Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury

Eridan Rocha-Ferreira, Mariya Hristova, Eridan Rocha-Ferreira, Mariya Hristova

Abstract

Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.

Figures

Figure 1
Figure 1
Schematic overview of hypoxia-ischaemia pathology. Disruption of blood and oxygen supply results in an initial increase in blood pressure and cerebral blood flow with redistribution favoring the brain, heart, and adrenal glands, as well as reduction in ATP due to limited glucose availability. This results in intracellular accumulation of calcium and cell membrane depolarisation and initial mostly necrotic cell death. During the latent/recovery phase there is normalization of homeostasis. However, if the initial insult is prolonged or severe, this may result within hours in a secondary delayed energy failure, due to disruption of mitochondria function as a result of excitotoxicity, inflammation, and continual uptake of intracellular calcium as well as release of oxygen reactive species. It is during the secondary energy failure that most cell death occurs, with predominant apoptosis. A tertiary phase may occur within days after initial injury and continues for months. This involves late cell death, astrogliosis, remodelling, and repair. Hypothermia, the only clinical treatment available for neonatal encephalopathy, targets the latent phase.
Figure 2
Figure 2
Schematic presentation of the relationship between the different types of cell death. Cell death could be controlled (physiological), including autophagy (caspase-independent) and apoptosis (caspase-dependent), or necrotic. The boundaries between apoptosis, necrosis, and autophagy are not always clear. Apoptotic death is mostly caspase-dependent; however apoptotic morphology can sometimes be registered without obvious caspase activation [136]. Caspase activation can occur through membrane receptor binding (extrinsic) or as a result of metabolic changes following mitochondrial depolarisation (intrinsic) and release of cytochrome C and APAF-1 (adapted from [136]).

References

    1. Kurinczuk J. J., White-Koning M., Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Human Development. 2010;86(6):329–338. doi: 10.1016/j.earlhumdev.2010.05.010.
    1. Lawn J. E., Cousens S., Zupan J. 4 Million neonatal deaths: when? Where? Why? The Lancet. 2005;365(9462):891–900. doi: 10.1016/s0140-6736(05)71048-5.
    1. Lawn J. E., Kerber K., Enweronu-Laryea C., Cousens S. 3.6 million neonatal deaths-what is progressing and what is not? Seminars in Perinatology. 2010;34(6):371–386. doi: 10.1053/j.semperi.2010.09.011.
    1. Sarnat H. B., Sarnat M. S. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Archives of Neurology. 1976;33(10):696–705. doi: 10.1001/archneur.1976.00500100030012.
    1. Sanders R. D., Manning H. J., Robertson N. J., et al. Preconditioning and postinsult therapies for perinatal hypoxic-ischemic injury at term. Anesthesiology. 2010;113(1):233–249. doi: 10.1097/aln.0b013e3181dc1b84.
    1. Vannucci R. C. Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatric Research. 1990;27(4, part 1):317–326. doi: 10.1203/00006450-199004000-00001.
    1. Jensen A., Berger R. Fetal circulatory responses to oxygen lack. Journal of Developmental Physiology. 1991;16(4):181–207.
    1. Gunn A. J., Parer J. T., Mallard E. C., Williams C. E., Gluckman P. D. Cerebral histologic and electrocorticographic changes after asphyxia in fetal sheep. Pediatric Research. 1992;31(5):486–491. doi: 10.1203/00006450-199205000-00016.
    1. Jensen A., Garnier Y., Berger R. Dynamics of fetal circulatory responses to hypoxia and asphyxia. European Journal of Obstetrics Gynecology and Reproductive Biology. 1999;84(2):155–172. doi: 10.1016/S0301-2115(98)00325-X.
    1. King T., Parer J. The physiology of fetal heart rate patterns and perinatal asphyxia. Journal of Perinatal and Neonatal Nursing. 2000;14(3):19–103. doi: 10.1097/00005237-200012000-00003.
    1. Hossmann K.-A. Viability thresholds and the penumbra of focal ischemia. Annals of Neurology. 1994;36(4):557–565. doi: 10.1002/ana.410360404.
    1. Locatelli A., Incerti M., Ghidini A., Greco M., Villa E., Paterlini G. Factors associated with umbilical artery acidemia in term infants with low Apgar scores at 5 min. European Journal of Obstetrics Gynecology and Reproductive Biology. 2008;139(2):146–150. doi: 10.1016/j.ejogrb.2008.01.003.
    1. Graham E. M., Ruis K. A., Hartman A. L., Northington F. J., Fox H. E. A systematic review of the role of intrapartum hypoxia-ischemia in the causation of neonatal encephalopathy. American Journal of Obstetrics & Gynecology. 2008;199(6):587–595. doi: 10.1016/j.ajog.2008.06.094.
    1. Jensen A., Garnier Y., Middelanis J., Berger R. Perinatal brain damage—from pathophysiology to prevention. European Journal of Obstetrics Gynecology and Reproductive Biology. 2003;110:S70–S79. doi: 10.1016/s0301-2115(03)00175-1.
    1. Hausmann R., Seidl S., Betz P. Hypoxic changes in Purkinje cells of the human cerebellum. International Journal of Legal Medicine. 2007;121(3):175–183. doi: 10.1007/s00414-006-0122-x.
    1. Brillault J., Lam T. I., Rutkowsky J. M., Foroutan S., O'Donnell M. E. Hypoxia effects on cell volume and ion uptake of cerebral microvascular endothelial cells. The American Journal of Physiology—Cell Physiology. 2008;294(1):C88–C96. doi: 10.1152/ajpcell.00148.2007.
    1. Fatemi A., Wilson M. A., Johnston M. V. Hypoxic-ischemic encephalopathy in the term infant. Clinics in Perinatology. 2009;36(4):835–858. doi: 10.1016/j.clp.2009.07.011.
    1. Magistretti P. J., Pellerin L., Rothman D. L., Shulman R. G. Energy on demand. Science. 1999;283(5401):496–497. doi: 10.1126/science.283.5401.496.
    1. Sie L. T. L., Van Der Knaap M. S., Oosting J., De Vries L. S., Lafeber H. N., Valk J. MR patterns of hypoxic-ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuropediatrics. 2000;31(3):128–136. doi: 10.1055/s-2000-7496.
    1. Johnston M. V., Trescher W. H., Ishida A., Nakajima W., Zipursky A. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatric Research. 2001;49(6):735–741. doi: 10.1203/00006450-200106000-00003.
    1. Johnston M. V., Nakajima W., Hagberg H. Mechanisms of hypoxic neurodegeneration in the developing brain. Neuroscientist. 2002;8(3):212–220. doi: 10.1177/1073858402008003007.
    1. Choi D. W. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends in Neurosciences. 1988;11(10):465–469. doi: 10.1016/0166-2236(88)90200-7.
    1. Biagas K. Hypoxic-ischemic brain injury: advancements in the understanding of mechanisms and potential avenues for therapy. Current Opinion in Pediatrics. 1999;11(3):223–228. doi: 10.1097/00008480-199906000-00009.
    1. Ferriero D. M. Neonatal brain injury. The New England Journal of Medicine. 2004;351(19):1985–1995. doi: 10.1056/nejmra041996.
    1. Volpe J. J. Neonatal encephalopathy: an inadequate term for hypoxic-ischemic encephalopathy. Annals of Neurology. 2012;72(2):156–166. doi: 10.1002/ana.23647.
    1. Kristián T., Siesjö B. K. Calcium-related damage in ischemia. Life Sciences. 1996;59(5-6):357–367. doi: 10.1016/0024-3205(96)00314-1.
    1. Hagberg H., Gilland E., Diemer N.-H., Andine P. Hypoxia-ischemia in the neonatal rat brain: histopathology after post-treatment with NMDA and Non-NMDA receptor antagonists. Biology of the Neonate. 1994;66(4):205–213. doi: 10.1159/000244109.
    1. Hedtjärn M., Mallard C., Hagberg H. Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. Journal of Cerebral Blood Flow and Metabolism. 2004;24(12):1333–1351. doi: 10.1097/00004647-200412000-00003.
    1. Winerdal M., Winerdal M. E., Kinn J., Urmaliya V., Winqvist O., Ådén U. Long lasting local and systemic inflammation after cerebral hypoxic ischemia in Newborn Mice. PLoS ONE. 2012;7(5):10. doi: 10.1371/journal.pone.0036422.e36422
    1. Hedtjärn M., Leverin A.-L., Eriksson K., Blomgren K., Mallard C., Hagberg H. Interleukin-18 involvement in hypoxic-ischemic brain injury. The Journal of Neuroscience. 2002;22(14):5910–5919.
    1. Ådén U., Favrais G., Plaisant F., et al. Systemic inflammation sensitizes the neonatal brain to excitotoxicity through a pro-/anti-inflammatory imbalance: key role of TNFα pathway and protection by etanercept. Brain, Behavior, and Immunity. 2010;24(5):747–758. doi: 10.1016/j.bbi.2009.10.010.
    1. Wixey J. A., Reinebrant H. E., Spencer S. J., Buller K. M. Efficacy of post-insult minocycline administration to alter long-term hypoxia-ischemia-induced damage to the serotonergic system in the immature rat brain. Neuroscience. 2011;182:184–192. doi: 10.1016/j.neuroscience.2011.03.033.
    1. Rice J. E., III, Vannucci R. C., Brierley J. B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Annals of Neurology. 1981;9(2):131–141. doi: 10.1002/ana.410090206.
    1. Vannucci R. C., Connor J. R., Mauger D. T., et al. Rat model of perinatal hypoxic-ischemic brain damage. Journal of Neuroscience Research. 1999;55(2):158–163. doi: 10.1002/(SICI)1097-4547(19990115)55:2<158::AID-JNR3>;2-1.
    1. Deng Y., Lu J., Sivakumar V., Ling E. A., Kaur C. Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathology. 2008;18(3):387–400. doi: 10.1111/j.1750-3639.2008.00138.x.
    1. Deng Y. Y., Lu J., Ling E.-A., Kaur C. Microglia-derived macrophage colony stimulating factor promotes generation of proinflammatory cytokines by astrocytes in the periventricular white matter in the hypoxic neonatal brain. Brain Pathology. 2010;20(5):909–925. doi: 10.1111/j.1750-3639.2010.00387.x.
    1. Baburamani A. A., Supramaniam V. G., Hagberg H., Mallard C. Microglia toxicity in preterm brain injury. Reproductive Toxicology. 2014;48:106–112. doi: 10.1016/j.reprotox.2014.04.002.
    1. Li L., Lundkvist A., Andersson D., et al. Protective role of reactive astrocytes in brain ischemia. Journal of Cerebral Blood Flow and Metabolism. 2008;28(3):468–481. doi: 10.1038/sj.jcbfm.9600546.
    1. Liu Z., Li Y., Cui Y., et al. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia. 2014;62:2022–2033. doi: 10.1002/glia.22723.
    1. Järlestedt K., Rousset C. I., Faiz M., et al. Attenuation of reactive gliosis does not affect infarct volume in neonatal hypoxic-ischemic brain injury in mice. PLoS ONE. 2010;5(4):7. doi: 10.1371/journal.pone.0010397.e10397
    1. Morken T. S. U., Brekke E., Haberg A., Wideroe M., Brubakk A.-M., Sonnewald U. Altered astrocyte-neuronal interactions after hypoxia-ischemia in the neonatal brain in female and male rats. Stroke. 2014;45(9):2777–2785. doi: 10.1161/strokeaha.114.005341.
    1. Sen E., Levison S. W. Astrocytes and developmental white matter disorders. Mental Retardation and Developmental Disabilities Research Reviews. 2006;12(2):97–104. doi: 10.1002/mrdd.20106.
    1. Leonardo C. C., Eakin A. K., Ajmo J. M., et al. Delayed administration of a matrix metalloproteinase inhibitor limits progressive brain injury after hypoxia-ischemia in the neonatal rat. Journal of Neuroinflammation. 2008;5, article 34 doi: 10.1186/1742-2094-5-34.
    1. Xiong M., Yang Y., Chen G.-Q., Zhou W.-H. Post-ischemic hypothermia for 24 h in P7 rats rescues hippocampal neuron: association with decreased astrocyte activation and inflammatory cytokine expression. Brain Research Bulletin. 2009;79(6):351–357. doi: 10.1016/j.brainresbull.2009.03.011.
    1. Hudome S., Palmer C., Roberts R. L., Mauger D., Housman C., Towfighi J. The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatric Research. 1997;41(5):607–616. doi: 10.1203/00006450-199705000-00002.
    1. Bona E., Andersson A.-L., Blomgren K., et al. Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatric Research. 1999;45(4, part 1):500–509. doi: 10.1203/00006450-199904010-00008.
    1. Palmer C., Roberts R. L., Young P. I. Timing of neutrophil depletion influences long-term neuroprotection in neonatal rat hypoxic-ischemic brain injury. Pediatric Research. 2004;55(4):549–556. doi: 10.1203/01.pdr.0000113546.03897.fc.
    1. Northington F. J., Ferriero D. M., Flock D. L., Martin L. J. Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. The Journal of Neuroscience. 2001;21(6):1931–1938.
    1. Benjelloun N., Renolleau S., Represa A., Ben-Ari Y., Charriaut-Marlangue C. Inflammatory responses in the cerebral cortex after ischemia in the P7 neonatal rat. Stroke. 1999;30(9):1916–1924. doi: 10.1161/01.str.30.9.1916.
    1. Wang J., Lu Q. Expression of T subsets and mIL-2R in peripheral blood of newborns with hypoxic ischemic encephalopathy. World Journal of Pediatrics. 2008;4(2):140–144. doi: 10.1007/s12519-008-0028-4.
    1. Rocha-Ferreira E., Hristova M. Antimicrobial peptides and complement in neonatal hypoxia-ischemia induced brain damage. Frontiers in Immunology. 2015;6, article 56 doi: 10.3389/fimmu.2015.00056.
    1. Jin Y., Silverman A. J., Vannucci S. J. Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke. 2009;40(9):3107–3112. doi: 10.1161/strokeaha.109.549691.
    1. Kendall G. S., Hirstova M., Horn S., et al. TNF gene cluster deletion abolishes lipopolysaccharide-mediated sensitization of the neonatal brain to hypoxic ischemic insult. Laboratory Investigation. 2011;91(3):328–341. doi: 10.1038/labinvest.2010.192.
    1. Kichev A., Rousset C. I., Baburamani A. A., et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling and cell death in the immature central nervous system after hypoxia-ischemia and inflammation. The Journal of Biological Chemistry. 2014;289(13):9430–9439. doi: 10.1074/jbc.m113.512350.
    1. Johnston M. V., Trescher W. H., Ishida A., Nakajima W., Zipursky A. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatric Research. 2001;49(6):735–741. doi: 10.1203/00006450-200106000-00003.
    1. McQuillen P. S., Sheldon R. A., Shatz C. J., Ferriero D. M. Selective vulnerability of subplate neurons after early neonatal hypoxia-ischemia. The Journal of Neuroscience. 2003;23(8):3308–3315.
    1. Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia-hypoxia. Neuroscience. 2015;309:259–279. doi: 10.1016/j.neuroscience.2015.08.034.
    1. Barkovich A. J., Hajnal B. L., Vigneron D., et al. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. American Journal of Neuroradiology. 1998;19(1):143–149.
    1. Volpe J. J. Perinatal brain injury: from pathogenesis to neuroprotection. Mental Retardation and Developmental Disabilities Research Reviews. 2001;7(1):56–64. doi: 10.1002/1098-2779(200102)7:1lt;56::aid-mrdd1008>;2-a.
    1. Martin L. J., Brambrink A., Koehler R. C., Traystman R. J. Primary sensory and forebrain motor systems in the newborn brain are preferentially damaged by hypoxia-ischemia. Journal of Comparative Neurology. 1997;377(2):262–285. doi: 10.1002/(SICI)1096-9861(19970113)377:2<262::AID-CNE8>;2-1.
    1. Menkes J. H., Curran J. Clinical and MR correlates in children with extrapyramidal cerebral palsy. American Journal of Neuroradiology. 1994;15(3):451–457.
    1. Hoon A. H., Jr., Reinhardt E. M., Kelley R. I., et al. Brain magnetic resonance imaging in suspected extrapyramidal cerebral palsy: observations in distinguishing genetic-metabolic from acquired causes. Journal of Pediatrics. 1997;131(2):240–245. doi: 10.1016/s0022-3476(97)70160-4.
    1. Skoff R. P., Bessert D., Barks J. D. E., Silverstein F. S. Plasticity of neurons and glia following neonatal hypoxic-ischemic brain injury in rats. Neurochemical Research. 2007;32(2):331–342. doi: 10.1007/s11064-006-9188-6.
    1. Geddes R., Vannucci R. C., Vannucci S. J. Delayed cerebral atrophy following moderate hypoxia-ischemia in the immature rat. Developmental Neuroscience. 2001;23(3):180–185. doi: 10.1159/000046140.
    1. Blennow M., Ingvar M., Lagercrantz H., et al. Early [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatrica. 1995;84(11):1289–1295. doi: 10.1111/j.1651-2227.1995.tb13551.x.
    1. Pu Y., Li Q.-F., Zeng C.-M., et al. Increased detectability of alpha brain glutamate/glutamine in neonatal hypoxic-ischemic encephalopathy. American Journal of Neuroradiology. 2000;21(1):203–212.
    1. Sokoloff L. Energetics of functional activation in neural tissues. Neurochemical Research. 1999;24(2):321–329. doi: 10.1023/A:1022534709672.
    1. Sibson N. R., Dhankhar A., Mason G. F., Rothman D. L., Behar K. L., Shulman R. G. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(1):316–321. doi: 10.1073/pnas.95.1.316.
    1. Pfund Z., Chugani D. C., Juhász C., et al. Evidence for coupling between glucose metabolism and glutamate cycling using FDG PET and 1H magnetic resonance spectroscopy in patients with epilepsy. Journal of Cerebral Blood Flow and Metabolism. 2000;20(5):871–878.
    1. Alexander G. E., Crutcher M. D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences. 1990;13(7):266–271. doi: 10.1016/0166-2236(90)90107-l.
    1. Johnston M. V., Hoon A. H. Possible mechanisms in infants for selective basal ganglia damage from asphyxia, kernicterus, or mitochondrial encephalopathies. Journal of Child Neurology. 2000;15(9):588–591. doi: 10.1177/088307380001500904.
    1. Hagberg H., Thornberg E., Blennow M., et al. Excitatory amino acids in the cerebrospinal fluid of asphyxiated infants: relationship to hypoxic-ischemic encephalopathy. Acta Paediatrica. 1993;82(11):925–929. doi: 10.1111/j.1651-2227.1993.tb12601.x.
    1. Dallas M., Boycott H. E., Atkinson L., et al. Hypoxia suppresses glutamate transport in astrocytes. The Journal of Neuroscience. 2007;27(15):3946–3955. doi: 10.1523/jneurosci.5030-06.2007.
    1. Murugan M., Ling E.-A., Kaur C. Dysregulated glutamate uptake by astrocytes causes oligodendroglia death in hypoxic perventricular white matter damage. Molecular and Cellular Neuroscience. 2013;56:342–354. doi: 10.1016/j.mcn.2013.07.005.
    1. Stys P. K. General mechanisms of axonal damage and its prevention. Journal of the Neurological Sciences. 2005;233(1-2):3–13. doi: 10.1016/j.jns.2005.03.031.
    1. Bakiri Y., Hamilton N. B., Káradóttir R., Attwell D. Testing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter. Glia. 2008;56(2):233–240. doi: 10.1002/glia.20608.
    1. Káradóttir R., Cavelier P., Bergersen L. H., Attwell D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature. 2005;438(7071):1162–1166. doi: 10.1038/nature04302.
    1. Gallo V., Deneen B. Glial development: the crossroads of regeneration and repair in the CNS. Neuron. 2014;83(2):283–308. doi: 10.1016/j.neuron.2014.06.010.
    1. Yang Z., Levison S. W. Hypoxia/ischemia expands the regenerative capacity of progenitors in the perinatal subventricular zone. Neuroscience. 2006;139(2):555–564. doi: 10.1016/j.neuroscience.2005.12.059.
    1. Zaidi A. U., Bessert D. A., Ong J. E., et al. New oligodendrocytes are generated after neonatal hypoxic-ischemic brain injury in rodents. Glia. 2004;46(4):380–390. doi: 10.1002/glia.20013.
    1. Skoff R. P., Ghandour M. S., Knapp P. E. Postmitotic oligodendrocytes generated during postnatal cerebral development are derived from proliferation of immature oligodendrocytes. Glia. 1994;12(1):12–23. doi: 10.1002/glia.440120103.
    1. McQuillen P. S., DeFreitas M. F., Zada G., Shatz C. J. A novel role for p75NTR in subplate growth cone complexity and visual thalamocortical innervation. Journal of Neuroscience. 2002;22(9):3580–3593.
    1. Chun J. J. M., Makamura M. J., Shatz C. J. Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons. Nature. 1987;325(6105):617–620. doi: 10.1038/325617a0.
    1. Kanold P. O. Subplate neurons: crucial regulators of cortical development and plasticity. Frontiers in Neuroanatomy. 2009;3, article 16 doi: 10.3389/neuro.05.016.2009.
    1. Levison S. W., Rothstein R. P., Romanko M. J., Snyder M. J., Meyers R. L., Vannucci S. J. Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells. Developmental Neuroscience. 2001;23(3):234–247. doi: 10.1159/000046149.
    1. Cioni G., Fazzi B., Coluccini M., Bartalena L., Boldrini A., van Hof-van Duin J. Cerebral visual impairment in preterm infants with periventricular leukomalacia. Pediatric Neurology. 1997;17(4):331–338. doi: 10.1016/s0887-8994(97)00152-5.
    1. Penrice J., Lorek A., Cady E. B., et al. Proton magnetic resonance spectroscopy of the brain during acute hypoxia-ischemia and delayed cerebral energy failure in the newborn piglet. Pediatric Research. 1997;41(6):795–802. doi: 10.1203/00006450-199706000-00001.
    1. Hope P. L., Cady E. B., Tofts P. S., et al. Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. The Lancet. 1984;324(8399):366–370. doi: 10.1016/s0140-6736(84)90539-7.
    1. Gilland E., Puka-Sundvall M., Hillered L., Hagberg H. Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors. Journal of Cerebral Blood Flow and Metabolism. 1998;18(3):297–304.
    1. Vannucci R. C., Yager J. Y., Vannucci S. J. Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat. Journal of Cerebral Blood Flow and Metabolism. 1994;14(2):279–288. doi: 10.1038/jcbfm.1994.35.
    1. Puka-Sundvall M., Gajkowska B., Cholewinski M., Blomgren K., Lazarewicz J. W., Hagberg H. Subcellular distribution of calcium and ultrastructural changes after cerebral hypoxia-ischemia in immature rats. Developmental Brain Research. 2000;125(1-2):31–41. doi: 10.1016/s0165-3806(00)00110-3.
    1. Williams C. E., Gunn A., Gluckman P. D. Time course of intracellular edema and epileptiform activity following prenatal cerebral ischemia in sheep. Stroke. 1991;22(4):516–521. doi: 10.1161/01.STR.22.4.516.
    1. Lorek A., Takei Y., Cady E. B., et al. Delayed (‘secondary’) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatric Research. 1994;36(6):699–706. doi: 10.1203/00006450-199412000-00003.
    1. Blumberg R. M., Cady E. B., Wigglesworth J. S., McKenzie J. E., Edwards A. D. Relation between delayed impairment of cerebral energy metabolism and infarction following transient focal hypoxia-ischaemia in the developing brain. Experimental Brain Research. 1997;113(1):130–137. doi: 10.1007/BF02454148.
    1. Kehrer J. P. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 2000;149(1):43–50. doi: 10.1016/S0300-483X(00)00231-6.
    1. Traystman R. J., Kirsch J. R., Koehler R. C. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. Journal of Applied Physiology. 1991;71(4):1185–1195.
    1. Davies K. J., Goldberg A. L. Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms in erythrocytes. The Journal of Biological Chemistry. 1987;262(17):8220–8226.
    1. Vasiljevic B., Maglajlic-Djukic S., Gojnic M., Stankovic S. The role of oxidative stress in perinatal hypoxic-ischemic brain injury. Srpski Arhiv za Celokupno Lekarstvo. 2012;140(1-2):35–41. doi: 10.2298/sarh1202035v.
    1. Palmer C., Towfighi J., Roberts R. L., Heitjan D. F. Allopurinol administered after inducing hypoxia-ischemia reduces brain injury in 7-day-old rats. Pediatric Research. 1993;33(4, part 1):405–411.
    1. Millerot-Serrurot E., Bertrand N., Mossiat C., et al. Temporal changes in free iron levels after brain ischemia. Relevance to the timing of iron chelation therapy in stroke. Neurochemistry International. 2008;52(8):1442–1448. doi: 10.1016/j.neuint.2008.04.002.
    1. Peng T.-I., Greenamyre J. T. Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors. Molecular Pharmacology. 1998;53(6):974–980.
    1. Puka-Sundvall M., Hallin U., Zhu C., et al. NMDA blockade attenuates caspase-3 activation and DNA fragmentation after neonatal hypoxia-ischemia. NeuroReport. 2000;11(13):2833–2836. doi: 10.1097/00001756-200009110-00002.
    1. Beckman J. S. The double-edged role of nitric oxide in brain function and superoxide-mediated injury. Journal of Developmental Physiology. 1991;15(1):53–59.
    1. Bal-Price A., Brown G. C. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. Journal of Neuroscience. 2001;21(17):6480–6491.
    1. Rousset C. I., Baburamani A. A., Thornton C., Hagberg H. Mitochondria and perinatal brain injury. Journal of Maternal-Fetal and Neonatal Medicine. 2012;25(supplement 1):35–38. doi: 10.3109/14767058.2012.666398.
    1. Hamada Y., Hayakawa T., Hattori H., Mikawa H. Inhibitor of nitric oxide synthesis reduces hypoxic-ischemic brain damage in the neonatal rat. Pediatric Research. 1994;35(1):10–14. doi: 10.1203/00006450-199401000-00003.
    1. Ferriero D. M., Holtzman D. M., Black S. M., Sheldon R. A. Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiology of Disease. 1996;3(1):64–71. doi: 10.1006/nbdi.1996.0006.
    1. van den Tweel E. R. W., Peeters-Scholte C. M. P. C. D., van Bel F., Heijnen C. J., Groenendaal F. Inhibition of nNOS and iNOS following hypoxia-ischaemia improves long-term outcome but does not influence the inflammatory response in the neonatal rat brain. Developmental Neuroscience. 2002;24(5):389–395. doi: 10.1159/000069044.
    1. Blomgren K., Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radical Biology and Medicine. 2006;40(3):388–397. doi: 10.1016/j.freeradbiomed.2005.08.040.
    1. Robertson C. L., Scafidi S., McKenna M. C., Fiskum G. Mitochondrial mechanisms of cell death and neuroprotection in pediatric ischemic and traumatic brain injury. Experimental Neurology. 2009;218(2):371–380. doi: 10.1016/j.expneurol.2009.04.030.
    1. Hagberg H., Mallard C., Rousset C. I., Wang X. Apoptotic mechanisms in the immature brain: involvement of mitochondria. Journal of Child Neurology. 2009;24(9):1141–1146. doi: 10.1177/0883073809338212.
    1. Han B., Wang Q., Cui G., Shen X., Zhu Z. Post-treatment of Bax-inhibiting peptide reduces neuronal death and behavioral deficits following global cerebral ischemia. Neurochemistry International. 2011;58(2):224–233. doi: 10.1016/j.neuint.2010.12.008.
    1. Wang X., Han W., Du X., et al. Neuroprotective effect of Bax-inhibiting peptide on neonatal brain injury. Stroke. 2010;41(9):2050–2055. doi: 10.1161/strokeaha.110.589051.
    1. Blomgren K., Zhu C., Hallin U., Hagberg H. Mitochondria and ischemic reperfusion damage in the adult and in the developing brain. Biochemical and Biophysical Research Communications. 2003;304(3):551–559. doi: 10.1016/s0006-291x(03)00628-4.
    1. Hagberg H. Mitochondrial impairment in the developing brain after hypoxia-ischemia. Journal of Bioenergetics and Biomembranes. 2004;36(4):369–373. doi: 10.1023/B:JOBB.0000041770.00567.4f.
    1. Cregan S. P., Dawson V. L., Slack R. S. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene. 2004;23(16):2785–2796. doi: 10.1038/sj.onc.1207517.
    1. Hoshino A., Matoba S., Iwai-Kanai E., et al. P53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. Journal of Molecular and Cellular Cardiology. 2012;52(1):175–184. doi: 10.1016/j.yjmcc.2011.10.008.
    1. Yin W., Signore A. P., Iwai M., Cao G., Gao Y., Chen J. Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke. 2008;39(11):3057–3063. doi: 10.1161/STROKEAHA.108.520114.
    1. Northington F. J., Zelaya M. E., O'Riordan D. P., et al. Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as ‘continuum’ phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience. 2007;149(4):822–833. doi: 10.1016/j.neuroscience.2007.06.060.
    1. Zhu C., Wang X., Xu F., et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death and Differentiation. 2005;12(2):162–176. doi: 10.1038/sj.cdd.4401545.
    1. Nakajima W., Ishida A., Lange M. S., et al. Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. Journal of Neuroscience. 2000;20(21):7994–8004.
    1. Li Y., Powers C., Jiang N., Chopp M. Intact, injured, necrotic and apoptotic cells after focal cerebral ischemia in the rat. Journal of the Neurological Sciences. 1998;156(2):119–132. doi: 10.1016/S0022-510X(98)00036-7.
    1. Du Y., Bales K. R., Dodel R. C., et al. Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(21):11657–11662. doi: 10.1073/pnas.94.21.11657.
    1. Schulz J. B., Weller M., Moskowitz M. A. Caspases as treatment targets in stroke and neurodegenerative diseases. Annals of Neurology. 1999;45(4):421–429. doi: 10.1002/1531-8249(199904)45:4<421::aid-ana2>;2-q.
    1. Cheng Y., Deshmukh M., D'Costa A., et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. The Journal of Clinical Investigation. 1998;101(9):1992–1999. doi: 10.1172/jci2169.
    1. Hu B. R., Liu C. L., Ouyang Y., Blomgren K., Siesjö B. K. Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. Journal of Cerebral Blood Flow and Metabolism. 2000;20(9):1294–1300. doi: 10.1097/00004647-200009000-00003.
    1. Carlsson Y., Wang X., Schwendimann L., et al. Combined effect of hypothermia and caspase-2 gene deficiency on neonatal hypoxic-ischemic brain injury. Pediatric Research. 2012;71(5):566–572. doi: 10.1038/pr.2012.15.
    1. Wang X., Carlsson Y., Basso E., et al. Developmental shift of cyclophilin D contribution to hypoxic-ischemic brain injury. Journal of Neuroscience. 2009;29(8):2588–2596. doi: 10.1523/JNEUROSCI.5832-08.2009.
    1. Blomgren K., Mcrae A., Elmered A., et al. The calpain proteolytic system in neonatal hypoxic-ischemia. Annals of the New York Academy of Sciences. 1997;825:104–119. doi: 10.1111/j.1749-6632.1997.tb48420.x.
    1. Towfighi J., Zec N., Yager J., Housman C., Vannucci R. C. Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia: a light microscopic study. Acta Neuropathologica. 1995;90(4):375–386. doi: 10.1007/s004010050344.
    1. Northington F. J., Ferriero D. M., Graham E. M., Traystman R. J., Martin L. J. Early neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiology of Disease. 2001;8(2):207–219. doi: 10.1006/nbdi.2000.0371.
    1. Portera-Cailliau C., Price D. L., Martin L. J. Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. Journal of Comparative Neurology. 1997;378(1):70–87.
    1. Blomgren K., Leist M., Groc L. Pathological apoptosis in the developing brain. Apoptosis. 2007;12(5):993–1010. doi: 10.1007/s10495-007-0754-4.
    1. Sheldon R. A., Hall J. J., Noble L. J., Ferriero D. M. Delayed cell death in neonatal mouse hippocampus from hypoxia-ischemia is neither apoptotic nor necrotic. Neuroscience Letters. 2001;304(3):165–168. doi: 10.1016/S0304-3940(01)01788-8.
    1. Leist M., Single B., Castoldi A. F., Kühnle S., Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. The Journal of Experimental Medicine. 1997;185(8):1481–1486. doi: 10.1084/jem.185.8.1481.
    1. Lockshin R. A., Zakeri Z. Apoptosis, autophagy, and more. International Journal of Biochemistry and Cell Biology. 2004;36(12):2405–2419. doi: 10.1016/j.biocel.2004.04.011.
    1. He C., Klionsky D. J. Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics. 2009;43:67–93. doi: 10.1146/annurev-genet-102808-114910.
    1. Northington F. J., Chavez-Valdez R., Martin L. J. Neuronal cell death in neonatal hypoxia-ischemia. Annals of Neurology. 2011;69(5):743–758. doi: 10.1002/ana.22419.
    1. Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death & Differentiation. 2001;8(6):569–581. doi: 10.1038/sj.cdd.4400852.
    1. Descloux C., Ginet V., Clarke P. G. H., Puyal J., Truttmann A. Neuronal death after perinatal cerebral hypoxia-ischemia: focus on autophagy—mediated cell death. International Journal of Developmental Neuroscience. 2015;45:75–85. doi: 10.1016/j.ijdevneu.2015.06.008.
    1. Ogier-Denis E., Codogno P. Autophagy: a barrier or an adaptive response to cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer. 2003;1603(2):113–128. doi: 10.1016/s0304-419x(03)00004-0.
    1. Ginet V., Puyal J., Clarke P. G. H., Truttmann A. C. Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms. The American Journal of Pathology. 2009;175(5):1962–1974. doi: 10.2353/ajpath.2009.090463.
    1. Ginet V., Pittet M. P., Rummel C., et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Annals of Neurology. 2014;76(5):695–711. doi: 10.1002/ana.24257.
    1. Koike M., Shibata M., Tadakoshi M., et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. The American Journal of Pathology. 2008;172(2):454–469. doi: 10.2353/ajpath.2008.070876.
    1. Xie C., Ginet V., Sun Y., et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12(2):410–423. doi: 10.1080/15548627.2015.1132134.
    1. Puyal J., Vaslin A., Mottier V., Clarke P. G. H. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Annals of Neurology. 2009;66(3):378–389. doi: 10.1002/ana.21714.
    1. Carloni S., Buonocore G., Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiology of Disease. 2008;32(3):329–339. doi: 10.1016/j.nbd.2008.07.022.
    1. Mayoral S. R., Omar G., Penn A. A. Sex differences in a hypoxia model of preterm brain damage. Pediatric Research. 2009;66(3):248–253. doi: 10.1203/PDR.0b013e3181b1bc34.
    1. Golomb M. R., Zimmer J. A., Garg B. P. Age-related variation in the presentation of childhood stroke varies with inclusion criteria. Acta Paediatrica. 2010;99(1):6–7. doi: 10.1111/j.1651-2227.2009.01538.x.
    1. Golomb M. R., Fullerton H. J., Nowak-Gottl U., Deveber G. Male predominance in childhood ischemic stroke: findings from the international pediatric stroke study. Stroke. 2009;40(1):52–57. doi: 10.1161/strokeaha.108.521203.
    1. Lauterbach M. D., Raz S., Sander C. J. Neonatal hypoxic risk in preterm birth infants: the influence of sex and severity of respiratory distress on cognitive recovery. Neuropsychology. 2001;15(3):411–420. doi: 10.1037/0894-4105.15.3.411.
    1. Smith A. L., Alexander M., Rosenkrantz T. S., Sadek M. L., Fitch R. H. Sex differences in behavioral outcome following neonatal hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury. Experimental Neurology. 2014;254:54–67. doi: 10.1016/j.expneurol.2014.01.003.
    1. Peacock J. L., Marston L., Marlow N., Calvert S. A., Greenough A. Neonatal and infant outcome in boys and girls born very prematurely. Pediatric Research. 2012;71(3):305–310. doi: 10.1038/pr.2011.50.
    1. Manwani B., McCullough L. D. Sexual dimorphism in ischemic stroke: lessons from the laboratory. Women's Health. 2011;7(3):319–339. doi: 10.2217/whe.11.22.
    1. Lang J. T., McCullough L. D. Pathways to ischemic neuronal cell death: are sex differences relevant? Journal of Translational Medicine. 2008;6, article 33 doi: 10.1186/1479-5876-6-33.
    1. Giza C. C., Prins M. L. Is being plastic fantastic? Mechanisms of altered plasticity after developmental traumatic brain injury. Developmental Neuroscience. 2006;28(4-5):364–379. doi: 10.1159/000094163.
    1. Greenough W. T., Volkmar F. R., Juraska J. M. Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Experimental Neurology. 1973;41(2):371–378. doi: 10.1016/0014-4886(73)90278-1.
    1. Jacobs B., Schall M., Scheibel A. B. A quantitative dendritic analysis of Wernicke's area in humans. II. Gender, hemispheric, and environmental factors. Journal of Comparative Neurology. 1993;327(1):97–111. doi: 10.1002/cne.903270108.
    1. Rosenzweig M. R., Bennett E. L. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behavioural Brain Research. 1996;78(1):57–65. doi: 10.1016/0166-4328(95)00216-2.
    1. Johnston M. V. Excitotoxicity in perinatal brain injury. Brain Pathology. 2005;15(3):234–240.
    1. McDonald J. W., Johnston M. V. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Research Reviews. 1990;15(1):41–70. doi: 10.1016/0165-0173(90)90011-C.
    1. Molnar E., Isaac J. T. R. Developmental and activity dependent regulation of ionotropic glutamate receptors at synapses. TheScientificWorldJOURNAL. 2002;2:27–47. doi: 10.1100/tsw.2002.74.
    1. Monyer H., Burnashev N., Laurie D. J., Sakmann B., Seeburg P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12(3):529–540. doi: 10.1016/0896-6273(94)90210-0.
    1. McDonald J. W., Johnston M. V., Young A. B. Differential ontogenic development of three receptors comprising the NMDA receptor/channel complex in the rat hippocampus. Experimental Neurology. 1990;110(3):237–247. doi: 10.1016/0014-4886(90)90035-q.
    1. Crair M. C., Malenka R. C. A critical period for long-term potentiation at thalamocortical synapses. Nature. 1995;375(6529):325–328. doi: 10.1038/375325a0.
    1. Seeburg P. H., Hartner J. Regulation of ion channel/neurotransmitter receptor function by RNA editing. Current Opinion in Neurobiology. 2003;13(3):279–283. doi: 10.1016/s0959-4388(03)00062-x.
    1. Johnston M. V. Clinical disorders of brain plasticity. Brain and Development. 2004;26(2):73–80. doi: 10.1016/S0387-7604(03)00102-5.
    1. Holtmaat A., Wilbrecht L., Knott G. W., Welker E., Svoboda K. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature. 2006;441(7096):979–983. doi: 10.1038/nature04783.
    1. Gould E. How widespread is adult neurogenesis in mammals? Nature Reviews Neuroscience. 2007;8(6):481–488. doi: 10.1038/nrn2147.
    1. Donega V., van Velthoven C. T. J., Nijboer C. H., Kavelaars A., Heijnen C. J. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment. Journal of Cerebral Blood Flow and Metabolism. 2013;33(5):625–634. doi: 10.1038/jcbfm.2013.3.
    1. Han J., Pollak J., Yang T., et al. Delayed administration of a small molecule tropomyosin-related kinase B ligand promotes recovery after hypoxic-ischemic stroke. Stroke. 2012;43(7):1918–1924. doi: 10.1161/strokeaha.111.641878.
    1. Iwai M., Stetler R. A., Xing J., et al. Enhanced oligodendrogenesis and recovery of neurological function by erythropoietin after neonatal hypoxic/ischemic brain injury. Stroke. 2010;41(5):1032–1037. doi: 10.1161/STROKEAHA.109.570325.
    1. Titomanlio L., Kavelaars A., Dalous J., et al. Stem cell therapy for neonatal brain injury: perspectives and challenges. Annals of Neurology. 2011;70(5):698–712. doi: 10.1002/ana.22518.
    1. Donega V., Nijboer C. H., van Tilborg G., Dijkhuizen R. M., Kavelaars A., Heijnen C. J. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Experimental Neurology. 2014;261:53–64. doi: 10.1016/j.expneurol.2014.06.009.
    1. Donega V., Nijboer C. H., van Velthoven C. T., et al. Assessment of long-term safety and efficacy of intranasal mesenchymal stem cell treatment for neonatal brain injury in the mouse. Pediatric Research. 2015;78(5):520–526. doi: 10.1038/pr.2015.145.

Source: PubMed

3
Subscribe