards optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel node mapping in breast cancer. Ann Surg Oncol. 2011;18:2483–2491. doi: 10.1245/s10434-011-1566-x.
    1. Murawa D, Hirche C, Dresel S, Hünerbein M. Sentinel lymph node biopsy in breast cancer guided by indocyanine green fluorescence. Br J Surg. 2009;96:1289–1294. doi: 10.1002/bjs.6721.
    1. Hutteman M, Mieog JS, van der Vorst JR, Liefers GJ, Putter H, Löwich CW, Frangioni JV, van de Velde CJ, Vahrmeijer AL. Randomized, double-blind comparison of indocyanine green with or without albumin premixing for near-infrared fluorescence imaging of sentinel lymph nodes in breast cancer patients. Breast Cancer Res Treat. 2011;127:163–170. doi: 10.1007/s10549-011-1419-0.
    1. Manny TB, Patel M, Hemal AK. Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients. Eur Urol. 2014;65:1162–1168. doi: 10.1016/j.eururo.2013.11.017.
    1. Rossi EC, Jackson A, Ivanova A, Boggess JF. Detection of sentinel nodes for endometrial cancer with robotic assisted fluorescence imaging: cervical versus hysteroscopic injection. Int J Gynecol Cancer. 2013;23:1704–1711. doi: 10.1097/IGC.0b013e3182a616f6.
    1. Kusano M, Tajima Y, Yamazaki K, Kato M, Watanabe M, Miwa M. Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Dig Surg. 2008;25:103–108. doi: 10.1159/000121905.
    1. Cahill RA, Anderson M, Wang LM, Lindsey I, Cunningham C, Mortensen NJ. Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia. Surg Endosc. 2012;26:197–204. doi: 10.1007/s00464-011-1854-3.

Source: PubMed

3
Subscribe