Spinal manipulative therapy, Graston technique® and placebo for non-specific thoracic spine pain: a randomised controlled trial

Amy L Crothers, Simon D French, Jeff J Hebert, Bruce F Walker, Amy L Crothers, Simon D French, Jeff J Hebert, Bruce F Walker

Abstract

Background: Few controlled trials have assessed the efficacy of spinal manipulative therapy (SMT) for thoracic spine pain. No high quality trials have been performed to test the efficacy and effectiveness of Graston Technique® (GT), an instrument-assisted soft tissue therapy. The objective of this trial was to determine the efficacy of SMT and GT compared to sham therapy for the treatment of non-specific thoracic spine pain.

Methods: People with non-specific thoracic pain were randomly allocated to one of three groups: SMT, GT, or a placebo (de-tuned ultrasound). Each participant received up to 10 supervised treatment sessions at Murdoch University chiropractic student clinic over a 4 week period. The participants and treatment providers were not blinded to the treatment allocation as it was clear which therapy they were receiving, however outcome assessors were blinded and we attempted to blind the participants allocated to the placebo group. Treatment outcomes were measured at baseline, 1 week, and at one, three, six and 12 months. Primary outcome measures included a modified Oswestry Disability Index, and the Visual Analogue Scale (VAS). Treatment effects were estimated with intention to treat analysis and linear mixed models.

Results: One hundred and forty three participants were randomly allocated to the three groups (SMT = 36, GT = 63 and Placebo = 44). Baseline data for the three groups did not show any meaningful differences. Results of the intention to treat analyses revealed no time by group interactions, indicating no statistically significant between-group differences in pain or disability at 1 week, 1 month, 3 months, 6 months, or 12 months. There were significant main effects of time (p < 0.01) indicating improvements in pain and disability from baseline among all participants regardless of intervention. No significant adverse events were reported.

Conclusion: This study indicates that there is no difference in outcome at any time point for pain or disability when comparing SMT, Graston Technique® or sham therapy for thoracic spine pain, however all groups improved with time. These results constitute the first from a fully powered randomised controlled trial comparing SMT, Graston technique® and a placebo.

Trial registration: This trial was registered with the Australia and New Zealand Clinical Trials Registry on the 7(th) February, 2008.

Trial number: ACTRN12608000070336.

Keywords: Back pain; Chiropractic; Graston Technique®; Spinal manipulation; Thoracic spine.

Figures

Fig. 1
Fig. 1
Shaded area defining the region of the thoracic spine where pain could be experienced for inclusion into the trial
Fig. 2
Fig. 2
Flow chart of participants
Fig. 3
Fig. 3
Mean group visual analogue scale pain scores over time with 95 % confidence intervals
Fig. 4
Fig. 4
Mean group Oswestry disability scores over time with 95 % confidence intervals

References

    1. Briggs AM, Bragge P, Smith AJ, Govil D, Straker LM. Prevalence and associated factors for thoracic spine pain in the adult working population: a literature review. J Occup Health. 2009;51(3):177–192. doi: 10.1539/joh.K8007.
    1. Hegmann K. Cervical and thoracic spine disorders. In: Hegman KT, editor. Occupational medicine practice guidelines Evaluation and management of common health problems and functional recovery in workers. 3. Elk Grove Village, Illinois, USA: American College of Occupational and Environmental Medicine (ACOEM); 2011. pp. 1–332.
    1. Schiller L. Effectiveness of spinal manipulative therapy in the treatment of mechanical thoracic spine pain: a pilot randomized clinical trial. J Manip Physiol Ther. 2001;24(6):394–401. doi: 10.1067/mmt.2001.116420.
    1. Lehtola V, Korhonen I, Airaksinen O. A randomised, placebo-controlled, clinical trial for the short-term effectiveness of manipulative therapy and acupuncture on pain caused by mechanical thoracic spine dysfunction. Int Musculoskelet Med. 2010;32:25–32. doi: 10.1179/175361410X12652805807558.
    1. Southerst D, Marchand AA, Cote P, Shearer HM, Wong JJ, Varatharajan S, Randhawa K, Sutton D, Yu H, Gross DP, et al. The effectiveness of noninvasive interventions for musculoskeletal thoracic spine and chest wall pain: a systematic review by the Ontario Protocol for Traffic Injury Management (OPTIMa) collaboration. J Manip Physiol Ther. 2015;38(7):521–531. doi: 10.1016/j.jmpt.2015.06.001.
    1. Stochkendahl MJ, Christensen HW, Vach W, Hoilund-Carlsen PF, Haghfelt T, Hartvigsen J. A randomized clinical trial of chiropractic treatment and self-management in patients with acute musculoskeletal chest pain: 1-year follow-up. J Manip Physiol Ther. 2012;35(4):254–262. doi: 10.1016/j.jmpt.2012.04.003.
    1. Gross A, Langevin P, Burnie SJ, Bedard-Brochu MS, Empey B, Dugas E, Faber-Dobrescu M, Andres C, Graham N, Goldsmith CH, et al. Manipulation and mobilisation for neck pain contrasted against an inactive control or another active treatment. Cochrane Database Syst Rev. 2015;9:Cd004249.
    1. Rubinstein SM, van Middelkoop M, Assendelft WJ, de Boer MR, van Tulder MW. Spinal manipulative therapy for chronic low-back pain: an update of a Cochrane review. Spine. 2011;36(13):E825–846. doi: 10.1097/BRS.0b013e3182197fe1.
    1. Walker BF, French SD, Grant W, Green S. A cochrane review of combined chiropractic interventions for low-back pain. Spine. 2011;36(3):230–242. doi: 10.1097/BRS.0b013e318202ac73.
    1. Graston Technique []. Accessed 18 Apr 2014.
    1. Hurwitz EL. Epidemiology: spinal manipulation utilization. J Electromyogr Kinesiol. 2012;22(5):648–654. doi: 10.1016/j.jelekin.2012.01.006.
    1. Portillo-Soto A, Eberman LE, Demchak TJ, Peebles C. Comparison of blood flow changes with soft tissue mobilization and massage therapy. J Altern Complement Med. 2014;20(12):932–936. doi: 10.1089/acm.2014.0160.
    1. Laudner K, Compton BD, McLoda TA, Walters CM. Acute effects of instrument assisted soft tissue mobilization for improving posterior shoulder range of motion in collegiate baseball players. Int J Sports Phys Ther. 2014;9(1):1–7.
    1. Crothers A, Walker B, French SD. Spinal manipulative therapy versus Graston Technique in the treatment of non-specific thoracic spine pain: design of a randomised controlled trial. Chiropr Osteopat. 2008;16:12. doi: 10.1186/1746-1340-16-12.
    1. Triano JJ, Hondras MA, McGregor M. Differences in treatment history with manipulation for acute, subacute, chronic and recurrent spine pain. J Manip Physiol Ther. 1992;15(1):24–30.
    1. Kelly AM. The minimum clinically significant difference in visual analogue scale pain score does not differ with severity of pain. Emerg Med J. 2001;18(3):205–207. doi: 10.1136/emj.18.3.205.
    1. Ostelo RW, de Vet HC. Clinically important outcomes in low back pain. Best Pract Res Clin Rheumatol. 2005;19(4):593–607. doi: 10.1016/j.berh.2005.03.003.
    1. Research Randomizer []. Accessed 18 Apr 2014.
    1. Hoiriis KT, Pfleger B, McDuffie FC, Cotsonis G, Elsangak O, Hinson R, Verzosa GT. A randomized clinical trial comparing chiropractic adjustments to muscle relaxants for subacute low back pain. J Manip Physiol Ther. 2004;27(6):388–398. doi: 10.1016/j.jmpt.2004.05.003.
    1. Fairbank JC, Couper J, Davies JB, O’Brien JP. The Oswestry low back pain disability questionnaire. Physiotherapy. 1980;66(8):271–273.
    1. Whitman JM, Fritz JM, Childs JD. The influence of experience and specialty certifications on clinical outcomes for patients with low back pain treated within a standardized physical therapy management program. J Orthop Sports Phys Ther. 2004;34(11):662–672. doi: 10.2519/jospt.2004.34.11.662.
    1. Efird J. Blocked randomization with randomly selected block sizes. Int J Environ Res Public Health. 2011;8(1):15–20. doi: 10.3390/ijerph8010015.

Source: PubMed

3
Subscribe