A randomized trial on the effects of root resorption after orthodontic treatment using pulsating force

Jue Wang, Ejvis Lamani, Terpsithea Christou, Peng Li, Chung How Kau, Jue Wang, Ejvis Lamani, Terpsithea Christou, Peng Li, Chung How Kau

Abstract

Background: An orthodontic device that moves teeth with pulsating force was invented and underwent a single center, controlled, clinical trial to test its safety and efficacy for treatment. The device has a custom-made thermo-plastic mouthpiece which fits over the teeth with an inflatable silicone element. A console that measures and controls the pulsating force level in real-time controls the air pressure that delivers a pulsating force. In this study, the effect of the device on root resorption during orthodontic treatment was evaluated using 3D cone beam computed tomography and compared with a control group of patients who received Invisalign treatment.

Methods: Twenty-eight subjects were enrolled in the investigational arm and 15 in the control group. Subjects were followed until the average score of the mandibular and maxillary teeth achieved a Little's Irregularity Index of 1.5 mm or less.

Results: There were no adverse events reported throughout the study for either treatment arm. No clinically significant root resorption was observed for either group. The investigational device did not cause root resorption greater than the control group. Both devices produced a safety profile compared to current orthodontic techniques.

Conclusion: The investigational device did not produce more root resorption than similar conventional orthodontic appliances.

Trial registration: ClinicalTrials.gov, NCT03421886 . Registered 12 January 2018 - Retrospectively registered.

Keywords: Clear aligners; Cone beam computed tomography; Radiographic evaluation; Root-crown ratios; Tooth movement.

Conflict of interest statement

CHK is the principal investigator, and EL and TC are co-investigators on the clinical trial sponsored by Dror Orthodesign. The other authors have no conflicts of interest to disclose.

Figures

Fig. 1
Fig. 1
A thermo-plastic mouthpiece with an integrated inflatable silicone element and the console
Fig. 2
Fig. 2
Measurement of tooth crown length (blue line) and root length (red line) on CBCT

References

    1. Shapiro E, Roeber F, Klempner L. Orthodontic movement using pulsating force-induced piezoelectricity. Am J Orthod. 1979;76(1):59–66.
    1. Oates JC, Moore RN, Caputo AA. Pulsating forces in orthodontic treatment. Am J Orthod Dentofac Orthop. 1978;74(5):577–586.
    1. Hayashi H, Konoo T, Yamaguchi K. Intermittent 8-hour activation in orthodontic molar movement. Am J Orthod Dentofac Orthop. 2004;125(3):302–309.
    1. Igarashi K, Miyoshi K, Shinoda H, Saeki S, Mitani H. Diurnal variation in tooth movement in response to orthodontic force in rats. Am J Orthod Dentofac Orthop. 1998;114(1):8–14.
    1. Blake M, Woodside D, Pharoah M. A radiographic comparison of apical root resorption after orthodontic treatment with the edgewise and speed appliances. Am J Orthod Dentofac Orthop. 1995;108(1):76–84.
    1. Mavragani M, Bøe OE, Wisth PJ, Selvig KA. Changes in root length during orthodontic treatment: advantages for immature teeth. Eur J Orthod. 2002;24(1):91–97.
    1. Brezniak N, Wasserstein A. Root resorption after orthodontic treatment: part 2. Literature review. Am J Orthod Dentofac Orthop. 1993;103(2):138–146.
    1. Linge BO, Linge L. Apical root resorption in upper anterior teeth. Eur J Orthod. 1983;5(3):173–183.
    1. Levander E, Malmgren O. Evaluation of the risk of root resorption during orthodontic treatment: a study of upper incisors. Eur J Orthod. 1988;10(1):30–38.
    1. Weltman B, Vig KW, Fields HW, Shanker S, Kaizar EE. Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthod Dentofac Orthop. 2010;137(4):462–476.
    1. Linge L, Linge BO. Patient characteristics and treatment variables associated with apical root resorption during orthodontic treatment. Am J Orthod Dentofac Orthop. 1991;99(1):35–43.
    1. Wang J, Rousso C, Christensen BI, Li P, Kau CH, MacDougall M, Lamani E. Ethnic differences in the root to crown ratios of the permanent dentition. Orthod Craniofac Res. 2019;22(2):99–104.
    1. Hartsfield J, Jr, Everett ET, Al-Qawasmi R. Genetic factors in external apical root resorption and orthodontic treatment. Crit Rev Oral Biol Med. 2004;15(2):115–122.
    1. Sameshima GT, Sinclair PM. Predicting and preventing root resorption: part I. Diagnostic factors. Am J Orthod Dentofac Orthop. 2001;119(5):505–510.
    1. Weiland F. Constant versus dissipating forces in orthodontics: the effect on initial tooth movement and root resorption. Eur J Orthod. 2003;25(4):335–342.
    1. Harris DA, Jones AS, Darendeliler MA. Physical properties of root cementum: part 8. Volumetric analysis of root resorption craters after application of controlled intrusive light and heavy orthodontic forces: a microcomputed tomography scan study. Am J Orthod Dentofac Orthop. 2006;130(5):639–647.
    1. Chan E, Darendeliler MA. Physical properties of root cementum: part 7. Extent of root resorption under areas of compression and tension. Am J Orthod Dentofac Orthop. 2006;129(4):504–510.
    1. Walton DK, Fields HW, Johnston WM, Rosenstiel SF, Firestone AR, Christensen JC. Orthodontic appliance preferences of children and adolescents. Am J Orthod Dentofac Orthop. 2010;138(6):698.e1–698.12.
    1. Fujiyama K, Honjo T, Suzuki M, Matsuoka S, Deguchi T. Analysis of pain level in cases treated with Invisalign aligner: comparison with fixed edgewise appliance therapy. Prog Orthod. 2014;15(1):64.
    1. Li Y, Deng S, Mei L, Li Z, Zhang X, Yang C, Li Y. Prevalence and severity of apical root resorption during orthodontic treatment with clear aligners and fixed appliances: a cone beam computed tomography study. Prog Orthod. 2020;21(1):1–8.
    1. Jiang R-p, McDonald J, Fu M-k. Root resorption before and after orthodontic treatment: a clinical study of contributory factors. Eur J Orthod. 2010;32(6):693–697.
    1. Sherrard JF, Rossouw PE, Benson BW, Carrillo R, Buschang PH. Accuracy and reliability of tooth and root lengths measured on cone-beam computed tomographs. Am J Orthod Dentofac Orthop. 2010;137(4):S100–S108.
    1. Palomo JM, Kau CH, Palomo LB, Hans MG. Three-dimensional cone beam computerized tomography in dentistry. Dent Today. 2006;25(11):130.
    1. Lotan T, Ronen S. Google Patents. 2018. Orthodontic system with tooth movement and position measuring, monitoring, and control.
    1. Kau CH. A radiographic analysis of tooth morphology following the use of a novel cyclical force device in orthodontics. Head Face Med. 2011;7:14.
    1. Nimeri G, Kau CH, Corona R, Shelly J. The effect of photobiomodulation on root resorption during orthodontic treatment. Clin Cosmet Investig Dent. 2014;6:1–8.
    1. Lind V. Short root anomaly. Eur J Oral Sci. 1972;80(2):85–93.
    1. Hölttä P, Nyström M, Evälahti M, Alaluusua S. Root–crown ratios of permanent teeth in a healthy Finnish population assessed from panoramic radiographs. Eur J Orthod. 2004;26(5):491–497.
    1. Aras I, Unal I, Huniler G, Aras A. Root resorption due to orthodontic treatment using self-ligating and conventional brackets. J Orofac Orthop/Fortschritte der Kieferorthopädie. 2018;79(3):181–190.
    1. Lund H, Gröndahl K, Hansen K, Gröndahl H-G. Apical root resorption during orthodontic treatment: a prospective study using cone beam CT. Angle Orthod. 2012;82(3):480–487.
    1. Gay G, Ravera S, Castroflorio T, Garino F, Rossini G, Parrini S, Cugliari G, Deregibus A. Root resorption during orthodontic treatment with Invisalign®: a radiometric study. Prog Orthod. 2017;18(1):12.
    1. Katheria BC, Kau CH, Tate R, Chen JW, English J, Bouquot J. Effectiveness of impacted and supernumerary tooth diagnosis from traditional radiography versus cone beam computed tomography. Pediatr Dent. 2010;32(4):304–309.
    1. Kheir NA, Kau CH. Measuring mandibular asymmetry in class I normal subjects using 3D novel coordinate system. Ann Maxillofac Surg. 2014;4(1):34–38.
    1. Wong ME, Kau CH, Melville JC, Patel T, Spagnoli DB. Bone reconstruction planning using computer technology for surgical management of severe Maxillomandibular atrophy. Oral Maxillofac Surg Clin North Am. 2019;31(3):457–472.
    1. Kapila S, Nervina J. CBCT in orthodontics: assessment of treatment outcomes and indications for its use. Dentomaxillofac Radiol. 2015;44(1):20140282.
    1. Wang J, Veiszenbacher E, Waite PD, Kau CH. Comprehensive treatment approach for bilateral idiopathic condylar resorption and anterior open bite with customized lingual braces and total joint prostheses. Am J Orthod Dentofac Orthop. 2019;156(1):125–136.
    1. Al-Qawasmi RA, Hartsfield J, Jr, Everett E, Flury L, Liu L, Foroud T, Macri J, Roberts W. Genetic predisposition to external apical root resorption in orthodontic patients: linkage of chromosome-18 marker. J Dent Res. 2003;82(5):356–360.
    1. Topkara A, Karaman AI, Kau CH. Apical root resorption caused by orthodontic forces: a brief review and a long-term observation. Eur J Dent. 2012;6(4):445–453.
    1. Mavragani M, Vergari A, Selliseth NJ, Bøe OE, Wisth PJ. A radiographic comparison of apical root resorption after orthodontic treatment with a standard edgewise and a straight-wire edgewise technique. Eur J Orthod. 2000;22(6):665–674.
    1. Mohandesan H, Ravanmehr H, Valaei N. A radiographic analysis of external apical root resorption of maxillary incisors during active orthodontic treatment. Eur J Orthod. 2007;29(2):134–139.
    1. Proffit W. Surgicalorthodontic treatment. 1991. Treatment planning: the search for wisdom.
    1. Copeland S, Green LJ. Root resorption in maxillary central incisors following active orthodontic treatment. Am J Orthod Dentofac Orthop. 1986;89(1):51–55.
    1. Sameshima GT, Sinclair PM. Predicting and preventing root resorption: part II. Treatment factors. Am J Orthod Dentofac Orthop. 2001;119(5):511–515.

Source: PubMed

3
Subscribe