Cardiovascular magnetic resonance accurately detects obstructive coronary artery disease in suspected non-ST elevation myocardial infarction: a sub-analysis of the CARMENTA Trial

Yvonne J M van Cauteren, Martijn W Smulders, Ralph A L J Theunissen, Suzanne C Gerretsen, Bouke P Adriaans, Geertruida P Bijvoet, Alma M A Mingels, Sander M J van Kuijk, Simon Schalla, Harry J G M Crijns, Raymond J Kim, Joachim E Wildberger, Jordi Heijman, Sebastiaan C A M Bekkers, Yvonne J M van Cauteren, Martijn W Smulders, Ralph A L J Theunissen, Suzanne C Gerretsen, Bouke P Adriaans, Geertruida P Bijvoet, Alma M A Mingels, Sander M J van Kuijk, Simon Schalla, Harry J G M Crijns, Raymond J Kim, Joachim E Wildberger, Jordi Heijman, Sebastiaan C A M Bekkers

Abstract

Background: Invasive coronary angiography (ICA) is still the reference test in suspected non-ST elevation myocardial infarction (NSTEMI), although a substantial number of patients do not have obstructive coronary artery disease (CAD). Early cardiovascular magnetic resonance (CMR) may be a useful gatekeeper for ICA in this setting. The main objective was to investigate the accuracy of CMR to detect obstructive CAD in NSTEMI.

Methods: This study is a sub-analysis of a randomized controlled trial investigating whether a non-invasive imaging-first strategy safely reduced the number of ICA compared to routine clinical care in suspected NSTEMI (acute chest pain, non-diagnostic electrocardiogram, high sensitivity troponin T > 14 ng/L), and included 51 patients who underwent CMR prior to ICA. A stepwise approach was used to assess the diagnostic accuracy of CMR to detect (1) obstructive CAD (diameter stenosis ≥ 70% by ICA) and (2) an adjudicated final diagnosis of acute coronary syndrome (ACS). First, in all patients the combination of cine, T2-weighted and late gadolinium enhancement (LGE) imaging was evaluated for the presence of abnormalities consistent with a coronary etiology in any sequence. Hereafter and only when the scan was normal or equivocal, adenosine stress-perfusion CMR was added.

Results: Of 51 patients included (63 ± 10 years, 51% male), 34 (67%) had obstructive CAD by ICA. The sensitivity, specificity and overall accuracy of the first step to diagnose obstructive CAD were 79%, 71% and 77%, respectively. Additional vasodilator stress-perfusion CMR was performed in 19 patients and combined with step one resulted in an overall sensitivity of 97%, specificity of 65% and accuracy of 86%. Of the remaining 17 patients with non-obstructive CAD, 4 (24%) had evidence for a myocardial infarction on LGE, explaining the modest specificity. The sensitivity, specificity and overall accuracy to diagnose ACS (n = 43) were 88%, 88% and 88%, respectively.

Conclusion: CMR accurately detects obstructive CAD and ACS in suspected NSTEMI. Non-obstructive CAD is common with CMR still identifying an infarction in almost one-quarter of patients. CMR should be considered as an early diagnostic approach in suspected NSTEMI.

Trial registration: The CARMENTA trial has been registered at ClinicalTrials.gov with identifier NCT01559467.

Keywords: Acute coronary syndrome; Cardiovascular magnetic resonance; Coronary angiography; Coronary artery disease; Diagnostic accuracy; High-sensitivity cardiac troponin; Non-ST elevation myocardial infarction.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Patient flowchart. A stepwise analysis was used to investigate the diagnostic accuracy of cardiovascular magnetic resonance (CMR) to detect CAD (≥ 70% stenosis in any epicardial coronary artery). Green boxes: correct positive or negative results; orange boxes: false-positive or -negative results. Abbreviations: CAD coronary artery disease; LGE late gadolinium enhancement; ICA invasive coronary angiography; NSTEMI non-ST elevation myocardial infarction
Fig. 2
Fig. 2
Patient example. Upper row: basal-inferior-inferoseptal edema on T2-weighted short axis left ventricular image (a arrowheads), 50–75% transmural basal-inferior-inferoseptal myocardial infarction with microvascular obstruction (b arrowheads). Lower row: total occlusion of the mid right coronary artery (c arrowhead), 71–90% mid left anterior descending artery stenosis (d arrowhead) with collaterals to right coronary artery (d asterisk)
Fig. 3
Fig. 3
Patient example. a: adenosine stress-perfusion scan showing 50% transmural mid-anterior-anteroseptal perfusion defect (arrowheads). b: > 90% stenosis in the mid left anterior descending artery (arrowhead)
Fig. 4
Fig. 4
Patient example. a: limited subendocardial mid-inferior myocardial infarction (arrowhead). b: normal coronary angiogram, only right coronary artery shown
Fig. 5
Fig. 5
Graphical abstract. Panel a: stepwise CMR analysis, step 2 only performed in patients with normal or equivocal findings after step 1. Panel b: diagnostic accuracy of CMR to detect obstructive CAD (≥ 70% stenosis in any epicardial coronary artery) and acute coronary syndrome (ACS). Panel c: adjudicated diagnosis by independent committee, based on clinical data, CMR and invasive coronary angiography. Abbreviations: CAD coronary artery disease; CMR cardiovascular magnetic resonance imaging; NSTEMI non-ST elevation myocardial infarction

References

    1. Collet JP, Thiele H, Barbato E, Barthelemy O, Bauersachs J, Bhatt DL, et al. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2020 doi: 10.1093/eurheartj/ehaa575.
    1. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886–895. doi: 10.1056/NEJMoa0907272.
    1. Heitner JF, Senthilkumar A, Harrison JK, Klem I, Sketch MH, Jr, Ivanov A, et al. Identifying the infarct-related artery in patients with non-ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv. 2019;12(5):e007305. doi: 10.1161/CIRCINTERVENTIONS.118.007305.
    1. Nestelberger T, Wildi K, Boeddinghaus J, Twerenbold R, Reichlin T, Gimenez MR, et al. Characterization of the observe zone of the ESC 2015 high-sensitivity cardiac troponin 0h/1h-algorithm for the early diagnosis of acute myocardial infarction. Int J Cardiol. 2016;207:238–245. doi: 10.1016/j.ijcard.2016.01.112.
    1. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J. 2005;26(15):1461–1474. doi: 10.1093/eurheartj/ehi258.
    1. Kim HW, Farzaneh-Far A, Kim RJ. Cardiovascular magnetic resonance in patients with myocardial infarction: current and emerging applications. J Am Coll Cardiol. 2009;55(1):1–16. doi: 10.1016/j.jacc.2009.06.059.
    1. Buckert D, Witzel S, Steinacker JM, Rottbauer W, Bernhardt P. Comparing cardiac magnetic resonance-guided versus angiography-guided treatment of patients with stable coronary artery disease: results from a prospective randomized controlled trial. JACC Cardiovasc Imaging. 2018;11(7):987–996. doi: 10.1016/j.jcmg.2018.05.007.
    1. Greenwood JP, Ripley DP, Berry C, McCann GP, Plein S, Bucciarelli-Ducci C, et al. Effect of care guided by cardiovascular magnetic resonance, myocardial perfusion scintigraphy, or NICE guidelines on subsequent unnecessary angiography rates: the CE-MARC 2 randomized clinical trial. JAMA. 2016;316(10):1051–1060. doi: 10.1001/jama.2016.12680.
    1. Smulders MW, Kietselaer B, Wildberger JE, Dagnelie PC, Brunner-La Rocca HP, Mingels AMA, et al. Initial imaging-guided strategy versus routine care in patients with non-ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2019;74(20):2466–2477. doi: 10.1016/j.jacc.2019.09.027.
    1. Smulders MW, Kietselaer BL, Das M, Wildberger JE, Crijns HJ, Veenstra LF, et al. The role of cardiovascular magnetic resonance imaging and computed tomography angiography in suspected non-ST-elevation myocardial infarction patieJ Cardiovasc Magn Resonnts: design and rationale of the CARdiovascular Magnetic rEsoNance imaging and computed Tomography Angiography (CARMENTA) trial. Am Heart J. 2013;166(6):968–975. doi: 10.1016/j.ahj.2013.09.012.
    1. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson. 2013;15:35. doi: 10.1186/1532-429X-15-35.
    1. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Eur Heart J. 2012;33(20):2551–2567. doi: 10.1093/eurheartj/ehs184.
    1. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018) Eur Heart J. 2019;40(3):237–269. doi: 10.1093/eurheartj/ehy462.
    1. Melki D, Lugnegard J, Alfredsson J, Lind S, Eggers KM, Lindahl B, et al. Implications of introducing high-sensitivity cardiac troponin T into clinical practice: data from the SWEDEHEART Registry. J Am Coll Cardiol. 2015;65(16):1655–1664. doi: 10.1016/j.jacc.2015.02.044.
    1. Patel MR, Chen AY, Peterson ED, Newby LK, Pollack CV, Jr, Brindis RG, et al. Prevalence, predictors, and outcomes of patients with non-ST-segment elevation myocardial infarction and insignificant coronary artery disease: results from the Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA Guidelines (CRUSADE) initiative. Am Heart J. 2006;152(4):641–647. doi: 10.1016/j.ahj.2006.02.035.
    1. Ferencik M, Liu T, Mayrhofer T, Puchner SB, Lu MT, Maurovich-Horvat P, et al. hs-Troponin I followed by CT angiography improves acute coronary syndrome risk stratification accuracy and work-up in acute chest pain patients: results from ROMICAT II Trial. JACC Cardiovasc Imaging. 2015;8(11):1272–1281. doi: 10.1016/j.jcmg.2015.06.016.
    1. Sanchis J, Garcia-Blas S, Mainar L, Mollar A, Abellan L, Ventura S, et al. High-sensitivity versus conventional troponin for management and prognosis assessment of patients with acute chest pain. Heart. 2014;100(20):1591–1596. doi: 10.1136/heartjnl-2013-305440.
    1. Dedic A, Lubbers MM, Schaap J, Lammers J, Lamfers EJ, Rensing BJ, et al. Coronary CT angiography for suspected ACS in the era of high-sensitivity troponins: randomized multicenter study. J Am Coll Cardiol. 2016;67(1):16–26. doi: 10.1016/j.jacc.2015.10.045.
    1. Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59(19):1719–1728. doi: 10.1016/j.jacc.2011.12.040.
    1. Smulders MW, Bekkers SC, Kim HW, Van Assche LM, Parker MA, Kim RJ. Performance of CMR methods for differentiating acute from chronic MI. JACC Cardiovasc Imaging. 2015;8(6):669–679. doi: 10.1016/j.jcmg.2014.12.030.
    1. Pasupathy S, Air T, Dreyer RP, Tavella R, Beltrame JF. Systematic review of patients presenting with suspected myocardial infarction and nonobstructive coronary arteries. Circulation. 2015;131(10):861–870. doi: 10.1161/CIRCULATIONAHA.114.011201.
    1. Cury RC, Shash K, Nagurney JT, Rosito G, Shapiro MD, Nomura CH, et al. Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation. 2008;118(8):837–844. doi: 10.1161/CIRCULATIONAHA.107.740597.
    1. Heitner JF, Klem I, Rasheed D, Chandra A, Kim HW, Van Assche LM, et al. Stress cardiac MR imaging compared with stress echocardiography in the early evaluation of patients who present to the emergency department with intermediate-risk chest pain. Radiology. 2014;271(1):56–64. doi: 10.1148/radiol.13130557.
    1. Ingkanisorn WP, Kwong RY, Bohme NS, Geller NL, Rhoads KL, Dyke CK, et al. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol. 2006;47(7):1427–1432. doi: 10.1016/j.jacc.2005.11.059.
    1. Kwong RY, Schussheim AE, Rekhraj S, Aletras AH, Geller N, Davis J, et al. Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation. 2003;107(4):531–537. doi: 10.1161/01.CIR.0000047527.11221.29.
    1. Chiu CW, So NM, Lam WW, Chan KY, Sanderson JE. Combined first-pass perfusion and viability study at MR imaging in patients with non-ST segment-elevation acute coronary syndromes: feasibility study. Radiology. 2003;226(3):717–722. doi: 10.1148/radiol.2263011902.
    1. Layland J, Oldroyd KG, Curzen N, Sood A, Balachandran K, Das R, et al. Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: the British Heart Foundation FAMOUS-NSTEMI randomized trial. Eur Heart J. 2015;36(2):100–11. doi: 10.1093/eurheartj/ehu338.
    1. Plein S, Greenwood JP, Ridgway JP, Cranny G, Ball SG, Sivananthan MU. Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol. 2004;44(11):2173–2181. doi: 10.1016/j.jacc.2004.08.056.
    1. Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI) J Cardiovasc Magn Reson. 2017;19(1):75. doi: 10.1186/s12968-017-0389-8.
    1. Danad I, Szymonifka J, Twisk JWR, Norgaard BL, Zarins CK, Knaapen P, et al. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. Eur Heart J. 2017;38(13):991–998.

Source: PubMed

3
Subscribe