Intra-Parenchymal Renal Resistive Index Variation (IRRIV) Describes Renal Functional Reserve (RFR): Pilot Study in Healthy Volunteers

Sara Samoni, Federico Nalesso, Mario Meola, Gianluca Villa, Massimo De Cal, Silvia De Rosa, Ilaria Petrucci, Alessandra Brendolan, Mitchell H Rosner, Claudio Ronco, Sara Samoni, Federico Nalesso, Mario Meola, Gianluca Villa, Massimo De Cal, Silvia De Rosa, Ilaria Petrucci, Alessandra Brendolan, Mitchell H Rosner, Claudio Ronco

Abstract

An increase of glomerular filtration rate after protein load represents renal functional reserve (RFR) and is due to afferent arteriolar vasodilation. Lack of RFR may be a risk factor for acute kidney injury (AKI), but is cumbersome to measure. We sought to develop a non-invasive, bedside method that would indirectly measure RFR. Mechanical abdominal pressure, through compression of renal vessels, decreases blood flow and activates the auto-regulatory mechanism which can be measured by a fall in renal resistive index (RRI). The study aims at elucidating the relationship between intra-parenchymal renal resistive index variation (IRRIV) during abdominal pressure and RFR. In healthy volunteers, pressure was applied by a weight on the abdomen (fluid-bag 10% of subject's body weight) while RFR was measured through a protein loading test. We recorded RRI in an interlobular artery after application of pressure using ultrasound. The maximum percentage reduction of RRI from baseline was compared in the same subject to RFR. We enrolled 14 male and 16 female subjects (mean age 38 ± 14 years). Mean creatinine clearance was 106.2 ± 16.4 ml/min/1.73 m(2). RFR ranged between -1.9 and 59.7 with a mean value of 28.9 ± 13.1 ml/min/1.73 m(2). Mean baseline RRI was 0.61 ± 0.05, compared to 0.49 ± 0.06 during abdominal pressure; IRRIV was 19.6 ± 6.7%, ranging between 3.1% and 29.2%. Pearson's coefficient between RFR and IRRIV was 74.16% (p < 0.001). Our data show the correlation between IRRIV and RFR. Our results can lead to the development of a "stress test" for a rapid screen of RFR to establish renal susceptibility to different exposures and the consequent risk for AKI.

Keywords: color doppler; healthy volunteers; intra-parenchymal renal resistive index variation (IRRIV); protein loading test; renal blood flow; renal functional reserve (RFR); renal hemodynamics; renal resistive index (RRI).

Figures

Figure 1
Figure 1
Scatter plot of renal functional reserve and intra-parenchymal renal resistive index variation (IRRIV). IRRIV, is the difference between baseline renal resistive index (RRI) and stress RRI, expressed as percentage.

References

    1. Addis T., Drury D. (1923). The rate of urea excretion: vii. The effect of various other factors than blood urea concentration on the rate of urea excretion. J. Biol. Chem. 55, 629–638.
    1. Barnes G., Laine G., Giam P., Smith E., Granger H. (1985). Cardiovascular responses to elevation of intra-abdominal hydrostatic pressure. Am. J. Physiol. 248, R208–R213.
    1. Böhler J., Glöer D., Keller E., Pj S. (1993). Renal functional reserve in elderly patients. Clin. Nephrol. 39, 145–150.
    1. Bosch J., Lauer A., Glabman S. (1984). Short-term protein loading in assessment of patients with renal disease. Am. J. Med. 77, 873–879. 10.1016/0002-9343(84)90529-1
    1. Bosch J., Saccaggi A., Lauer A., Ronco C., Belledonne M., Glabman S. (1983). Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am. J. Med. 75, 943–950. 10.1016/0002-9343(83)90873-2
    1. Bradley S. E., Bradley G. P. (1947). The effect of increased intra-abdominal pressure on renal function in man. J. Clin. Invest. 26, 1010–1022. 10.1172/JCI101867
    1. Chan A. Y. M., Cheng M. L., Keii L. C., Myers B. D. (1988). Functional response of healthy and diseased glomeruli to a large, protein-rich meal. J. Clin. Invest. 81, 245–254. 10.1172/JCI113302
    1. Dalfino L., Tullo L., Donadio I., Malcangi V., Brienza N. (2008). Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med. 34, 707–713. 10.1007/s00134-007-0969-4
    1. Harman P. K., Kron I. L., McLachlan H. D., Freedlender A. E., Nolan S. P. (1982). Elevated intra-abdominal pressure and renal function. Ann. Surg. 196, 594–597. 10.1097/00000658-198211000-00015
    1. Hayashi K., Epstein M., Loutzenhiser F., Forster H. (1992). Impaired myogenic responsiveness of the afferent arteriole in streptozocin-induced diabetic rats: role of eicosanoid derangements. J. Am. Soc. Nephrol. 2, 1578–1586.
    1. Hayashi K., Epstein M., Loutzenhiser R. (1989). Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney. Circ. Res. 65, 1475–1484. 10.1161/01.RES.65.6.1475
    1. Hostetter T. (1986). Human renal response to meat meal. Am. J. Physiol. 250, F613–F618.
    1. Husain-Syed F., McCullough P. A., Birk H.-W., Renker M., Brocca A., Seeger W., et al. . (2015). Cardio-pulmonary-renal interactions: a multidisciplinary approach. J. Am. Coll. Cardiol. 65, 2433–2448. 10.1016/j.jacc.2015.04.024
    1. Just A. (2007). Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1–R17. 10.1152/ajpregu.00332.2006
    1. Just A., Ehmke H., Toktomambetova L., Kirchheim H. R. (2001). Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog. Am. J. Physiol. Ren. Physiol. 280, F1062–F1071.
    1. Kellum J. A., Lameire N., Aspelin P., Barsoum R. S., Burdmann E. A., Goldstein S. L., et al. (2012). KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 1–138. 10.1038/kisup.2012.7
    1. Krumme B., Blum U., Schwertfeger E., Flügel P., Höllstin F., Schollmeyer P., et al. . (1996). Diagnosis of renovascular disease by intra- and extrarenal Doppler scanning. Kidney Int. 50, 1288–1292. 10.1038/ki.1996.440
    1. Loutzenhiser R., Griffin K., Williamson G., Bidani A. (2006). Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1153–R1167. 10.1152/ajpregu.00402.2005
    1. Mancia G., Fagard R., Narkiewicz K., Redon J., Zanchetti A., Böhm M., et al. . (2013). 2013 ESH/ESC Guidelines for the management of arterial hypertension. Eur. Heart J. 34, 2159–2219. 10.1093/eurheartj/eht151
    1. Mishra J., Dent C., Tarabishi R., Mitsnefes M. M., Kelly C., Ruff S. M., et al. . (2005). Articles Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365, 1231–1238. 10.1016/S0140-6736(05)74811-X
    1. Mohmand H., Goldfarb S. (2011). Renal dysfunction associated with intra-abdominal hypertension and the abdominal compartment syndrome. J. Am. Soc. Nephrol. 22, 615–621. 10.1681/ASN.2010121222
    1. Navar L., Bell P., Burke T. (1982). Role of a macula densa feedback mechanism as a mediator of renal autoregulation. Kidney Int. Suppl. 12, S157–S164.
    1. Pelayo J., Westcott J. (1991). Impaired autoregulation of glomerular capillary hydrostatic pressure in the rat remnant nephron. J. Clin. Invest. 88, 101–105. 10.1172/JCI115264
    1. Ponte B., Pruijm M., Ackermann D., Vuistiner P., Eisenberger U., Guessous I., et al. . (2014). Reference values and factors associated with renal resistive index in a family-based population study. Hypertension 63, 136–142. 10.1161/HYPERTENSIONAHA.113.02321
    1. Robertson C., Deen W., Troy J., Brenner B. (1972). Dynamics of glomerular ultrafiltration in the rat. 3. Hemodynamics and autoregulation. Am. J. Physiol. 223, 1191–1200.
    1. Rodrìguez-Iturbe B., Herrera J., García R. (1988). Relationship between glomerular filtration rate and renal blood flow at different levels of protein-induced hyperfiltration in man. Clin. Sci. 74, 11–15. 10.1042/cs0740011
    1. Rodrìguez-Iturbe B., Herrera J., Garcìa R. (1985). Response to acute protein load in kidney donors and in apparently normal postacute glomerulonephritis patients: evidence for glomerular hyperfiltration. Lancet 2, 461–464. 10.1016/S0140-6736(85)90399-X
    1. Ronco C., Brendolan A., Bragantini L., Chiaramonte L., Fabris A., Feriani M., et al. . (1988). Renal functional reserve in pregnancy. Nephrol. Dial. Transpl. 3, 157–161.
    1. Sharma A., Mucino M. J., Ronco C. (2014). Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin. Pract. 127, 94–100. 10.1159/000363721
    1. Sharma A., Zaragoza J. J., Villa G., Ribeiro L. C., Lu R., Sartori M., et al. . (2016). Optimizing a kidney stress test to evaluate renal functional reserve. Clin. Nephrol. 86, 18–26. 10.5414/CN108497
    1. Sølling K., Christensen C., Sølling J., Christiansen J., Mogensen C. (1986). Effect on renal haemodynamics, glomerular filtration rate and albumin excretion of high oral protein load. Scand. J. Clin. Lab. Invest. 46, 351–357. 10.3109/00365518609083682
    1. Takenaka T., Forster H., De Micheli A., Epstein M. (1992). Impaired myogenic responsiveness of renal microvessels in Dahl salt- sensitive rats. Circ. Res. 71, 471–480. 10.1161/01.RES.71.2.471
    1. Ter Wee P., van Ballegooie E., Rosman J., Meijer S., Donker A. (1987). Renal reserve filtration capacity in patients with type I (insulin - dependent) diabetes mellitus. Nephrol. Dial. Transpl. 2, 504–509.
    1. Tublin M. E., Bude R. O., Platt J. F. (2003). The resistive index in renal doppler sonography: where do we stand? Am. J. Roentgenol. 180, 885–892. 10.2214/ajr.180.4.1800885
    1. Unal B., Bagcier S., Simsir I., Bilgili Y., Kara S. (2004). Evaluation of differences between observers and automatic-manual measurements in calculation of doppler parameters. J. Ultrasound Med. 23, 1041–1048.
    1. Vidal M., Ruiz Weisser J., Gonzalez F., Toro M., Loudet C., Balasini C., et al. . (2008). Incidence and clinical effects of intra-abdominal hypertension in critically ill patients. Crit. Care Med. 36, 1823–1831. 10.1097/CCM.0b013e31817c7a4d.Incidence
    1. Villa G., Samoni S., De Rosa S., Ronco C. (2016). The pathophysiological hypothesis of kidney damage during intra-abdominal hypertension. Front. Physiol. 7:55. 10.3389/fphys.2016.00055
    1. Walker M. I., Harrison-bernard L. M., Cook A. K., Navar L. G. (2000). Dynamic interaction between myogenic and TGF mechanisms in afferent arteriolar blood flow autoregulation. Am. J. Physiol. Ren. Physiol. 279, F858–F865.
    1. Zeier M., Schmid M., Nowack R., Zacharewics S., Hasslacher C., Ritz E., et al. . (1992). The response of GFR to amino acids differs between autosomal dominant polycystic kidney disease (ADPKD) and glomerular disease. Nephrol. Dial. Transpl. 7, 501–506.

Source: PubMed

3
Subscribe