Pharmaceutical inhibition of mTOR in the common marmoset: effect of rapamycin on regulators of proteostasis in a non-human primate

Matthew Lelegren, Yuhong Liu, Corinna Ross, Suzette Tardif, Adam B Salmon, Matthew Lelegren, Yuhong Liu, Corinna Ross, Suzette Tardif, Adam B Salmon

Abstract

Background: Inhibition of mechanistic target of rapamycin (mTOR) has emerged as a viable means to lengthen lifespan and healthspan in mice, although it is still unclear whether these benefits will extend to other mammalian species. We previously reported results from a pilot experiment wherein common marmosets (Callithrix jacchus) were treated orally with rapamycin to reduce mTOR signaling in vivo in line with previous reports in mice and humans. Further, long-term treatment did not significantly alter body weight, daily activity, blood lipid concentrations, or glucose metabolism in this cohort.

Methods: In this study, we report on the molecular consequences of rapamycin treatment in marmosets on mechanisms that regulate protein homeostasis (proteostasis) in vivo. There is growing appreciation for the role of proteostasis in longevity and for the role that mTOR plays in regulating this process. Tissue samples of liver and skeletal muscle from marmosets in our pilot cohort were assessed for expression and activity of components of the ubiquitin-proteasome system, macroautophagy, and protein chaperones.

Results: Rapamycin treatment was associated with increased expression of PSMB5, a core subunit of the 20S proteasome, but not PSMB8 which is involved in the formation of the immunoproteasome, in the skeletal muscle and liver. Surprisingly, proteasome activity measured in these tissues was not affected by rapamycin. Rapamycin treatment was associated with an increased expression of mitochondria-targeted protein chaperones in skeletal muscle, but not liver. Finally, autophagy was increased in skeletal muscle and adipose, but not liver, from rapamycin-treated marmosets.

Conclusions: Overall, these data show tissue-specific upregulation of some, but not all, components of the proteostasis network in common marmosets treated with a pharmaceutical inhibitor of mTOR.

Keywords: autophagy; healthspan; immunoproteasome; proteasome; protein chaperone.

Figures

Fig. 1
Fig. 1
(a) Immunoblot showing phosphorylated and total ribosomal protein S6 from skeletal muscle of control (lanes indicated with ‘C’) and rapamycin-treated (lanes indicated with ‘R’) marmosets. (b) Quantification of relative levels of phosphorylation of ribosomal protein S6 (S6) in skeletal muscle generated from immunoblot in A. Data are presented as mean values (± SEM) for indicated groups (c–d). Plot comparing relative levels of phosphorylated/total S6 ratio in muscle with that found in adipose and liver collected from the same rapamycin-treated marmosets (n = 7 total rapamycin-treated animals). Circles represent values generated from samples collected from an individual animal and line is regression line. Values in each panel give Pearson's correlation coefficient for indicated relationship and p value. Data from liver and adipose were presented previously in (23,24).
Fig. 2
Fig. 2
Quantification of relative abundance of proteasome subunits PSMB5 and PSMB8 in skeletal muscle (a) or liver (b) from control and rapamycin-treated marmosets. Data are presented as values for each protein normalized using Ponceau S staining of immunoblot as a loading control. (c) Representative immunoblot for skeletal muscle data presented in (a). (d) Rate of 20S or 26S-mediated cleavage of fluorescent peptide (Suc-LLVY-AMC) with or without proteasome inhibitor MG132 in samples from skeletal muscle of control (n = 5) and rapamycin-treated (n = 7) marmosets. Data are presented as mean values (± SEM) for indicated groups. Asterisks represent p < 0.05 for Student's t-test comparing control to rapamycin values.
Fig. 3
Fig. 3
Quantification of relative levels of indicated molecular chaperones in skeletal muscle (a) or liver (b) from control (n = 5) and rapamycin-treated (n = 7) marmosets. Data are presented as mean values (± SEM) for indicated groups. Data are presented as values for each protein normalized using Ponceau S staining of immunoblot as a loading control. Asterisks represent p < 0.05 for Student's t-test comparing control to rapamycin values. (c) Representative immunoblot for skeletal muscle data presented in (a).
Fig. 4
Fig. 4
(a) Quantification of LC3B-II levels (left) and LC3B-II/LC3B-I ratio (right) in skeletal muscle, liver, or adipose tissue from control and rapamycin-treated marmosets. Data are presented as mean values (± SEM) for indicated groups and normalized to control-treated samples in each case for clarity of presentation. Asterisks represent p < 0.05 for Student's t-test comparing control to rapamycin values. (b) Representative immunoblots for data presented in (a).

References

    1. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010;11(1):35–46.
    1. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426(6967):620.
    1. McCormick MA, Delaney JR, Tsuchiya M, Tsuchiyama S, Shemorry A, Sim S, et al. A comprehensive analysis of replicative lifespan in 4,698 single-gene deletion strains uncovers conserved mechanisms of aging. Cell Metab. 2015;22(5):895–906.
    1. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335(6076):1638–43.
    1. Wu JJ, Liu J, Chen Edmund B, Wang Jennifer J, Cao L, Narayan N, et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep. 2013;4(5):913–20.
    1. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–5.
    1. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011;66A(2):191–201.
    1. Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M, et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell. 2014;13(3):468–77.
    1. Neff F, Flores-Dominguez D, Ryan DP, Horsch M, Schroder S, Adler T, et al. Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest. 2013;123(8):3272–91.
    1. Fok WC, Chen Y, Bokov A, Zhang Y, Salmon AB, Diaz V, et al. Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome. PLoS One. 2014;9(1):e83988.
    1. Zhang Y, Bokov A, Gelfond J, Soto V, Ikeno Y, Hubbard G, et al. Rapamycin extends life and health in C57BL/6 Mice. J Gerontol A Biol Sci Med Sci. 2014;69A(2):119–30.
    1. Hasty P, Livi CB, Dodds SG, Jones D, Strong R, Javors M, et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res. 2014;7(1):169–78.
    1. Fischer KE, Gelfond JA, Soto VY, Han C, Someya S, Richardson A, et al. Health effects of long-term rapamycin treatment: the impact on mouse health of enteric rapamycin treatment from four months of age throughout life. PLoS One. 2015;10(5):e0126644.
    1. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between Mammalian Target of Rapamycin (mTOR), Amyloid-β, and Tau: effects on cognitive impairments. J Biol Chem. 2010;285(17):13107–20.
    1. Majumder S, Caccamo A, Medina DX, Benavides AD, Javors MA, Kraig E, et al. Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1β and enhancing NMDA signaling. Aging Cell. 2012;11(2):326–35.
    1. Ehninger D, Neff F, Xie K. Longevity, aging and rapamycin. Cell Mol Life Sci. 2014;71(22):4325–46.
    1. Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014;6(268):268ra179.
    1. Hurez V, Dao V, Liu A, Pandeswara S, Gelfond J, Sun L, et al. Chronic mTOR inhibition in mice with rapamycin alters T, B, myeloid, and innate lymphoid cells and gut flora and prolongs life of immune-deficient mice. Aging Cell. 2015;14(6):945–56.
    1. Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10(11):868–80.
    1. Tardif S, Bales K, Williams L, Moeller EL, Abbott D, Schultz-Darken N, et al. Preparing new world monkeys for laboratory research. ILAR J. 2006;47(4):307–15.
    1. Tardif SD, Mansfield KG, Ratnam R, Ross CN, Ziegler TE. The marmoset as a model of aging and age-related diseases. ILAR J. 2011;52(1):54–65.
    1. Ross CN, Davis K, Dobek G, Tardif SD. Aging phenotypes of common marmosets (Callithrix jacchus) J Aging Res. 2012;2012:567143.
    1. Tardif S, Ross C, Bergman P, Fernandez E, Javors M, Salmon A, et al. Testing efficacy of administration of the antiaging drug rapamycin in a nonhuman primate, the common marmoset. J Gerontol A Biol Sci Med Sci. 2015;70(5):577–87.
    1. Ross C, Salmon A, Strong R, Fernandez E, Javors M, Richardson A, et al. Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix jacchus) Aging. 2015;7(11):964–73.
    1. Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435–64.
    1. Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev. 2011;10(2):205–15.
    1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.
    1. Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy. 2008;4(7):851–65.
    1. Conn CS, Qian SB. mTOR signaling in protein homeostasis: less is more? Cell Cycle. 2011;10(12):1940–7.
    1. Zhao J, Zhai B, Gygi SP, Goldberg AL. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci USA. 2015;112(52):15790–7.
    1. Pickering AM, Lehr M, Miller RA. Lifespan of mice and primates correlates with immunoproteasome expression. J Clin Invest. 2015;125(5):2059–68.
    1. Zhang Y, Nicholatos J, Dreier JR, Ricoult SJ, Widenmaier SB, Hotamisligil GS, et al. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature. 2014;513(7518):440–3.
    1. Lamriben L, Graham JB, Adams BM, Hebert DN. N-glycan based ER molecular chaperone and protein quality control system: the calnexin binding cycle. Traffic. 2016;17(4):308–26.
    1. Radons J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones. 2016;21(3):379–404.
    1. Cheng MY, Hartl FU, Martin J, Pollock RA, Kalousek F, Neupert W, et al. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature. 1989;337(6208):620–5.
    1. Cole A, Wang Z, Coyaud E, Voisin V, Gronda M, Jitkova Y, et al. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2015;27(6):864–76.
    1. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36(6):585–95.
    1. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000;150(6):1507–13.
    1. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544.
    1. Liu Y, Diaz V, Fernandez E, Strong R, Ye L, Baur JA, et al. Rapamycin-induced metabolic defects are reversible in both lean and obese mice. Aging. 2014;6(9):742–54.
    1. Gallant-Haidner HL, Trepanier DJ, Freitag DG, Yatscoff RW. Pharmacokinetics and metabolism of sirolimus. Ther Drug Monit. 2000;22(1):31–5.
    1. Zhang HM, Fu J, Hamilton R, Diaz V, Zhang Y. The mammalian target of rapamycin modulates the immunoproteasome system in the heart. J Mol Cell Cardiol. 2015;86:158–67.
    1. Osmulski PA, Gaczynska M. Rapamycin allosterically inhibits the proteasome. Mol Pharmacol. 2013;84(1):104–13.
    1. Pickering AM, Koop AL, Teoh CY, Ermak G, Grune T, Davies KJ. The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem J. 2010;432(3):585–94.
    1. Salmon AB, Leonard S, Masamsetti V, Pierce A, Podlutsky AJ, Podlutskaya N, et al. The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J. 2009;23(7):2317–26.
    1. Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, et al. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci USA. 2009;106(9):3059–64.
    1. Kaetsu A, Fukushima T, Inoue S, Lim H, Moriyama M. Role of heat shock protein 60 (HSP60) on paraquat intoxication. J Appl Toxicol. 2001;21(5):425–30.
    1. Wu CW, Biggar KK, Zhang J, Tessier SN, Pifferi F, Perret M, et al. Induction of antioxidant and heat shock protein responses during torpor in the gray mouse lemur, microcebus,urinus. Genomics Proteomics Bioinformatics. 2015;13(2):119–26.
    1. Hollander JM, Lin KM, Scott BT, Dillmann WH. Overexpression of PHGPx and HSP60/10 protects against ischemia/reoxygenation injury. Free Radical Biol Med. 2003;35(7):742–51.
    1. Durieux J, Wolff S, Dillin A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 2011;144(1):79–91.
    1. Qin ZH, Wang Y, Kegel KB, Kazantsev A, Apostol BL, Thompson LM, et al. Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet. 2003;12(24):3231–44.
    1. Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy. 2012;8(3):310–25.

Source: PubMed

3
Subscribe