Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome

Mary Ni Lochlainn, Ruth C E Bowyer, Claire J Steves, Mary Ni Lochlainn, Ruth C E Bowyer, Claire J Steves

Abstract

Muscle mass, strength, and physical function are known to decline with age. This is associated with the development of geriatric syndromes including sarcopenia and frailty. Dietary protein is essential for skeletal muscle function. Resistance exercise appears to be the most beneficial form of physical activity for preserving skeletal muscle and a synergistic effect has been noted when this is combined with dietary protein. However, older adults have shown evidence of anabolic resistance, where greater amounts of protein are required to stimulate muscle protein synthesis, and response is variable. Thus, the recommended daily amount of protein is greater for older people. The aetiologies and mechanisms responsible for anabolic resistance are not fully understood. The gut microbiota is implicated in many of the postulated mechanisms for anabolic resistance, either directly or indirectly. The gut microbiota change with age, and are influenced by dietary protein. Research also implies a role for the gut microbiome in skeletal muscle function. This leads to the hypothesis that the gut microbiome might modulate individual response to protein in the diet. We summarise the existing evidence for the role of the gut microbiota in anabolic resistance and skeletal muscle in aging people, and introduce the metabolome as a tool to probe this relationship in the future.

Keywords: diet; gut microbiome; metabolome; protein; sarcopenia; skeletal muscle; supplementation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Factors leading to lower protein intake in older adults.
Figure 2
Figure 2
Factors leading to loss of skeletal muscle and sarcopenia in older adults.
Figure 3
Figure 3
Mechanisms by which the gut microbiome may influence anabolic resistance. LPS: Lipopolysaccharide; SCFA: Short chain fatty acids.

References

    1. Welch A.A. Nutritional influences on age-related skeletal muscle loss. Proc. Nutr. Soc. 2014;73:16–33. doi: 10.1017/S0029665113003698.
    1. Suetta C., Hvid L.G., Justesen L., Christensen U., Neergaard K., Simonsen L., Ortenblad N., Magnusson S.P., Kjaer M., Aagaard P. Effects of aging on human skeletal muscle after immobilization and retraining. J. Appl. Physiol. 2009;107:1172–1180. doi: 10.1152/japplphysiol.00290.2009.
    1. Rejc E., Floreani M., Taboga P., Botter A., Toniolo L., Cancellara L., Narici M., Šimunič B., Pišot R., Biolo G., et al. Loss of maximal explosive power of lower limbs after 2 weeks of disuse and incomplete recovery after retraining in older adults. J. Physiol. 2018;596:647–665. doi: 10.1113/JP274772.
    1. Kortebein P., Ferrando A., Lombeida J., Wolfe R., Evans W.J. Effect of 10 Days of Bed Rest on Skeletal Muscle in Healthy Older Adults. JAMA. 2007;297:1769. doi: 10.1001/jama.297.16.1772-b.
    1. Fielding R.A., Vellas B., Evans W.J., Bhasin S., Morley J.E., Newman A.B., van Kan G.A., Andrieu S., Bauer J., Breuille D., et al. Sarcopenia: An undiagnosed condition in older adults. Consensus Definition: Prevalence, Etiology, and Consequences. J. Am. Med. Dir. Assoc. 2011;12:249–256. doi: 10.1016/j.jamda.2011.01.003.
    1. Landi F., Calvani R., Tosato M., Martone A.M., Ortolani E., Savera G., D’Angelo E., Sisto A., Marzetti E. Protein intake and muscle health in old age: From biological plausibility to clinical evidence. Nutrients. 2016;8:295. doi: 10.3390/nu8050295.
    1. Pilgrim A., Robinson S., Sayer A.A., Roberts H. An overview of appetite decline in older people. Nurs. Older People. 2015;27:29–35. doi: 10.7748/nop.27.5.29.e697.
    1. Whitelock E., Ensaff H. On Your Own: Older Adults’ Food Choice and Dietary Habits. Nutrients. 2018;10 doi: 10.3390/nu10040413.
    1. Parry S.W., Finch T., Deary V. How should we manage fear of falling in older adults living in the community? BMJ. 2013;346:f2933. doi: 10.1136/bmj.f2933.
    1. Evans J.R., Fletcher A.E., Wormald R.P.L., Ng E.S.-W., Stirling S., Smeeth L., Breeze E., Bulpitt C.J., Nunes M., Jones D., et al. Prevalence of visual impairment in people aged 75 years and older in Britain: Results from the MRC trial of assessment and management of older people in the community. Br. J. Ophthalmol. 2002;86:795–800. doi: 10.1136/bjo.86.7.795.
    1. Kremer S., Bult J.H.F., Mojet J., Kroeze J.H.A. Food Perception with Age and Its Relationship to Pleasantness. Chem. Senses. 2007;32:591–602. doi: 10.1093/chemse/bjm028.
    1. Malagelada J., Bazzoli F., Boeckxstaens G., De Loose D., Fried M., Kahrilas P., Lindberg G., Maltertheiner P., Salis G., Sharma P., et al. World Gastroenterology Organisation Global Guidelines: Dysphagia. J. Clin. Gastroenterol. 2014;49:370–378. doi: 10.1097/MCG.0000000000000307.
    1. Sura L., Madhavan A., Carnaby G., Crary M.A. Dysphagia in the elderly: Management and nutritional considerations. Clin. Interv. Aging. 2012;7:287–298. doi: 10.2147/CIA.S23404.
    1. Delaney M., McCarthy M. Food Choice and Health across the Life Course: A Qualitative Study Examining Food Choice in Older Irish Adults. J. Food Prod. Mark. 2011;17:114–140. doi: 10.1080/10454446.2011.548717.
    1. Age UK Later Life in the United Kingdom. [(accessed on 2 June 2018)];2018 Available online: .
    1. Barnett A.M., Roy N.C., McNabb W.C., Cookson A.L. The interactions between endogenous bacteria, dietary components and the mucus layer of the large bowel. Food Funct. 2012;3:690. doi: 10.1039/c2fo30017f.
    1. Payne R.A., Avery A.J., Duerden M., Saunders C.L., Simpson C.R., Abel G.A. Prevalence of polypharmacy in a Scottish primary care population. Eur. J. Clin. Pharmacol. 2014;70:575–581. doi: 10.1007/s00228-013-1639-9.
    1. Kamphuis C.B., de Bekker-Grob E.W., van Lenthe F.J. Factors affecting food choices of older adults from high and low socioeconomic groups: A discrete choice experiment. Am. J. Clin. Nutr. 2015;101:768–774. doi: 10.3945/ajcn.114.096776.
    1. Clegg A., Young J., Iliffe S., Rikkert M.O., Rockwood K. Frailty in elderly people. Lancet. 2013;381:752–762. doi: 10.1016/S0140-6736(12)62167-9.
    1. Houston D.K., Nicklas B.J., Ding J., Harris T.B., Tylavsky F.A., Newman A.B., Lee J.S., Sahyoun N.R., Visser M., Kritchevsky S.B. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008;87:150–155. doi: 10.1093/ajcn/87.1.150.
    1. Isanejad M., Mursu J., Sirola J., Kröger H., Rikkonen T., Tuppurainen M., Erkkilä A.T. Dietary protein intake is associated with better physical function and muscle strength among elderly women. Br. J. Nutr. 2016;115:1281–1291. doi: 10.1017/S000711451600012X.
    1. Landi F., Calvani R., Tosato M., Martone A.M., Picca A., Ortolani E., Savera G., Salini S., Ramaschi M., Bernabei R., et al. Animal-derived protein consumption is associated with muscle mass and strength in community-dwellers: Results from the Milan EXPO Survey. J. Nutr. Health Aging. 2017;21:1050–1056. doi: 10.1007/s12603-017-0974-4.
    1. Zhu K., Kerr D.A., Meng X., Devine A., Solah V., Binns C.W., Prince R.L. Two-Year Whey Protein Supplementation Did Not Enhance Muscle Mass and Physical Function in Well-Nourished Healthy Older Postmenopausal Women. J. Nutr. 2015;145:2520–2526. doi: 10.3945/jn.115.218297.
    1. Tieland M., Franssen R., Dullemeijer C., van Dronkelaar C., Kim H.K., Ispoglou T., Zhu K., Prince R.L., van Loon L.J.C., de Groot L.C.P.G.M. The impact of dietary protein or amino acid supplementation on muscle mass and strength in elderly people: Individual participant data and meta-analysis of RCT’s. J. Nutr. Health Aging. 2017;21:994–1001. doi: 10.1007/s12603-017-0896-1.
    1. Beaudart C., Rabenda V., Simmons M., Geerinck A., Araujo de Carvalho I., Reginster J.-Y., Amuthavalli Thiyagarajan J., Bruyère O. Effects of protein, essential amino acids, B-hydroxy B-methylbutyrate, creatine, dehydroepiandrosterone and fatty acid supplementation on muscle mass, muscle strength and physical performance in older people aged 60 years and over. A systematic review of the literature. J. Nutr. Health Aging. 2017:1–14. doi: 10.1007/s12603-017-0934-z.
    1. Cruz-Jentoft A.J., Landi F., Schneider S.M., Zúñiga C., Arai H., Boirie Y., Chen L.K., Fielding R.A., Martin F.C., Michel J., et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS) Age Ageing. 2014;43:748–759. doi: 10.1093/ageing/afu115.
    1. Cholewa J.M., Dardevet D., Lima-Soares F., de Araújo Pessôa K., Oliveira P.H., dos Santos Pinho J.R., Nicastro H., Xia Z., Cabido C.E.T., Zanchi N.E. Dietary proteins and amino acids in the control of the muscle mass during immobilization and aging: Role of the MPS response. Amino Acids. 2017;49:811–820. doi: 10.1007/s00726-017-2390-9.
    1. Deutz N.E.P., Bauer J.M., Barazzoni R., Biolo G., Boirie Y., Bosy-Westphal A., Cederholm T., Cruz-Jentoft A.J., Krznaric Z., Sreekumaran Nair K., et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014;33:929–936. doi: 10.1016/j.clnu.2014.04.007.
    1. Murphy C.H., Saddler N.I., Devries M.C., McGlory C., Baker S.K., Phillips S.M. Leucine supplementation enhances integrative myofibrillar protein synthesis in free-living older men consuming lower- and higher-protein diets: A parallel-group crossover study. Am. J. Clin. Nutr. 2016;104:1594–1606. doi: 10.3945/ajcn.116.136424.
    1. Daly R., Formica M.B., Gianoudis J., Ellis K., O’Connell S. Does lean red meat enhance the effetcs of exercise on muscle health and function in the elderly? Innov. Aging. 2017;1:3–4. doi: 10.1093/geroni/igx004.3846.
    1. Daly R.M., O’Connell S.L., Mundell N.L., Grimes C.A., Dunstan D.W., Nowson C.A. Protein-enriched diet, with the use of lean red meat, combined with progressive resistance training enhances lean tissue mass and muscle strength and reduces circulating IL-6 concentrations in elderly women: A cluster randomized controlled trial. Am. J. Clin. Nutr. 2014:899–910. doi: 10.3945/ajcn.113.064154.
    1. Cermak N.M., Res P.T., De Groot L.C., Saris W.H.M., Loon L.J.C. Van Protein supplementation augments the adaptive response of skeletal muscle to resistance type exercise training a meta analysis. Am. J. Clin. Nutr. 2012;96:1454–1464. doi: 10.3945/ajcn.112.037556.
    1. Wu G.D., Bushmanc F.D., Lewis J.D. Diet, the human gut microbiota, and IBD. Anaerobe. 2013;24:117–120. doi: 10.1016/j.anaerobe.2013.03.011.
    1. O’Keefe S.J.D. Towards the determination of the nutritional needs of the body and its microbiome in sickness and in health. Curr. Opin. Gastroenterol. 2014;30:175–177. doi: 10.1097/MOG.0000000000000045.
    1. Ticinesi A., Lauretani F., Milani C., Nouvenne A., Tana C., Del Rio D., Maggio M., Ventura M., Meschi T. Aging Gut Microbiota at the Cross-Road between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut-Muscle Axis? Nutrients. 2017;9 doi: 10.3390/nu9121303.
    1. Grosicki G.J., Fielding R.A., Lustgarten M.S. Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis. Calcif. Tissue Int. 2018;102:433–442. doi: 10.1007/s00223-017-0345-5.
    1. Biagi E., Nylund L., Candela M., Ostan R., Bucci L., Pini E., Nikkïla J., Monti D., Satokari R., Franceschi C., et al. Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians. PLoS ONE. 2010;5:e10667. doi: 10.1371/annotation/df45912f-d15c-44ab-8312-e7ec0607604d.
    1. Ridaura V.K., Faith J.J., Rey F.E., Cheng J., Alexis E., Kau A.L., Griffin N.W., Lombard V., Henrissat B., Bain J.R., et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. doi: 10.1126/science.1241214.
    1. Dillon E.L. Nutritionally essential amino acids and metabolic signaling in aging. Amino Acids. 2013;45:431–441. doi: 10.1007/s00726-012-1438-0.
    1. Mitchell C.J., Milan A.M., Mitchell S.M., Zeng N., Ramzan F., Sharma P., Knowles S.O., Roy N.C., Sjödin A., Wagner K.H., et al. The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men: A 10-wk randomized controlled trial. Am. J. Clin. Nutr. 2017;106:1375–1383. doi: 10.3945/ajcn.117.160325.
    1. Haran P.H., Rivas D.A., Fielding R.A. Role and potential mechanisms of anabolic resistance in sarcopenia. J. Cachexia. Sarcopenia Muscle. 2012;3:157–162. doi: 10.1007/s13539-012-0068-4.
    1. Breen L., Phillips S.M. Skeletal Muscle Protein Metabolism in the Elderly: Interventions to Counteract the “Anabolic Resistance” of Ageing. [(accessed on 13 July 2018)]; Available online: .
    1. Stefanetti R.J., Zacharewicz E., Della Gatta P., Garnham A., Russell A.P., Lamon S. Ageing Has No Effect on the Regulation of the Ubiquitin Proteasome-Related Genes and Proteins Following Resistance Exercise. [(accessed on 13 July 2018)]; Available online: .
    1. Moore D.R., Churchward-Venne T.A., Witard O., Breen L., Burd N.A., Tipton K.D., Phillips S.M. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015;70:57–62. doi: 10.1093/gerona/glu103.
    1. Shad B.J., Thompson J.L., Breen L. Does the muscle protein synthetic response to exercise and amino acid-based nutrition diminish with advancing age? A systematic review. Am. J. Physiol. Endocrinol. Metab. 2016;311:E803–E817. doi: 10.1152/ajpendo.00213.2016.
    1. Wolfe R.R. The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br. J. Nutr. 2012;108:88–93. doi: 10.1017/S0007114512002590.
    1. Malafarina V., Uriz-Otano F., Iniesta R., Gil-Guerrero L. Effectiveness of Nutritional Supplementation on Muscle Mass in Treatment of Sarcopenia in Old Age: A Systematic Review. J. Am. Med. Dir. Assoc. 2013;14:10–17. doi: 10.1016/j.jamda.2012.08.001.
    1. Dulac M.C., Pion C.H., Lemieux F., Boutros El Hajj G., Belanger M., Gaudreau P., Chevalier S., Morais J.A., Gouspillou G., Aubertin-Leheudre M. Differences in muscle adaptation to a 12-week mixed power training in elderly men, depending on usual protein intake. Exp. Gerontol. 2018 doi: 10.1016/j.exger.2018.02.001.
    1. Nowson C., O’Connell S. Protein requirements and recommendations for older people: A review. Nutrients. 2015;7:6874–6899. doi: 10.3390/nu7085311.
    1. Bauer J., Biolo G., Cederholm T., Cesari M., Cruz-Jentoft A.J., Morley J.E., Phillips S., Sieber C., Stehle P., Teta D., et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013:542–559. doi: 10.1016/j.jamda.2013.05.021.
    1. Churchward-Venne T.A., Breen L., Phillips S.M. Alterations in human muscle protein metabolism with aging: Protein and exercise as countermeasures to offset sarcopenia. BioFactors. 2014;40:199–205. doi: 10.1002/biof.1138.
    1. Markofski M.M., Volpi E. Protein metabolism in women and men: Similarities and disparities. Curr. Opin. Clin. Nutr. Metab. Care. 2011;14:93–97. doi: 10.1097/MCO.0b013e3283412343.
    1. Smith G.I., Villareal D.T., Sinacore D.R., Shah K., Mittendorfer B. Muscle Protein Synthesis Response to Exercise Training in Obese, Older Men and Women. [(accessed on 4 July 2018)]; Available online: .
    1. Karastergiou K., Smith S.R., Greenberg A.S., Fried S.K. Sex Differences in Human Adipose Tissues—The Biology of Pear Shape. [(accessed on 4 July 2018)]; Available online: .
    1. Burd N.A., Gorissen S.H., Van Loon L.J.C. Anabolic Resistance of Muscle Protein Synthesis with Aging. Exerc. Sport Sci. Rev. 2013;41:169–173. doi: 10.1097/JES.0b013e318292f3d5.
    1. Murton A.J. Muscle protein turnover in the elderly and its potential contribution to the development of sarcopenia. Proc. Nutr. Soc. 2015;74:387–396. doi: 10.1017/S0029665115000130.
    1. Breen L., Stokes K.A., Churchward-Venne T.A., Moore D.R., Baker S.K., Smith K., Atherton P.J., Phillips S.M. Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. J. Clin. Endocrinol. Metab. 2013;98:2604–2612. doi: 10.1210/jc.2013-1502.
    1. Wall B.T., van Loon L.J. Nutritional strategies to attenuate muscle disuse atrophy. Nutr. Rev. 2013;71:195–208. doi: 10.1111/nure.12019.
    1. Biolo G., Ciocchi B., Lebenstedt M., Barazzoni R., Zanetti M., Platen P., Heer M., Guarnieri G. Short-term bed rest impairs amino acid-induced protein anabolism in humans. J. Physiol. 2004;558:381–388. doi: 10.1113/jphysiol.2004.066365.
    1. Glover E.I., Phillips S.M., Oates B.R., Tang J.E., Tarnopolsky M.A., Selby A., Smith K., Rennie M.J. Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. Supplementary Data. J. Physiol. 2008;586:6049–6061. doi: 10.1113/jphysiol.2008.160333.
    1. Wall B.T., Snijders T., Senden J.M.G., Ottenbros C.L.P., Gijsen A.P., Verdijk L.B., van Loon L.J.C. Disuse Impairs the Muscle Protein Synthetic Response to Protein Ingestion in Healthy Men. J. Clin. Endocrinol. Metab. 2013;98:4872–4881. doi: 10.1210/jc.2013-2098.
    1. Guillet C., Masgrau A., Walrand S., Boirie Y. Impaired protein metabolism: Interlinks between obesity, insulin resistance and inflammation. Obes. Rev. 2012;13:51–57. doi: 10.1111/j.1467-789X.2012.01037.x.
    1. Balage M., Averous J., Rémond D., Bos C., Pujos-Guillot E., Papet I., Mosoni L., Combaret L., Dardevet D. Presence of low-grade inflammation impaired postprandial stimulation of muscle protein synthesis in old rats. J. Nutr. Biochem. 2010;21:325–331. doi: 10.1016/j.jnutbio.2009.01.005.
    1. Volpi E., Mittendorfer B., Rasmussen B.B., Wolfe R.R. The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J. Clin. Endocrinol. Metab. 2000;85:4481–4490. doi: 10.1210/jc.85.12.4481.
    1. Meneilly G.S., Elliot T., Bryer-Ash M., Floras J.S. Insulin-mediated increase in blood flow is impaired in the elderly. J. Clin. Endocrinol. Metab. 1995;80:1899–1903. doi: 10.1210/jcem.80.6.7775638.
    1. Murton A.J., Marimuthu K., Mallinson J.E., Selby A.L., Smith K., Rennie M.J., Greenhaff P.L. Obesity Appears to Be Associated With Altered Muscle Protein Synthetic and Breakdown Responses to Increased Nutrient Delivery in Older Men, but Not Reduced Muscle Mass or Contractile Function. Diabetes. 2015;64:3160–3171. doi: 10.2337/db15-0021.
    1. Volpato S., Bianchi L., Cherubini A., Landi F., Maggio M., Savino E., Bandinelli S., Ceda G.P., Guralnik J.M., Zuliani G., et al. Prevalence and clinical correlates of sarcopenia in community-dwelling older people: Application of the EWGSOP definition and diagnostic algorithm. J. Gerontol. A. Biol. Sci. Med. Sci. 2014;69:438–446. doi: 10.1093/gerona/glt149.
    1. Parr E.B., Camera D.M., Areta J.L., Burke L.M., Phillips S.M., Hawley J.A., Coffey V.G. Alcohol Ingestion Impairs Maximal Post-Exercise Rates of Myofibrillar Protein Synthesis following a Single Bout of Concurrent Training. PLoS ONE. 2014;9:e88384. doi: 10.1371/journal.pone.0088384.
    1. Drummond M.J., Miyazaki M., Dreyer H.C., Pennings B., Dhanani S., Volpi E., Esser K.A., Rasmussen B.B. Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis. J. Appl. Physiol. 2009;106:1403–1411. doi: 10.1152/japplphysiol.90842.2008.
    1. Tanner R.E., Brunker L.B., Agergaard J., Barrows K.M., Briggs R.A., Kwon O.S., Young L.M., Hopkins P.N., Volpi E., Marcus R.L., et al. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation. J. Physiol. 2015;593:4259–4273. doi: 10.1113/JP270699.
    1. Greig C.A., Gray C., Rankin D., Young A., Mann V., Noble B., Atherton P.J. Blunting of adaptive responses to resistance exercise training in women over 75 y. Exp. Gerontol. 2011;46:884–890. doi: 10.1016/j.exger.2011.07.010.
    1. Drummond M.J., Addison O., Brunker L., Hopkins P.N., McClain D.A., Lastayo P.C., Marcus R.L. Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: A cross-sectional comparison. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014;69:1040–1048. doi: 10.1093/gerona/glu004.
    1. Lecker S.H., Jagoe R.T., Gilbert A., Gomes M., Baracos V., Bailey J., Price S.R., Mitch W.E., Goldberg A.L. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004;18:39–51. doi: 10.1096/fj.03-0610com.
    1. Cuthbertson D., Smith K., Babraj J., Leese G., Waddell T., Atherton P., Wackerhage H., Taylor P.M., Rennie M.J. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2005;19:422–424. doi: 10.1096/fj.04-2640fje.
    1. Drummond M.J., Dickinson J.M., Fry C.S., Walker D.K., Gundermann D.M., Reidy P.T., Timmerman K.L., Markofski M.M., Paddon-Jones D., Rasmussen B.B., et al. Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults. Am. J. Physiol. Endocrinol. Metab. 2012;302:E1113–E1122. doi: 10.1152/ajpendo.00603.2011.
    1. Fry C.S., Drummond M.J., Glynn E.L., Dickinson J.M., Gundermann D.M., Timmerman K.L., Walker D.K., Volpi E., Rasmussen B.B. Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2013;68:599–607. doi: 10.1093/gerona/gls209.
    1. Dickinson J.M., Fry C.S., Drummond M.J., Gundermann D.M., Walker D.K., Glynn E.L., Timmerman K.L., Dhanani S., Volpi E., Rasmussen B.B. Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J. Nutr. 2011;141:856–862. doi: 10.3945/jn.111.139485.
    1. Fry C.S., Drummond M.J., Glynn E.L., Dickinson J.M., Gundermann D.M., Timmerman K.L., Walker D.K., Dhanani S., Volpi E., Rasmussen B.B. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet. Muscle. 2011;1:11. doi: 10.1186/2044-5040-1-11.
    1. Kar S.K., Jansman A.J.M., Benis N., Ramiro-Garcia J., Schokker D., Kruijt L., Stolte E.H., Taverne-Thiele J.J., Smits M.A., Wells J.M. Dietary protein sources differentially affect microbiota, mTOR activity and transcription of mTOR signaling pathways in the small intestine. PLoS ONE. 2017;12:e0188282. doi: 10.1371/journal.pone.0188282.
    1. Dickinson J.M., Gundermann D.M., Walker D.K., Reidy P.T., Borack M.S., Drummond M.J., Arora M., Volpi E., Rasmussen B.B. Leucine-enriched amino acid ingestion after resistance exercise prolongs myofibrillar protein synthesis and amino acid transporter expression in older men. J. Nutr. 2014;144:1694–1702. doi: 10.3945/jn.114.198671.
    1. Dickinson J.M., Drummond M.J., Coben J.R., Volpi E., Rasmussen B.B. Aging differentially affects human skeletal muscle amino acid transporter expression when essential amino acids are ingested after exercise. Clin. Nutr. 2013;32:273–280. doi: 10.1016/j.clnu.2012.07.009.
    1. Guillet C., Prod’homme M., Balage M., Gachon P., Giraudet C., MORIN L., Grizard J., Boirie Y. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J. 2004;18:1586–1587. doi: 10.1096/fj.03-1341fje.
    1. Markofski M.M., Dickinson J.M., Drummond M.J., Fry C.S., Fujita S., Gundermann D.M., Glynn E.L., Jennings K., Paddon-Jones D., Reidy P.T., et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp. Gerontol. 2015;65:1–7. doi: 10.1016/j.exger.2015.02.015.
    1. Welch A.A., Kelaiditi E., Jennings A., Steves C.J., Spector T.D., MacGregor A. Dietary Magnesium Is Positively Associated With Skeletal Muscle Power and Indices of Muscle Mass and May Attenuate the Association Between Circulating C-Reactive Protein and Muscle Mass in Women. J. Bone Min. Res. 2016;31:317–325. doi: 10.1002/jbmr.2692.
    1. Schaap L.A., Pluijm S.M.F., Deeg D.J.H., Harris T.B., Kritchevsky S.B., Newman A.B., Colbert L.H., Pahor M., Rubin S.M., Tylavsky F.A., et al. Higher inflammatory marker levels in older persons: Associations with 5-year change in muscle mass and muscle strength. J. Gerontol. A Biol. Sci. Med. Sci. 2009;64:1183–1189. doi: 10.1093/gerona/glp097.
    1. Dillon E.L., Casperson S.L., Durham W.J., Randolph K.M., Urban R.J., Volpi E., Ahmad M., Kinsky M.P., Sheffield-Moore M. Muscle protein metabolism responds similarly to exogenous amino acids in healthy younger and older adults during NO-induced hyperemia. Am. J. Physiol. Integr. Comp. Physiol. 2011;301:R1408–R1417. doi: 10.1152/ajpregu.00211.2011.
    1. Saffrey M.J. Aging of the mammalian gastrointestinal tract: A complex organ system. Age. 2014;36:9603. doi: 10.1007/s11357-013-9603-2.
    1. Boirie Y., Gachon P., Beaufrère B. Splanchnic and whole-body leucine kinetics in young and elderly men. Am. J. Clin. Nutr. 1997;65:489–495. doi: 10.1093/ajcn/65.2.489.
    1. Gorissen S.H.M., Witard O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr. Soc. 2018;77:20–30. doi: 10.1017/S002966511700194X.
    1. Piasecki M., Ireland A., Piasecki J., Stashuk D.W., Swiecicka A., Rutter M.K., Jones D.A., McPhee J.S. Failure to expand the motor unit size to compensate for declining motor unit numbers distinguishes sarcopenic from non-sarcopenic older men. J. Physiol. 2018;596:1627–1637. doi: 10.1113/JP275520.
    1. Stephens F.B., Chee C., Wall B.T., Murton A.J., Shannon C.E., van Loon L.J.C., Tsintzas K. Lipid-induced insulin resistance is associated with an impaired skeletal muscle protein synthetic response to amino acid ingestion in healthy young men. Diabetes. 2015;64:1615–1620. doi: 10.2337/db14-0961.
    1. Kilgour A.H.M., Gallagher I.J., MacLullich A.M.J., Andrew R., Gray C.D., Hyde P., Wackerhage H., Husi H., Ross J.A., Starr J.M., et al. Increased skeletal muscle 11βHSD1 mRNA is associated with lower muscle strength in ageing. PLoS ONE. 2013;8:e84057. doi: 10.1371/journal.pone.0084057.
    1. Liu W., Klose A., Forman S., Paris N.D., Wei-LaPierre L., Cortés-Lopéz M., Tan A., Flaherty M., Miura P., Dirksen R.T., et al. Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. Elife. 2017;6:e26464. doi: 10.7554/eLife.26464.
    1. Jeffery I.B., O’Toole P.W. Diet-microbiota interactions and their implications for healthy living. Nutrients. 2013;5:234–252. doi: 10.3390/nu5010234.
    1. Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S., Harris H.M.B., Coakley M., Lakshminarayanan B., O’Sullivan O., et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184. doi: 10.1038/nature11319.
    1. Gi Langille M., Meehan C.J., Koenig J.E., Dhanani A.S., Rose R.A., Howlett S.E., Beiko R.G. Microbial shifts in the aging mouse gut. Microbiome. 2014 doi: 10.1186/s40168-014-0050-9.
    1. Rampelli S., Candela M., Turroni S., Biagi E., Pflueger M., Wolters M., Ahrens W., Brigidi P. Microbiota and lifestyle interactions through the lifespan. Trends Food Sci. Technol. 2016;57:265–272. doi: 10.1016/j.tifs.2016.03.003.
    1. Jackson M.A., Jeffery I.B., Beaumont M., Bell J.T., Clark A.G., Ley R.E., O’Toole P.W., Spector T.D., Steves C.J. Signatures of early frailty in the gut microbiota. Genome Med. 2016;8:8. doi: 10.1186/s13073-016-0262-7.
    1. Ticinesi A., Milani C., Lauretani F., Nouvenne A., Mancabelli L., Lugli G.A., Turroni F., Duranti S., Mangifesta M., Viappiani A., et al. Gut microbiota composition is associated with polypharmacy in elderly hospitalized patients. Sci. Rep. 2017;7:11102. doi: 10.1038/s41598-017-10734-y.
    1. Jeffery I.B., Lynch D.B., O’Toole P.W. Composition and temporal stability of the gut microbiota in older persons. ISME J. 2016;10:170–182. doi: 10.1038/ismej.2015.88.
    1. Pérez-Cobas A.E., Gosalbes M.J., Friedrichs A., Knecht H., Artacho A., Eismann K., Otto W., Rojo D., Bargiela R., von Bergen M., et al. Gut microbiota disturbance during antibiotic therapy: A multi-omic approach. Gut. 2013;62:1591–1601. doi: 10.1136/gutjnl-2012-303184.
    1. Boirie Y. Physiopathological mechanism of sarcopenia. J. Nutr. Health Aging. 2009;13:717–723. doi: 10.1007/s12603-009-0203-x.
    1. Steves C.J., Bird S., Williams F.M., Spector T.D. The Microbiome and Musculoskeletal Conditions of Aging: A Review of Evidence for Impact and Potential Therapeutics. J. Bone Min. Res. 2016;31:261–269. doi: 10.1002/jbmr.2765.
    1. Picca A., Fanelli F., Calvani R., Mulè G., Pesce V., Sisto A., Pantanelli C., Bernabei R., Landi F., Marzetti E. Gut Dysbiosis and Muscle Aging: Searching for Novel Targets against Sarcopenia. Mediat. Inflamm. 2018:7026198. doi: 10.1155/2018/7026198.
    1. Quigley E.M.M. Commentary: Synbiotics and gut microbiota in older people—A microbial guide to healthy ageing. Aliment. Pharmacol. Ther. 2013;38:1141–1142. doi: 10.1111/apt.12495.
    1. Smith P., Willemsen D., Popkes M.L., Metge F., Gandiwa E., Reichard M., Valenzano D.R. Regulation of Life Span by the Gut Microbiota in The Short-Lived African Turquoise Killifish. [(accessed on 8 June 2018)]; Available online: .
    1. Power S.E., O’Toole P.W., Stanton C., Ross R.P., Fitzgerald G.F. Intestinal microbiota, diet and health. Br. J. Nutr. 2014;111:387–402. doi: 10.1017/S0007114513002560.
    1. Bäckhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., Semenkovich C.F., Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101.
    1. Bäckhed F., Manchester J.K., Semenkovich C.F., Gordon J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA. 2007;104:979–984. doi: 10.1073/pnas.0605374104.
    1. Den Besten G., Lange K., Havinga R., Van Dijk T.H., Gerding A., Van Eunen K., Müller M., Groen A.K., Hooiveld G.J., Bakker B.M., et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 2013;305:G900–G910. doi: 10.1152/ajpgi.00265.2013.
    1. Yan H., Diao H., Xiao Y., Li W., Yu B., He J., Yu J., Zheng P., Mao X., Luo Y., et al. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice. Sci. Rep. 2016;6:31786. doi: 10.1038/srep31786.
    1. Cani P.D., Possemiers S., Van de Wiele T., Guiot Y., Everard A., Rottier O., Geurts L., Naslain D., Neyrinck A., Lambert D.M., et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–1103. doi: 10.1136/gut.2008.165886.
    1. Bindels L.B., Beck R., Schakman O., Martin J.C., De Backer F., Sohet F.M., Dewulf E.M., Pachikian B.D., Neyrinck A.M., Thissen J.-P., et al. Restoring Specific Lactobacilli Levels Decreases Inflammation and Muscle Atrophy Markers in an Acute Leukemia Mouse Model. PLoS ONE. 2012;7:e37971. doi: 10.1371/journal.pone.0037971.
    1. Chen Y.-M., Wei L., Chiu Y.-S., Hsu Y.-J., Tsai T.-Y., Wang M.-F., Huang C.-C. Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients. 2016;8:205. doi: 10.3390/nu8040205.
    1. Bindels L.B., Neyrinck A.M., Claus S.P., Le Roy C.I., Grangette C., Pot B., Martinez I., Walter J., Cani P.D., Delzenne N.M. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME J. 2016;10:1456–1470. doi: 10.1038/ismej.2015.209.
    1. Walsh M.E., Bhattacharya A., Sataranatarajan K., Qaisar R., Sloane L., Rahman M.M., Kinter M., Van Remmen H. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell. 2015;14:957–970. doi: 10.1111/acel.12387.
    1. Shing C.M., Peake J.M., Lim C.L., Briskey D., Walsh N.P., Fortes M.B., Ahuja K.D.K., Vitetta L. Effects of probiotics supplementation on gastrointestinal permeability, inflammation and exercise performance in the heat. Eur. J. Appl. Physiol. 2014;114:93–103. doi: 10.1007/s00421-013-2748-y.
    1. Salarkia N., Ghadamli L., Zaeri F., Sabaghian Rad L. Effects of probiotic yogurt on performance, respiratory and digestive systems of young adult female endurance swimmers: A randomized controlled trial. Med. J. Islam. Repub. Iran. 2013;27:141–146.
    1. Cerdá B., Pérez M., Pérez-Santiago J.D., Tornero-Aguilera J.F., González-Soltero R., Larrosa M. Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health? Front. Physiol. 2016;7:51. doi: 10.3389/fphys.2016.00051.
    1. Clark A., Mach N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front. Physiol. 2017;8:319. doi: 10.3389/fphys.2017.00319.
    1. Choi J.J., Eum S.Y., Rampersaud E., Daunert S., Abreu M.T., Toborek M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ. Health Perspect. 2013;121:725–730. doi: 10.1289/ehp.1306534.
    1. Queipo-Ortuño M.I., Seoane L.M., Murri M., Pardo M., Gomez-Zumaquero J.M., Cardona F., Casanueva F., Tinahones F.J. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS ONE. 2013;8:e65465. doi: 10.1371/journal.pone.0065465.
    1. Petriz B.A., Castro A.P., Almeida J.A., Gomes C.P., Fernandes G.R., Kruger R.H., Pereira R.W., Franco O.L. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genom. 2014;15:511. doi: 10.1186/1471-2164-15-511.
    1. Bilski J., Mazur-Bialy A., Hubalewska-Mazgaj M., Brzozowski B., Surmiak M., Wojcik D., Magierowski M., Chmura A., Magierowska K., Brzozowski T. Role of Gut-Adipose-muscle Axis in Beneficial Effect of Voluntary Exercise on Experimental Colitis in Mice Fed a Diet-Induced Obesity. Involvement of Protective Irisin and Proinflammatory Biomarkers Released from Mesenteric Fat and Colonic Mucosa. Gastroenterology. 2017;152:S828. doi: 10.1016/S0016-5085(17)32861-5.
    1. Clarke S.F., Murphy E.F., O’Sullivan O., Lucey A.J., Humphreys M., Hogan A., Hayes P., O’Reilly M., Jeffery I.B., Wood-Martin R., et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913–1920. doi: 10.1136/gutjnl-2013-306541.
    1. Oettlé G.J. Effect of moderate exercise on bowel habit. Gut. 1991;32:941–944. doi: 10.1136/gut.32.8.941.
    1. Vandeputte D., Falony G., Vieira-Silva S., Tito R.Y., Joossens M., Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 2015 doi: 10.1136/gutjnl-2015-309618.
    1. Zhu L., Liu W., Alkhouri R., Baker R.D., Bard J.E., Quigley E.M., Baker S.S. Structural changes in the gut microbiome of constipated patients. Physiol. Genom. 2014;46:679–686. doi: 10.1152/physiolgenomics.00082.2014.
    1. Buigues C., Fernández-Garrido J., Pruimboom L., Hoogland A.J., Navarro-Martínez R., Martínez-Martínez M., Verdejo Y., Mascarós M.C., Peris C., Cauli O. Effect of a Prebiotic Formulation on Frailty Syndrome: A Randomized, Double-Blind Clinical Trial. Int. J. Mol. Sci. 2016;17 doi: 10.3390/ijms17060932.
    1. Ma N., Tian Y., Wu Y., Ma X. Contributions of the Interaction between Dietary Protein and Gut Microbiota to Intestinal Health. Curr. Protein Pept. Sci. 2017;18 doi: 10.2174/1389203718666170216153505.
    1. Beaumont M., Portune K.J., Steuer N., Lan A., Cerrudo V., Audebert M., Dumont F., Mancano G., Khodorova N., Andriamihaja M., et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: A randomized, parallel, double-blind trial in overweight humans. Am. J. Clin. Nutr. 2017;106:1005–1019. doi: 10.3945/ajcn.117.158816.
    1. Bindels L.B., Delzenne N.M. Muscle wasting: The gut microbiota as a new therapeutic target? Int. J. Biochem. Cell Biol. 2013;45:2186–2190. doi: 10.1016/j.biocel.2013.06.021.
    1. Butteiger D.N., Hibberd A.A., Mcgraw N.J., Napawan N., Hall-porter J.M., Krul E.S. Soy Protein Compared with Milk Protein in a Western Diet Increases Gut Microbial Diversity and Reduces Serum Lipids in Golden Syrian Hamsters. J. Nutr. 2016;146:697–705. doi: 10.3945/jn.115.224196.
    1. An C., Kuda T., Yazaki T., Takahashi H., Kimura B. Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Appl. Microbiol. Biotechnol. 2014;98:2779–2787. doi: 10.1007/s00253-013-5271-5.
    1. Li Q., Lauber C.L., Czarnecki-Maulden G., Pan Y., Hannah S.S. Effects of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions. MBio. 2017;8:1–14. doi: 10.1128/mBio.01703-16.
    1. Singh R.K., Chang H.W., Yan D., Lee K.M., Ucmak D., Wong K., Abrouk M., Farahnik B., Nakamura M., Zhu T.H., et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017;15:1–17. doi: 10.1186/s12967-017-1175-y.
    1. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820.
    1. Cotillard A., Kennedy S.P., Kong L.C., Prifti E., Pons N., Le Chatelier E., Almeida M., Quinquis B., Levenez F., Galleron N., et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–588. doi: 10.1038/nature12480.
    1. Flint H.J., Duncan S.H., Scott K.P., Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 2015;74:13–22. doi: 10.1017/S0029665114001463.
    1. De Filippis F., Pellegrini N., Vannini L., Jeffery I.B., La Storia A., Laghi L., Serrazanetti D.I., Di Cagno R., Ferrocino I., Lazzi C., et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65:1812–1821. doi: 10.1136/gutjnl-2015-309957.
    1. Krezalek M.A., Yeh A., Alverdy J.C., Morowitz M. Influence of nutrition therapy on the intestinal microbiome. Curr. Opin. Clin. Nutr. Metab. Care. 2017;20:131–137. doi: 10.1097/MCO.0000000000000348.
    1. Bear D.E., Wandrag L., Merriweather J.L., Connolly B., Hart N., Grocott M.P.W. The role of nutritional support in the physical and functional recovery of critically ill patients: A narrative review. Crit. Care. 2017;21 doi: 10.1186/s13054-017-1810-2.
    1. Ferrie S., Allman-Farinelli M., Daley M., Smith K. Protein Requirements in the Critically Ill: A Randomized Controlled Trial Using Parenteral Nutrition. J. Parenter. Enter. Nutr. 2016;40:795–805. doi: 10.1177/0148607115618449.
    1. Thevaranjan N., Puchta A., Schulz C., Naidoo A., Szamosi J.C., Verschoor C.P., Loukov D., Schenck L.P., Jury J., Foley K.P., et al. Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction. Cell Host Microbe. 2017;21:455–466. doi: 10.1016/j.chom.2017.03.002.
    1. Lamprecht M., Bogner S., Schippinger G., Steinbauer K., Fankhauser F., Hallstroem S., Schuetz B., Greilberger J.F. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2012;9:45. doi: 10.1186/1550-2783-9-45.
    1. Rampelli S., Candela M., Turroni S., Biagi E., Collino S., Franceschi C., O’Toole P.W., Brigidi P. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging. 2013;5:902–912. doi: 10.18632/aging.100623.
    1. Maathuis A., Keller D., Farmer S. Survival and metabolic activity of the GanedenBC30 strain of Bacillus coagulans in a dynamic in vitro model of the stomach and small intestine. Benef. Microbes. 2010;1:31–36. doi: 10.3920/BM2009.0009.
    1. Jäger R., Purpura M., Farmer S., Cash H.A., Keller D. Probiotic Bacillus coagulans GBI-30, 6086 Improves Protein Absorption and Utilization. Probiotics Antimicrob. Proteins. 2017 doi: 10.1007/s12602-017-9354-y.
    1. Sonnenburg J.L., Bäckhed F. Diet–microbiota interactions as moderators of human metabolism. Nature. 2016;535:56–64. doi: 10.1038/nature18846.
    1. Van Tongeren S.P., Slaets J.P.J., Harmsen H.J.M., Welling G.W. Fecal microbiota composition and frailty. Appl. Environ. Microbiol. 2005;71:6438–6442. doi: 10.1128/AEM.71.10.6438-6442.2005.
    1. Peng L., Li Z.-R., Green R.S., Holzman I.R., Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 2009;139:1619–1625. doi: 10.3945/jn.109.104638.
    1. Macfarlane S., Cleary S., Bahrami B., Reynolds N., Macfarlane G.T. Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: A randomised, double-blind, placebo-controlled crossover study. Aliment. Pharmacol. Ther. 2013;38:804–816. doi: 10.1111/apt.12453.
    1. Ko F., Abadir P., Marx R., Westbrook R., Cooke C., Yang H., Walston J. Impaired mitochondrial degradation by autophagy in the skeletal muscle of the aged female interleukin 10 null mouse. Exp. Gerontol. 2016;73:23–27. doi: 10.1016/j.exger.2015.11.010.
    1. Marzetti E., Calvani R., Lorenzi M., Tanganelli F., Picca A., Bossola M., Menghi A., Bernabei R., Landi F. Association between myocyte quality control signaling and sarcopenia in old hip-fractured patients: Results from the Sarcopenia in HIp FracTure (SHIFT) exploratory study. Exp. Gerontol. 2016;80:1–5. doi: 10.1016/j.exger.2016.04.003.
    1. Marzetti E., Lorenzi M., Landi F., Picca A., Rosa F., Tanganelli F., Galli M., Doglietto G.B., Pacelli F., Cesari M., et al. Altered mitochondrial quality control signaling in muscle of old gastric cancer patients with cachexia. Exp. Gerontol. 2017;87:92–99. doi: 10.1016/j.exger.2016.10.003.
    1. Stevens J., Metcalf P.A., Dennis B.H., Tell G.S., Shimakawa T., Folsom A.R. Reliability of a food frequency questionnaire by ethnicity, gender, age and education. Nutr. Res. 1996;16:735–745. doi: 10.1016/0271-5317(96)00064-4.
    1. Deutz N.E.P., Pereira S.L., Hays N.P., Oliver J.S., Edens N.K., Evans C.M., Wolfe R.R. Effect of β-hydroxy-β-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin. Nutr. 2013;32:704–712. doi: 10.1016/j.clnu.2013.02.011.
    1. Zierer J., Jackson M.A., Kastenmüller G., Mangino M., Long T., Telenti A., Mohney R.P., Small K.S., Bell J.T., Steves C.J., et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 2018;50:790–795. doi: 10.1038/s41588-018-0135-7.
    1. Van de Rest O., Schutte B.A.M., Deelen J., Stassen S.A.M., van den Akker E.B., van Heemst D., Dibbets-Schneider P., van Dipten-van der Veen R.A., Kelderman M., Hankemeier T., et al. Metabolic effects of a 13-weeks lifestyle intervention in older adults: The Growing Old Together Study. Aging. 2016;8:111–126. doi: 10.18632/aging.100877.
    1. Marzetti E., Calvani R., Landi F., Hoogendijk E.O., Fougère B., Vellas B., Pahor M., Bernabei R., Cesari M. SPRINTT Consortium, on behalf of the S. Innovative Medicines Initiative: The SPRINTT Project. J. Frailty Aging. 2015;4:207–208.
    1. Dhurandhar N.V., Schoeller D., Brown A.W., Heymsfield S.B., Thomas D., Sorensen T.I.A., Speakman J.R., Jeansonne M., Allison D.B. Energy Balance Measurement: When Something is Not Better than Nothing. Int. J. Obes. 2015;39:1109–1113. doi: 10.1038/ijo.2014.199.
    1. Garcia-Perez I., Posma J.M., Gibson R., Chambers E.S., Hansen T.H., Vestergaard H., Hansen T., Beckmann M., Pedersen O., Elliott P., et al. Objective assessment of dietary patterns by use of metabolic phenotyping: A randomised, controlled, crossover trial. Lancet Diabetes Endocrinol. 2017;5:184–195. doi: 10.1016/S2213-8587(16)30419-3.

Source: PubMed

3
Subscribe