Restructuring Reward Mechanisms in Nicotine Addiction: A Pilot fMRI Study of Mindfulness-Oriented Recovery Enhancement for Cigarette Smokers

B Froeliger, A R Mathew, P A McConnell, C Eichberg, M E Saladin, M J Carpenter, E L Garland, B Froeliger, A R Mathew, P A McConnell, C Eichberg, M E Saladin, M J Carpenter, E L Garland

Abstract

The primary goal of this pilot feasibility study was to examine the effects of Mindfulness-Oriented Recovery Enhancement (MORE), a behavioral treatment grounded in dual-process models derived from cognitive science, on frontostriatal reward processes among cigarette smokers. Healthy adult (N = 13; mean (SD) age 49 ± 12.2) smokers provided informed consent to participate in a 10-week study testing MORE versus a comparison group (CG). All participants underwent two fMRI scans: pre-tx and after 8-weeks of MORE. Emotion regulation (ER), smoking cue reactivity (CR), and resting-state functional connectivity (rsFC) were assessed at each fMRI visit; smoking and mood were assessed throughout. As compared to the CG, MORE significantly reduced smoking (d = 2.06) and increased positive affect (d = 2.02). MORE participants evidenced decreased CR-BOLD response in ventral striatum (VS; d = 1.57) and ventral prefrontal cortex (vPFC; d = 1.7) and increased positive ER-BOLD in VS (dVS = 2.13) and vPFC (dvmPFC = 2.66). Importantly, ER was correlated with smoking reduction (r's = .68 to .91) and increased positive affect (r's = .52 to .61). These findings provide preliminary evidence that MORE may facilitate the restructuring of reward processes and play a role in treating the pathophysiology of nicotine addiction.

Conflict of interest statement

There are no competing interests declared.

Figures

Figure 1
Figure 1
fMRI contrast of the group × time interaction on positive ER-BOLD response. A significant group (MORE, control) × time (Pre, Post) interaction was found in left ventral striatum (VS: −9, 14, −12; F(1,22) = 12.4, d = 2.13) and right vmPFC (9, 26, −16; F's(1,22) = 19.4, d = 2.66, Ke = 1648) (pvoxel < 0.05, α = .05, Monte Carlo). Parameter estimates from the model indicate a relative increase in BOLD response from baseline to 8 weeks post-MORE relative to the control group, who evidenced a decrease in BOLD response.
Figure 2
Figure 2
fMRI contrast of the group × time interaction on drug CR-BOLD response. A significant group (MORE, control) × time (Pre, Post) interaction in left ventral striatum (VS: −14, 16, −15) and right vmPFC (10, 20, −10). F's(1,22) = 6.7 to 7.9 d's = 1.57 to 1.7; Ke = 765, (pvoxel < 0.05, α = .05, Monte Carlo). Parameter estimates from the model indicate a relative decrease in BOLD response from baseline to 8 weeks post-MORE relative to the control group, who evidenced an increase in BOLD response.
Figure 3
Figure 3
Group (MORE, control) × time (Pre, Post) interaction in right rostral ACC (rACC)-OFC (x = 26, y = 46, z = 12) resting-state functional connectivity, F(1,22) = 19.8, d = 2.69, Ke = 1330 (pvoxel < 0.05, α = .05, Monte Carlo). The rACC seed was defined by a conjunction mask from the functional ROI clusters from the significant interaction revealed in the positive ER & CR model. Among smokers in the MORE condition, rsFC between rACC and OFC strengthened from baseline to 8 weeks post-MORE, whereas the control group evidenced weaker rsFC between these regions.

References

    1. Mathers C. D., Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine. 2006;3(11):2011–2030. doi: 10.1371/journal.pmed.0030442.
    1. Gipson C. D., Reissner K. J., Kupchik Y. M., et al. Reinstatement of nicotine seeking is mediated by glutamatergic plasticity. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(22):9124–9129. doi: 10.1073/pnas.1220591110.
    1. Robinson T. E., Berridge K. C. The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society B: Biological Sciences. 2008;363(1507):3137–3146. doi: 10.1098/rstb.2008.0093.
    1. Knutson B., Gibbs S. E. B. Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology. 2007;191(3):813–822. doi: 10.1007/s00213-006-0686-7.
    1. Goldstein R. Z., Volkow N. D. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry. 2002;159(10):1642–1652. doi: 10.1176/appi.ajp.159.10.1642.
    1. Kalivas P. W. The glutamate homeostasis hypothesis of addiction. Nature Reviews Neuroscience. 2009;10(8):561–572. doi: 10.1038/nrn2515.
    1. Hong L. E., Gu H., Yang Y., et al. Association of nicotine addiction and nicotine's actions with separate cingulate cortex functional circuits. Archives of General Psychiatry. 2009;66(4):431–441. doi: 10.1001/archgenpsychiatry.2009.2.
    1. Ma N., Liu Y., Li N., et al. Addiction related alteration in resting-state brain connectivity. NeuroImage. 2010;49(1):738–744. doi: 10.1016/j.neuroimage.2009.08.037.
    1. Motzkin J. C., Baskin-Sommers A., Newman J. P., Kiehl K. A., Koenigs M. Neural correlates of substance abuse: reduced functional connectivity between areas underlying reward and cognitive control. Human Brain Mapping. 2014;35(9):4282–4292. doi: 10.1002/hbm.22474.
    1. Froeliger B., McConnell P. A., Stankeviciute N., McClure E. A., Kalivas P. W., Gray K. M. The effects of N-Acetylcysteine on frontostriatal resting-state functional connectivity, withdrawal symptoms and smoking abstinence: A Double-blind, Placebo-Controlled fMRI Pilot Study. Drug and Alcohol Dependence. 2015;156, article 5746:234–242. doi: 10.1016/j.drugalcdep.2015.09.021.
    1. Koob G. F., Le Moal M. Addiction and the brain antireward system. Annual Review of Psychology. 2008;59:29–53. doi: 10.1146/annurev.psych.59.103006.093548.
    1. Garland E. L., Froeliger B., Howard M. O. Mindfulness training targets neurocognitive mechanisms of addiction at the attention-appraisal-emotion interface. Frontiers in Psychiatry. 2014;4, article 173 doi: 10.3389/fpsyt.2013.00173.
    1. McConnell P. A., Froeliger B. Mindfulness, mechanisms and meaning: perspectives from the cognitive neuroscience of addiction. Psychological Inquiry. 2015;26(4):349–357. doi: 10.1080/1047840x.2015.1076701.
    1. Bowen S., Chawla N., Collins S. E., et al. Mindfulness-based relapse prevention for substance use disorders: a pilot efficacy trial. Substance Abuse. 2009;30(4):295–305. doi: 10.1080/08897070903250084.
    1. Garland E. L. Mindfulness-Oriented Recovery Enhancement: Reclaiming a Meaningful Life from Addiction, Stress, and Pain. Washington, DC, USA: NASW Press; 2013.
    1. Garland E. L., Gaylord S. A., Boettiger C. A., Howard M. O. Mindfulness training modifies cognitive, affective, and physiological mechanisms implicated in alcohol dependence: results of a randomized controlled pilot trial. Journal of Psychoactive Drugs. 2010;42(2):177–192. doi: 10.1080/02791072.2010.10400690.
    1. Garland E. L., Roberts-Lewis A., Tronnier C. D., Graves R., Kelley K. Mindfulness-Oriented Recovery Enhancement versus CBT for co-occurring substance dependence, traumatic stress, and psychiatric disorders: proximal outcomes from a pragmatic randomized trial. Behaviour Research and Therapy. 2016;77:7–16. doi: 10.1016/j.brat.2015.11.012.
    1. Garland E. L., Manusov E. G., Froeliger B., Kelly A., Williams J. M., Howard M. O. Mindfulness-oriented recovery enhancement for chronic pain and prescription opioid misuse: results from an early-stage randomized controlled trial. Journal of Consulting and Clinical Psychology. 2014;82(3):448–459. doi: 10.1037/a0035798.
    1. Brewer J. A., Mallik S., Babuscio T. A., et al. Mindfulness training for smoking cessation: results from a randomized controlled trial. Drug and Alcohol Dependence. 2011;119(1-2):72–80. doi: 10.1016/j.drugalcdep.2011.05.027.
    1. Kirk U., Gu X., Sharp C., Hula A., Fonagy P., Montague P. R. Mindfulness training increases cooperative decision making in economic exchanges: evidence from fMRI. NeuroImage. 2016;138:274–283. doi: 10.1016/j.neuroimage.2016.05.075.
    1. Kirk U., Montague P. R. Mindfulness meditation modulates reward prediction errors in a passive conditioning task. Frontiers in Psychology. 2015;6, article 90 doi: 10.3389/fpsyg.2015.00090.
    1. Dutra L., Stathopoulou G., Basden S. L., Leyro T. M., Powers M. B., Otto M. W. A meta-analytic review of psychosocial interventions for substance use disorders. American Journal of Psychiatry. 2008;165(2):179–187. doi: 10.1176/appi.ajp.2007.06111851.
    1. Garland E. L. Restructuring reward processing with mindfulness-oriented recovery enhancement: novel therapeutic mechanisms to remediate hedonic dysregulation in addiction, stress, and pain. Annals of the New York Academy of Sciences. 2016 doi: 10.1111/nyas.13034.
    1. Garland E. L., Froeliger B., Howard M. O. Effects of Mindfulness-Oriented Recovery Enhancement on reward responsiveness and opioid cue-reactivity. Psychopharmacology. 2014;231(16):3229–3238. doi: 10.1007/s00213-014-3504-7.
    1. Garland E. L., Froeliger B., Howard M. O. Neurophysiological evidence for remediation of reward processing deficits in chronic pain and opioid misuse following treatment with Mindfulness-Oriented Recovery Enhancement: exploratory ERP findings from a pilot RCT. Journal of Behavioral Medicine. 2015;38(2):327–336. doi: 10.1007/s10865-014-9607-0.
    1. Bryant F. B., Veroff J. Savoring: A New Model of Positive Experience. Mahwah, NJ, USA: Lawrence Erlbaum Associates; 2007.
    1. Waltz J., Addis M. E., Koerner K., Jacobson N. S. Testing the integrity of a psychotherapy protocol: assessment of adherence and competence. Journal of Consulting and Clinical Psychology. 1993;61(4):620–630. doi: 10.1037//0022-006x.61.4.620.
    1. Carroll K. M., Nich C., Sifry R. L., et al. A general system for evaluating therapist adherence and competence in psychotherapy research in the addictions. Drug and Alcohol Dependence. 2000;57(3):225–238. doi: 10.1016/S0376-8716(99)00049-6.
    1. Heatherton T. F., Kozlowski L. T., Frecker R. C., Fagerstrom K. The Fagerström test for nicotine dependence: a revision of the Fagerstrom tolerance questionnaire. British Journal of Addiction. 1991;86(9):1119–1127. doi: 10.1111/j.1360-0443.1991.tb01879.x.
    1. Shiffman S. M., Jarvik M. E. Smoking withdrawal symptoms in two weeks of abstinence. Psychopharmacology. 1976;50(1):35–39. doi: 10.1007/BF00634151.
    1. Watson D., Clark L. A., Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology. 1988;54(6):1063–1070. doi: 10.1037/0022-3514.54.6.1063.
    1. Baer R. A., Smith G. T., Lykins E., et al. Construct validity of the five facet mindfulness questionnaire in meditating and nonmeditating samples. Assessment. 2008;15(3):329–342. doi: 10.1177/1073191107313003.
    1. Rajapakse J. C., Giedd J. N., Rapoport J. L. Statistical approach to segmentation of single-channel cerebral mr images. IEEE Transactions on Medical Imaging. 1997;16(2):176–186. doi: 10.1109/42.563663.
    1. Tohka J., Zijdenbos A., Evans A. Fast and robust parameter estimation for statistical partial volume models in brain MRI. NeuroImage. 2004;23(1):84–97. doi: 10.1016/j.neuroimage.2004.05.007.
    1. Manjón J. V., Coupé P., Martí-Bonmatí L., Collins D. L., Robles M. Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging. 2010;31(1):192–203. doi: 10.1002/jmri.22003.
    1. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38(1):95–113. doi: 10.1016/j.neuroimage.2007.07.007.
    1. Friston K. J., Jezzard P., Turner R. Analysis of functional MRI time‐series. Human Brain Mapping. 1994;1(2):153–171. doi: 10.1002/hbm.460010207.
    1. Lang P. J., Bradley M. M., Cuthbert B. N. International Affective Picture System (IAPS) Gainesville, Fla, USA: NIMH Center for the Study of Emotion and Attention; 1997.
    1. Carpenter M. J., Saladin M. E., DeSantis S., Gray K. M., LaRowe S. D., Upadhyaya H. P. Laboratory-based, cue-elicited craving and cue reactivity as predictors of naturally occurring smoking behavior. Addictive Behaviors. 2009;34(6-7):536–541. doi: 10.1016/j.addbeh.2009.03.022.
    1. Saladin M. E., Gray K. M., Carpenter M. J., LaRowe S. D., DeSantis S. M., Upadhyaya H. P. Gender differences in craving and cue reactivity to smoking and negative affect/stress cues. American Journal on Addictions. 2012;21(3):210–220. doi: 10.1111/j.1521-0391.2012.00232.x.
    1. Watson N. L., Carpenter M. J., Saladin M. E., Gray K. M., Upadhyaya H. P. Evidence for greater cue reactivity among low-dependent vs. high-dependent smokers. Addictive Behaviors. 2010;35(7):673–677. doi: 10.1016/j.addbeh.2010.02.010.
    1. Augustus Diggs H., Froeliger B., Michael Carlson J., George Gilbert D. Smoker-nonsmoker differences in neural response to smoking-related and affective cues: an fMRI investigation. Psychiatry Research—Neuroimaging. 2013;211(1):85–87. doi: 10.1016/j.pscychresns.2012.06.009.
    1. Bennett C. M., Wolford G. L., Miller M. B. The principled control of false positives in neuroimaging. Social Cognitive and Affective Neuroscience. 2009;4(4):417–422. doi: 10.1093/scan/nsp053.
    1. Frijda N. H., Sundararajan L. Emotion refinement: a theory inspired by chinese poetics. Perspectives on Psychological Science. 2007;2(3):227–241. doi: 10.1111/j.1745-6916.2007.00042.x.
    1. Froeliger B., Modlin L. A., Kozink R. V., et al. Frontoparietal attentional network activation differs between smokers and nonsmokers during affective cognition. Psychiatry Research - Neuroimaging. 2013;211(1):57–63. doi: 10.1016/j.pscychresns.2012.05.002.
    1. Azizian A., Nestor L. J., Payer D., Monterosso J. R., Brody A. L., London E. D. Smoking reduces conflict-related anterior cingulate activity in abstinent cigarette smokers performing a stroop task. Neuropsychopharmacology. 2010;35(3):775–782. doi: 10.1038/npp.2009.186.
    1. Froeliger B., Modlin L., Wang L., Kozink R. V., McClernon F. J. Nicotine withdrawal modulates frontal brain function during an affective Stroop task. Psychopharmacology. 2012;220(4):707–718. doi: 10.1007/s00213-011-2522-y.
    1. Froeliger B., Modlin L. A., Kozink R. V., Wang L., McClernon F. J. Smoking abstinence and depressive symptoms modulate the executive control system during emotional information processing. Addiction Biology. 2012;17(3):668–679. doi: 10.1111/j.1369-1600.2011.00410.x.
    1. Kozink R. V., Lutz A. M., Rose J. E., Froeliger B., McClernon F. J. Smoking withdrawal shifts the spatiotemporal dynamics of neurocognition. Addiction Biology. 2010;15(4):480–490. doi: 10.1111/j.1369-1600.2010.00252.x.
    1. Jasinska A. J., Stein E. A., Kaiser J., Naumer M. J., Yalachkov Y. Factors modulating neural reactivity to drug cues in addiction: a survey of human neuroimaging studies. Neuroscience and Biobehavioral Reviews. 2014;38(1):1–16. doi: 10.1016/j.neubiorev.2013.10.013.
    1. Kober H., Mende-Siedlecki P., Kross E. F., et al. Prefrontal-striatal pathway underlies cognitive regulation of craving. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(33):14811–14816. doi: 10.1073/pnas.1007779107.
    1. Koob G. F., Volkow N. D. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–238. doi: 10.1038/npp.2009.110.
    1. Kalivas P. W., O'Brien C. Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology. 2008;33(1):166–180. doi: 10.1038/sj.npp.1301564.
    1. Garland E. L., Howard M. O., Zubieta J., Froeliger B. Restructuring hedonic dysregulation in chronic pain and prescription opioid misuse: effects of mindfulness-oriented recovery enhancement on responsiveness to drug cues and natural rewards. Psychotherapy and Psychosomatics. 2017;86:111–112. doi: 10.1159/000453400.

Source: PubMed

3
Subscribe