Immune dysfunction in uremia—an update

Gerald Cohen, Walter H Hörl, Gerald Cohen, Walter H Hörl

Abstract

Kidney dysfunction leads to disturbed renal metabolic activities and to impaired glomerular filtration, resulting in the retention of toxic solutes affecting all organs of the body. Cardiovascular disease (CVD) and infections are the main causes for the increased occurrence of morbidity and mortality among patients with chronic kidney disease (CKD). Both complications are directly or indirectly linked to a compromised immune defense. The specific coordinated roles of polymorphonuclear leukocytes (PMNLs), monocytes/macrophages, lymphocytes and antigen-presenting cells (APCs) in maintaining an efficient immune response are affected. Their normal response can be impaired, giving rise to infectious diseases or pre-activated/primed, leading to inflammation and consequently to CVD. Whereas the coordinated removal via apoptosis of activated immune cells is crucial for the resolution of inflammation, inappropriately high apoptotic rates lead to a diminished immune response. In uremia, the balance between pro- and anti-inflammatory and between pro- and anti-apoptotic factors is disturbed. This review summarizes the interrelated parameters interfering with the immune response in uremia, with a special focus on the non-specific immune response and the role of uremic toxins.

Figures

Figure 1
Figure 1
Immune dysfunction and risk factors in chronic kidney disease.
Figure 2
Figure 2
Different activation states and conditions influencing leukocyte function upon stimulation.
Figure 3
Figure 3
Kidney failure leads to disturbed renal metabolic activities and to impaired glomerular filtration and/or tubular secretion/reabsorption.
Figure 4
Figure 4
Different uremic toxins may exert antagonistic effects leading to infection and inflammation.

References

    1. Wen C.P., Cheng T.Y., Tsai M.K., Chang Y.C., Chan H.T., Tsai S.P., Chiang P.H., Hsu C.C., Sung P.K., Hsu Y.H., et al. All-cause mortality attributable to chronic kidney disease: A prospective cohort study based on 462 293 adults in Taiwan. Lancet. 2008;371:2173–2182. doi: 10.1016/S0140-6736(08)60952-6.
    1. Drey N., Roderick P., Mullee M., Rogerson M. A population-based study of the incidence and outcomes of diagnosed chronic kidney disease. Am. J. Kidney Dis. 2003;42:677–684. doi: 10.1016/S0272-6386(03)00916-8.
    1. Kato S., Chmielewski M., Honda H., Pecoits-Filho R., Matsuo S., Yuzawa Y., Tranaeus A., Stenvinkel P., Lindholm B. Aspects of immune dysfunction in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 2008;3:1526–1533.
    1. Tonelli M., Wiebe N., Culleton B., House A., Rabbat C., Fok M., McAlister F., Garg A.X. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol. 2006;17:2034–2047. doi: 10.1681/ASN.2005101085.
    1. Meyer T.W., Hostetter T.H. Uremia. N. Engl. J. Med. 2007;357:1316–1325.
    1. Haag-Weber M., Hörl W.H. Dysfunction of polymorphonuclear leukocytes in uremia. Semin. Nephrol. 1996;16:192–201.
    1. Chonchol M. Neutrophil dysfunction and infection risk in end-stage renal disease. Semin. Dial. 2006;19:291–296. doi: 10.1111/j.1525-139X.2006.00175.x.
    1. James M.T., Laupland K.B., Tonelli M., Manns B.J., Culleton B.F., Hemmelgarn B.R. Risk of bloodstream infection in patients with chronic kidney disease not treated with dialysis. Arch. Intern. Med. 2008;168:2333–2339.
    1. Sarnak M.J., Jaber B.L. Mortality caused by sepsis in patients with end-stage renal disease compared with the general population. Kidney Int. 2000;58:1758–1764. doi: 10.1111/j.1523-1755.2000.00337.x.
    1. Eleftheriadis T., Antoniadi G., Liakopoulos V., Kartsios C., Stefanidis I. Disturbances of acquired immunity in hemodialysis patients. Semin. Dial. 2007;20:440–451.
    1. Vanholder R., Massy Z., Argiles A., Spasovski G., Verbeke F., Lameire N. Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol. Dial. Transplant. 2005;20:1048–1056. doi: 10.1093/ndt/gfh813.
    1. Foley R.N., Parfrey P.S., Sarnak M.J. Epidemiology of cardiovascular disease in chronic renal disease. J. Am. Soc. Nephrol. 1998;9:S16–S23.
    1. Coresh J., Longenecker J.C., Miller E.R., III, Young H.J., Klag M.J. Epidemiology of cardiovascular risk factors in chronic renal disease. J. Am. Soc. Nephrol. 1998;9:S24–S30.
    1. Fried L.F., Katz R., Cushman M., Sarnak M., Shlipak M.G., Kuller L., Newman A.B. Change in cardiovascular risk factors with progression of kidney disease. Am. J. Nephrol. 2008;29:334–341.
    1. Ryan T.P., Fisher S.G., Elder J.L., Winters P.C., Beckett W., Tacci J., Sloand J.A. Increased cardiovascular risk associated with reduced kidney function. Am. J. Nephrol. 2009;29:620–625. doi: 10.1159/000194455.
    1. Libetta C., Sepe V., Esposito P., Galli F., Dal Canton A. Oxidative stress and inflammation: Implications in uremia and hemodialysis. Clin. Biochem. 2011;44:1189–1198.
    1. Dounousi E., Papavasiliou E., Makedou A., Ioannou K., Katopodis K.P., Tselepis A., Siamopoulos K.C., Tsakiris D. Oxidative stress is progressively enhanced with advancing stages of CKD. Am. J. Kidney Dis. 2006;48:752–760. doi: 10.1053/j.ajkd.2006.08.015.
    1. Morena M., Cristol J.P., Senecal L., Leray-Moragues H., Krieter D., Canaud B. Oxidative stress in hemodialysis patients: is NADPH oxidase complex the culprit? Kidney Int. 2002;61:S109–S114. doi: 10.1046/j.1523-1755.61.s80.20.x.
    1. Rodriguez-Ayala E., Anderstam B., Suliman M.E., Seeberger A., Heimburger O., Lindholm B., Stenvinkel P. Enhanced RAGE-mediated NFkappaB stimulation in inflamed hemodialysis patients. Atherosclerosis. 2005;180:333–340. doi: 10.1016/j.atherosclerosis.2004.12.007.
    1. Stinghen A.E., Bucharles S., Riella M.C., Pecoits-Filho R. Immune mechanisms involved in cardiovascular complications of chronic kidney disease. Blood Purif. 2010;29:114–120.
    1. Himmelfarb J., Stenvinkel P., Ikizler T.A., Hakim R.M. The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62:1524–1538. doi: 10.1046/j.1523-1755.2002.00600.x.
    1. Gollapudi P., Yoon J.W., Gollapudi S., Pahl M.V., Vaziri N.D. Leukocyte toll-like receptor expression in end-stage kidney disease. Am. J. Nephrol. 2010;31:247–254. doi: 10.1159/000276764.
    1. Okamura D.M., Pennathur S., Pasichnyk K., Lopez-Guisa J.M., Collins S., Febbraio M., Heinecke J., Eddy A.A. CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J. Am. Soc. Nephrol. 2009;20:495–505.
    1. Rutkowski P., Malgorzewicz S., Slominska E., Renke M., Lysiak-Szydlowska W., Swierczynski J., Rutkowski B. Interrelationship between uremic toxicity and oxidative stress. J. Ren. Nutr. 2006;16:190–193. doi: 10.1053/j.jrn.2006.04.008.
    1. Galli F. Protein damage and inflammation in uraemia and dialysis patients. Nephrol. Dial. Transplant. 2007;22(Suppl. 5):V20–V36. doi: 10.1093/ndt/gfm294.
    1. Yilmaz M.I., Carrero J.J., Axelsson J., Lindholm B., Stenvinkel P. Low-grade inflammation in chronic kidney disease patients before the start of renal replacement therapy: Sources and consequences. Clin. Nephrol. 2007;68:1–9.
    1. Zoccali C. Traditional and emerging cardiovascular and renal risk factors: An epidemiologic perspective. Kidney Int. 2006;70:26–33. doi: 10.1038/sj.ki.5000417.
    1. Carrero J.J., Stenvinkel P. Persistent inflammation as a catalyst for other risk factors in chronic kidney disease: A hypothesis proposal. Clin. J. Am. Soc. Nephrol. 2009;4(Suppl. 1):S49–S55. doi: 10.2215/CJN.02720409.
    1. Miyamoto T., Carrero J.J., Stenvinkel P. Inflammation as a risk factor and target for therapy in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2011;20:662–668.
    1. Cirillo P., Sautin Y.Y., Kanellis J., Kang D.H., Gesualdo L., Nakagawa T., Johnson R.J. Systemic inflammation, metabolic syndrome and progressive renal disease. Nephrol. Dial. Transplant. 2009;24:1384–1387. doi: 10.1093/ndt/gfp038.
    1. Yao Q., Axelsson J., Stenvinkel P., Lindholm B. Chronic systemic inflammation in dialysis patients: an update on causes and consequences. ASAIO J. 2004;50:lii–lvii.
    1. Helal I., Smaoui W., Hamida F.B., Ouniss M., Aderrahim E., Hedri H., Elyounsi F., Maiz H.B., Abdallah T.B., Kheder A. Cardiovascular risk factors in hemodialysis and peritoneal dialysis patients. Saudi J. Kidney Dis. Transpl. 2010;21:59–62.
    1. Jofre R., Rodriguez-Benitez P., Lopez-Gomez J.M., Perez-Garcia R. Inflammatory syndrome in patients on hemodialysis. J. Am. Soc. Nephrol. 2006;17:S274–S280. doi: 10.1681/ASN.2006080926.
    1. Cazzavillan S., Ratanarat R., Segala C., Corradi V., de Cal M., Cruz D., Ocampo C., Polanco N., Rassu M., Levin N., et al. Inflammation and subclinical infection in chronic kidney disease: A molecular approach. Blood Purif. 2007;25:69–76. doi: 10.1159/000096401.
    1. Wann J.G., Hsu Y.H., Yang C.C., Lin C.S., Tai D.W., Chen J.S., Hsiao C.W., Chen C.F. Neutrophils in acidotic haemodialysed patients have lower intracellular pH and inflamed state. Nephrol. Dial. Transplant. 2007;22:2613–2622. doi: 10.1093/ndt/gfm227.
    1. Swain S.D., Rohn T.T., Quinn M.T. Neutrophil priming in host defense: role of oxidants as priming agents. Antioxid. Redox. Signal. 2002;4:69–83.
    1. Koenderman L., Yazdanbakhsh M., Roos D., Verhoeven A.J. Dual mechanisms in priming of the chemoattractant-induced respiratory burst in human granulocytes. A Ca2+-dependent and a Ca2+-independent route. J. Immunol. 1989;142:623–628.
    1. Chilvers E.R., Cadwallader K.A., Reed B.J., White J.F., Condliffe A.M. The function and fate of neutrophils at the inflamed site: prospects for therapeutic intervention. J. R. Coll. Physicians. Lond. 2000;34:68–74.
    1. Klein J.B., McLeish K.R., Ward R.A. Transplantation, not dialysis, corrects azotemia-dependent priming of the neutrophil oxidative burst. Am. J. Kidney Dis. 1999;33:483–491. doi: 10.1016/S0272-6386(99)70185-X.
    1. Condliffe A.M., Kitchen E., Chilvers E.R. Neutrophil priming: Pathophysiological consequences and underlying mechanisms. Clin. Sci. (Lond.) 1998;94:461–471.
    1. Sela S., Shurtz-Swirski R., Cohen-Mazor M., Mazor R., Chezar J., Shapiro G., Hassan K., Shkolnik G., Geron R., Kristal B. Primed peripheral polymorphonuclear leukocyte: A culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. J. Am. Soc. Nephrol. 2005;16:2431–2438. doi: 10.1681/ASN.2004110929.
    1. Ward R.A., Ouseph R., McLeish K.R. Effects of high-flux hemodialysis on oxidant stress. Kidney Int. 2003;63:353–359.
    1. Filep J.G., El Kebir D. Neutrophil apoptosis: A target for enhancing the resolution of inflammation. J. Cell. Biochem. 2009;108:1039–1046. doi: 10.1002/jcb.22351.
    1. Cohen G., Rudnicki M., Hörl W.H. Uremic toxins modulate the spontaneous apoptotic cell death and essential functions of neutrophils. Kidney Int. 2001;78:S48–S52.
    1. Glorieux G., Vanholder R., Lameire N. Uraemic retention and apoptosis: what is the balance for the inflammatory status in uraemia? Eur. J. Clin. Invest. 2003;33:631–634. doi: 10.1046/j.1365-2362.2003.01204.x.
    1. Trevani A.S., Andonegui G., Giordano M., Lopez D.H., Gamberale R., Minucci F., Geffner J.R. Extracellular acidification induces human neutrophil activation. J. Immunol. 1999;162:4849–4857.
    1. Cohen G., Rudnicki M., Deicher R., Hörl W.H. Immunoglobulin light chains modulate polymorphonuclear leucocyte apoptosis. Eur. J. Clin. Invest. 2003;33:669–676.
    1. Cohen G., Rudnicki M., Walter F., Niwa T., Hörl W.H. Glucose-modified proteins modulate essential functions and apoptosis of polymorphonuclear leukocytes. J. Am. Soc. Nephrol. 2001;12:1264–1271.
    1. Cohen G., Raupachova J., Hörl W.H. The uraemic toxin phenylacetic acid contributes to inflammation by priming polymorphonuclear leucocytes. Nephrol. Dial. Transplant. 2012
    1. Cohen G., Raupachova J., Wimmer T., Deicher R., Hörl W.H. The uraemic retention solute para-hydroxy-hippuric acid attenuates apoptosis of polymorphonuclear leukocytes from healthy subjects but not from haemodialysis patients. Nephrol. Dial. Transplant. 2008;23:2512–2519. doi: 10.1093/ndt/gfn098.
    1. Jankowski J., Tepel M., Stephan N., van der Giet M., Breden V., Zidek W., Schluter H. Characterization of p-hydroxy-hippuric acid as an inhibitor of Ca2+-ATPase in end-stage renal failure. Kidney Int. 2001;78:S84–S88.
    1. Perianayagam M.C., Balakrishnan V.S., King A.J., Pereira B.J., Jaber B.L. C5a delays apoptosis of human neutrophils by a phosphatidylinositol 3-kinase-signaling pathway. Kidney Int. 2002;61:456–463. doi: 10.1046/j.1523-1755.2002.00139.x.
    1. Perianayagam M.C., Balakrishnan V.S., Pereira B.J., Jaber B.L. C5a delays apoptosis of human neutrophils via an extracellular signal-regulated kinase and Bad-mediated signalling pathway. Eur. J. Clin. Invest. 2004;34:50–56.
    1. Kettritz R., Falk R.J., Jennette J.C., Gaido M.L. Neutrophil superoxide release is required for spontaneous and FMLP-mediated but not for TNF alpha-mediated apoptosis. J. Am. Soc. Nephrol. 1997;8:1091–1100.
    1. Haag-Weber M., Hörl W.H. Calcium-dependent neutrophil activation. Contrib. Nephrol. 1992;100:269–285.
    1. Hörl W.H., Haag-Weber M., Mai B., Massry S.G. Verapamil reverses abnormal [Ca2+]i and carbohydrate metabolism of PMNL of dialysis patients. Kidney Int. 1995;47:1741–1745. doi: 10.1038/ki.1995.240.
    1. Lucas M., Diaz P. Thapsigargin-induced calcium entry and apoptotic death of neutrophils are blocked by activation of protein kinase C. Pharmacology. 2001;63:191–196.
    1. Hu T.H., Bei L., Huang Y.F., Shen X. The relationship between fMLP induced neutrophil respiratory burst and the apoptosis of neutrophil. Shi Yan Sheng Wu Xue Bao. 1999;32:359–366.
    1. Carracedo J., Ramirez R., Soriano S., Alvarez de Lara M.A., Rodriguez M., Martin-Malo A., Aljama P. Monocytes from dialysis patients exhibit characteristics of senescent cells: Does it really mean inflammation? Contrib. Nephrol. 2005;149:208–218.
    1. Galli F., Ghibelli L., Buoncristiani U., Bordoni V., D’Intini V., Benedetti S., Canestrari F., Ronco C., Floridi A. Mononuclear leukocyte apoptosis in haemodialysis patients: The role of cell thiols and vitamin E. Nephrol. Dial. Transplant. 2003;18:1592–1600. doi: 10.1093/ndt/gfg210.
    1. Fernandez-Fresnedo G., Ramos M.A., Gonzalez-Pardo M.C., de Francisco A.L., Lopez-Hoyos M., Arias M. B lymphopenia in uremia is related to an accelerated in vitro apoptosis and dysregulation of Bcl-2. Nephrol. Dial. Transplant. 2000;15:502–510.
    1. Meier P., Dayer E., Blanc E., Wauters J.P. Early T cell activation correlates with expression of apoptosis markers in patients with end-stage renal disease. J. Am. Soc. Nephrol. 2002;13:204–212.
    1. Sardenberg C., Suassuna P., Andreoli M.C., Watanabe R., Dalboni M.A., Manfredi S.R., dos Santos O.P., Kallas E.G., Draibe S.A., Cendoroglo M. Effects of uraemia and dialysis modality on polymorphonuclear cell apoptosis and function. Nephrol. Dial. Transplant. 2006;21:160–165.
    1. Soriano S., Martin-Malo A., Carracedo J., Ramirez R., Rodriguez M., Aljama P. Lymphocyte apoptosis: Role of uremia and permeability of dialysis membrane. Nephron. Clin. Pract. 2005;100:C71–C77.
    1. D’Intini V., Bordoni V., Bolgan I., Bonello M., Brendolan A., Crepaldi C., Gastaldon F., Levin N.W., Bellomo R., Ronco C. Monocyte apoptosis in uremia is normalized with continuous blood purification modalities. Blood Purif. 2004;22:9–12. doi: 10.1159/000074918.
    1. Pesanti E.L. Immunologic defects and vaccination in patients with chronic renal failure. Infect. Dis. Clin. North. Am. 2001;15:813–832.
    1. Macdougall I.C., Cooper A.C. Erythropoietin resistance: The role of inflammation and pro-inflammatory cytokines. Nephrol. Dial. Transplant. 2002;17(Suppl. 11):39–43. doi: 10.1093/ndt/17.suppl_11.39.
    1. Deicher R., Ziai F., Cohen G., Mullner M., Hörl W.H. High-dose parenteral iron sucrose depresses neutrophil intracellular killing capacity. Kidney Int. 2003;64:728–736. doi: 10.1046/j.1523-1755.2003.00125.x.
    1. Sengoelge G., Sunder-Plassmann G., Hörl W.H. Potential risk for infection and atherosclerosis due to iron therapy. J. Ren. Nutr. 2005;15:105–110.
    1. Patruta S.I., Hörl W.H. Iron and infection. Kidney Int. 1999;69:S125–S130. doi: 10.1046/j.1523-1755.1999.055Suppl.69125.x.
    1. Deicher R., Hörl W.H. New insights into the regulation of iron homeostasis. Eur. J. Clin. Invest. 2006;36:301–309.
    1. Atanasiu V., Manolescu B., Stoian I. Hepcidin the link between inflammation and anemia in chronic renal failure. Rom. J. Intern. Med. 2006;44:25–33.
    1. Ashby D.R., Gale D.P., Busbridge M., Murphy K.G., Duncan N.D., Cairns T.D., Taube D.H., Bloom S.R., Tam F.W., Chapman R.S., et al. Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease. Kidney Int. 2009;75:976–981. doi: 10.1038/ki.2009.21.
    1. Rocchetta F., Solini S., Mister M., Mele C., Cassis P., Noris M., Remuzzi G., Aiello S. Erythropoietin enhances immunostimulatory properties of immature dendritic cells. Clin. Exp. Immunol. 2011;165:202–210. doi: 10.1111/j.1365-2249.2011.04417.x.
    1. Reichel H., Recker A., Deppisch R., Stier E., Ritz E. 25-Hydroxyvitamin D3 metabolism in vitro by mononuclear cells from hemodialysis patients. Nephron. 1992;62:404–412.
    1. Schomig M., Ritz E. Management of disturbed calcium metabolism in uraemic patients: 1. Use of vitamin D metabolites. Nephrol. Dial. Transplant. 2000;15(Suppl. 5):18–24. doi: 10.1093/ndt/15.suppl_5.18.
    1. Glorieux G., Vanholder R. Blunted response to vitamin D in uremia. Kidney Int. 2001;78:S182–S185.
    1. Shroff R., Wan M., Rees L. Can vitamin D slow down the progression of chronic kidney disease? Pediatr. Nephrol. 2011
    1. Szeto F.L., Reardon C.A., Yoon D., Wang Y., Wong K.E., Chen Y., Kong J., Liu S.Q., Thadhani R., Getz G.S., et al. Vitamin d receptor signaling inhibits atherosclerosis in mice. Mol. Endocrinol. 2012;26:1091–1101. doi: 10.1210/me.2011-1329.
    1. Wahl P., Wolf M. FGF23 in chronic kidney disease. Adv. Exp. Med. Biol. 2012;728:107–125.
    1. Sinha M.D., Turner C., Dalton R.N., Rasmussen P., Waller S., Booth C.J., Goldsmith D.J. Investigating FGF-23 concentrations and its relationship with declining renal function in paediatric patients with pre-dialysis CKD Stages 3–5. Nephrol. Dial. Transplant. 2012
    1. Kendrick J., Cheung A.K., Kaufman J.S., Greene T., Roberts W.L., Smits G., Chonchol M. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J. Am. Soc. Nephrol. 2011;22:1913–1922. doi: 10.1681/ASN.2010121224.
    1. Heine G.H., Seiler S., Fliser D. FGF-23: The rise of a novel cardiovascular risk marker in CKD. Nephrol. Dial. Transplant. 2012;27:3072–3081.
    1. Seiler S., Reichart B., Roth D., Seibert E., Fliser D., Heine G.H. FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol. Dial. Transplant. 2010;25:3983–3989. doi: 10.1093/ndt/gfq309.
    1. Deicher R., Kirsch B., Mullner M., Kaczirek K., Niederle B., Hörl W.H. Impact of parathyroidectomy on neutrophil cytosolic calcium in chronic kidney disease patients: A prospective parallel group trial. J. Intern. Med. 2005;258:67–76.
    1. Karpati I., Seres I., Matyus J., Ben T., Paragh G., Varga Z., Kakuk G. Which parameters affect cytosolic free calcium in polymorphonuclear leukocytes of haemodialysis patients? Nephrol. Dial. Transplant. 2001;16:1409–1415. doi: 10.1093/ndt/16.7.1409.
    1. Koorts A.M., Kruger M.C., Potgieter C.D., Viljoen M. Intracellular free calcium in the neutrophils of maintenance haemodialysis patients. Clin. Physiol. Funct. Imaging. 2002;22:285–294.
    1. Massry S., Smogorzewski M. Dysfunction of polymorphonuclear leukocytes in uremia: Role of parathyroid hormone. Kidney Int. 2001;78:S195–S196.
    1. Hansch G.M., Karnaoukhova S., Chang S.H., Rus H., Nicolescu F., Deppisch R., Meissner C., Ludwig H., Ritz E. Activation of human neutrophils after contact with cellulose-based haemodialysis membranes: Intracellular calcium signalling in single cells. Nephrol. Dial. Transplant. 1996;11:2453–2460.
    1. Smogorzewski M., Massry S.G. Defects in B-cell function and metabolism in uremia: Role of parathyroid hormone. Kidney Int. 2001;78:S186–S189. doi: 10.1046/j.1523-1755.2001.07844.x.
    1. Griveas I., Visvardis G., Papadopoulou D., Mitsopoulos E., Kyriklidou P., Manou E., Meimaridou D., Ginikopoulou E., Sakellariou G., Fleva A., et al. Cellular immunity and levels of parathyroid hormone in uremic patients receiving hemodialysis. Ren. Fail. 2005;27:275–278.
    1. Riancho J.A., Zarrabeitia M.T., de Francisco A.L., Amado J.A., Napal J., Arias M., Gonzalez-Macias J. Vitamin D therapy modulates cytokine secretion in patients with renal failure. Nephron. 1993;65:364–368.
    1. Jurewicz M., McDermott D.H., Sechler J.M., Tinckam K., Takakura A., Carpenter C.B., Milford E., Abdi R. Human T and natural killer cells possess a functional renin-angiotensin system: Further mechanisms of angiotensin II-induced inflammation. J. Am. Soc. Nephrol. 2007;18:1093–1102. doi: 10.1681/ASN.2006070707.
    1. Nataraj C., Oliverio M.I., Mannon R.B., Mannon P.J., Audoly L.P., Amuchastegui C.S., Ruiz P., Smithies O., Coffman T.M. Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. J. Clin. Invest. 1999;104:1693–1701.
    1. El Bekay R., Alvarez M., Monteseirin J., Alba G., Chacon P., Vega A., Martin-Nieto J., Jimenez J., Pintado E., Bedoya F.J., et al. Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils: involvement of mitogen-activated protein kinase, calcineurin, and the transcription factor NF-kappaB. Blood. 2003;102:662–671. doi: 10.1182/blood-2002-09-2785.
    1. Suzuki Y., Gomez-Guerrero C., Shirato I., Lopez-Franco O., Hernandez-Vargas P., Sanjuan G., Ruiz-Ortega M., Sugaya T., Okumura K., Tomino Y., et al. Susceptibility to T cell-mediated injury in immune complex disease is linked to local activation of renin-angiotensin system: The role of NF-AT pathway. J. Immunol. 2002;169:4136–4146.
    1. Vanholder R., Argiles A., Baurmeister U., Brunet P., Clark W., Cohen G., De Deyn P.P., Deppisch R., Descamps-Latscha B., Henle T., et al. Uremic toxicity: present state of the art. Int. J. Artif. Organs. 2001;24:695–725.
    1. Schepers E., Glorieux G., Vanholder R. The gut: the forgotten organ in uremia? Blood Purif. 2010;29:130–136. doi: 10.1159/000245639.
    1. Vanholder R., De Smet R., Glorieux G., Argiles A., Baurmeister U., Brunet P., Clark W., Cohen G., De Deyn P.P., Deppisch R., et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003;63:1934–1943. doi: 10.1046/j.1523-1755.2003.00924.x.
    1. Duranton F., Cohen G., De Smet R., Rodriguez M., Jankowski J., Vanholder R., Argiles A. Normal and Pathologic Concentrations of Uremic Toxins. J. Am. Soc. Nephrol. 2012;23:1258–1270.
    1. Vanholder R., Schepers E., Pletinck A., Neirynck N., Glorieux G. An update on protein-bound uremic retention solutes. J. Ren. Nutr. 2012;22:90–94. doi: 10.1053/j.jrn.2011.10.026.
    1. Vanholder R., Baurmeister U., Brunet P., Cohen G., Glorieux G., Jankowski J. A bench to bedside view of uremic toxins. J. Am. Soc. Nephrol. 2008;19:863–870.
    1. Cohen G., Glorieux G., Thornalley P., Schepers E., Meert N., Jankowski J., Jankowski V., Argiles A., Anderstam B., Brunet P., et al. Review on uraemic toxins III: Recommendations for handling uraemic retention solutes in vitro—towards a standardized approach for research on uraemia. Nephrol. Dial. Transplant. 2007;22:3381–3390. doi: 10.1093/ndt/gfm210.
    1. Meert N., Schepers E., De Smet R., Argiles A., Cohen G., Deppisch R., Drueke T., Massy Z., Spasovski G., Stegmayr B., et al. Inconsistency of reported uremic toxin concentrations. Artif. Organs. 2007;31:600–611. doi: 10.1111/j.1525-1594.2007.00434.x.
    1. Vanholder R., Meert N., Schepers E., Glorieux G., Argiles A., Brunet P., Cohen G., Drueke T., Mischak H., Spasovski G., et al. Review on uraemic solutes II—variability in reported concentrations: causes and consequences. Nephrol. Dial. Transplant. 2007;22:3115–3121.
    1. Schmidt S., Westhoff T.H., Krauser P., Ignatius R., Jankowski J., Jankowski V., Zidek W., van der Giet M. The uraemic toxin phenylacetic acid impairs macrophage function. Nephrol. Dial. Transplant. 2008;23:3485–3493. doi: 10.1093/ndt/gfn266.
    1. Schepers E., Glorieux G., Jankowski V., Dhondt A., Jankowski J., Vanholder R. Dinucleoside polyphosphates: Newly detected uraemic compounds with an impact on leucocyte oxidative burst. Nephrol. Dial. Transplant. 2010;25:2636–2644.
    1. Hirayama A., Noronha-Dutra A.A., Gordge M.P., Neild G.H., Hothersall J.S. Inhibition of neutrophil superoxide production by uremic concentrations of guanidino compounds. J. Am. Soc. Nephrol. 2000;11:684–689.
    1. Glorieux G.L., Dhondt A.W., Jacobs P., Van Langeraert J., Lameire N.H., De Deyn P.P., Vanholder R.C. In vitro study of the potential role of guanidines in leukocyte functions related to atherogenesis and infection. Kidney Int. 2004;65:2184–2192. doi: 10.1111/j.1523-1755.2004.00631.x.
    1. Schepers E., Glorieux G., Dhondt A., Leybaert L., Vanholder R. Role of symmetric dimethylarginine in vascular damage by increasing ROS via store-operated calcium influx in monocytes. Nephrol. Dial. Transplant. 2009;24:1429–1435.
    1. Ito S., Osaka M., Higuchi Y., Nishijima F., Ishii H., Yoshida M. Indoxyl sulfate induces leukocyte-endothelial interactions through up-regulation of E-selectin. J. Biol. Chem. 2010;285:38869–38875.
    1. Schepers E., Meert N., Glorieux G., Goeman J., Van der Eycken J., Vanholder R. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol. Dial. Transplant. 2007;22:592–596.
    1. Postea O., Krotz F., Henger A., Keller C., Weiss N. Stereospecific and redox-sensitive increase in monocyte adhesion to endothelial cells by homocysteine. Arterioscler. Thromb. Vasc. Biol. 2006;26:508–513.
    1. Stopper H., Treutlein A.T., Bahner U., Schupp N., Schmid U., Brink A., Perna A., Heidland A. Reduction of the genomic damage level in haemodialysis patients by folic acid and vitamin B12 supplementation. Nephrol. Dial. Transplant. 2008;23:3272–3279.
    1. Perna A.F., Capasso R., Lombardi C., Acanfora F., Satta E., Ingrosso D. Hyperhomocysteinemia and macromolecule modifications in uremic patients. Clin. Chem. Lab. Med. 2005;43:1032–1038.
    1. Nakayama M., Nakayama K., Zhu W.J., Shirota Y., Terawaki H., Sato T., Kohno M., Ito S. Polymorphonuclear leukocyte injury by methylglyoxal and hydrogen peroxide: A possible pathological role for enhanced oxidative stress in chronic kidney disease. Nephrol. Dial. Transplant. 2008;23:3096–3102.
    1. Ward R.A., McLeish K.R. Methylglyoxal: A stimulus to neutrophil oxygen radical production in chronic renal failure? Nephrol. Dial. Transplant. 2004;19:1702–1707. doi: 10.1093/ndt/gfh271.
    1. Okado A., Kawasaki Y., Hasuike Y., Takahashi M., Teshima T., Fujii J., Taniguchi N. Induction of apoptotic cell death by methylglyoxal and 3-deoxyglucosone in macrophage-derived cell lines. Biochem. Biophys. Res. Commun. 1996;225:219–224.
    1. Cohen G., Haag-Weber M., Mai B., Deicher R., Hörl W.H. Effect of immunoglobulin light chains from hemodialysis and continuous ambulatory peritoneal dialysis patients on polymorphonuclear leukocyte functions. J. Am. Soc. Nephrol. 1995;6:1592–1599.
    1. Cohen G., Hörl W.H. Retinol binding protein isolated from acute renal failure patients inhibits polymorphonuclear leucocyte functions. Eur. J. Clin. Invest. 2004;34:774–781.
    1. Cohen G., Raupachova J., Ilic D., Werzowa J., Hörl W.H. Effect of leptin on polymorphonuclear leucocyte functions in healthy subjects and haemodialysis patients. Nephrol. Dial. Transplant. 2011;26:2271–2281.
    1. Cohen G., Ilic D., Raupachova J., Hörl W.H. Resistin inhibits essential functions of polymorphonuclear leukocytes. J. Immunol. 2008;181:3761–3768.
    1. Wimmer T., Cohen G., Säemann M.D., Hörl W.H. Effects of Tamm-Horsfall protein on polymorphonuclear leukocyte function. Nephrol. Dial. Transplant. 2004;19:2192–2197.
    1. Tolle M., Huang T., Schuchardt M., Jankowski V., Prufer N., Jankowski J., Tietge U.J., Zidek W., van der Giet M. High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A. Cardiovasc. Res. 2012;94:154–162.
    1. Weichhart T., Kopecky C., Kubicek M., Haidinger M., Doller D., Katholnig K., Suarna C., Eller P., Tolle M., Gerner C., et al. Serum amyloid A in uremic HDL promotes inflammation. J. Am. Soc. Nephrol. 2012;23:934–947. doi: 10.1681/ASN.2011070668.
    1. Glorieux G., Helling R., Henle T., Brunet P., Deppisch R., Lameire N., Vanholder R. In vitro evidence for immune activating effect of specific AGE structures retained in uremia. Kidney Int. 2004;66:1873–1880. doi: 10.1111/j.1523-1755.2004.00961.x.
    1. Rashid G., Korzets Z., Bernheim J. Advanced glycation end products stimulate tumor necrosis factor-alpha and interleukin-1 beta secretion by peritoneal macrophages in patients on continuous ambulatory peritoneal dialysis. Isr. Med. Assoc. J. 2006;8:36–39.
    1. Kirstein M., Brett J., Radoff S., Ogawa S., Stern D., Vlassara H. Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: Role in vascular disease of diabetes and aging. Proc. Natl. Acad. Sci. USA. 1990;87:9010–9014.
    1. Toure F., Zahm J.M., Garnotel R., Lambert E., Bonnet N., Schmidt A.M., Vitry F., Chanard J., Gillery P., Rieu P. Receptor for advanced glycation end-products (RAGE) modulates neutrophil adhesion and migration on glycoxidated extracellular matrix. Biochem. J. 2008;416:255–261.
    1. Witko-Sarsat V., Gausson V., Nguyen A.T., Touam M., Drueke T., Santangelo F., Descamps-Latscha B. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: A potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int. 2003;64:82–91. doi: 10.1046/j.1523-1755.2003.00044.x.
    1. Nguyen-Khoa T., Massy Z.A., Witko-Sarsat V., Canteloup S., Kebede M., Lacour B., Drueke T., Descamps-Latscha B. Oxidized low-density lipoprotein induces macrophage respiratory burst via its protein moiety: A novel pathway in atherogenesis? Biochem. Biophys. Res. Commun. 1999;263:804–809. doi: 10.1006/bbrc.1999.1438.
    1. Sedgwick J.B., Hwang Y.S., Gerbyshak H.A., Kita H., Busse W.W. Oxidized low density lipoprotein activates migration and degranulation of human granulocytes. Am. J. Respir. Cell. Mol. Biol. 2003;30:30.
    1. Meier P., Golshayan D., Blanc E., Pascual M., Burnier M. Oxidized LDL modulates apoptosis of regulatory T cells in patients with ESRD. J. Am. Soc. Nephrol. 2009;20:1368–1384.
    1. Capasso R., Sambri I., Cimmino A., Salemme S., Lombardi C., Acanfora F., Satta E., Puppione D.L., Perna A.F., Ingrosso D. Homocysteinylated albumin promotes increased monocyte-endothelial cell adhesion and up-regulation of MCP1, Hsp60 and ADAM17. PLoS One. 2012;7:e31388.
    1. Jankowski J., van der Giet M., Jankowski V., Schmidt S., Hemeier M., Mahn B., Giebing G., Tolle M., Luftmann H., Schluter H., et al. Increased plasma phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression. J. Clin. Invest. 2003;112:256–264.
    1. Wu I.W., Hsu K.H., Hsu H.J., Lee C.C., Sun C.Y., Tsai C.J., Wu M.S. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients—a prospective cohort study. Nephrol. Dial. Transplant. 2011;27:1169–1175.
    1. Liabeuf S., Barreto D.V., Barreto F.C., Meert N., Glorieux G., Schepers E., Temmar M., Choukroun G., Vanholder R., Massy Z.A. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol. Dial. Transpl. 2009;25:1183–1191.
    1. Chauveau P., Chadefaux B., Coude M., Aupetit J., Hannedouche T., Kamoun P., Jungers P. Increased plasma homocysteine concentration in patients with chronic renal failure. Miner. Electrolyte Metab. 1992;18:196–198.
    1. Beltowski J. Protein homocysteinylation: A new mechanism of atherogenesis? Postep. Hig. Med. Dosw. 2005;59:392–404.
    1. Hannam-Harris A.C., Gordon J., Smith J.L. Immunoglobulin synthesis by neoplastic B lymphocytes: Free light chain synthesis as a marker of B cell differentiation. J. Immunol. 1980;125:2177–2181.
    1. Hutchison C.A., Harding S., Hewins P., Mead G.P., Townsend J., Bradwell A.R., Cockwell P. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2008;3:1684–1690.
    1. Cohen G., Rudnicki M., Schmaldienst S., Hörl W.H. Effect of dialysis on serum/plasma levels of free immunoglobulin light chains in end-stage renal disease patients. Nephrol. Dial. Transplant. 2002;17:879–883.
    1. Hutchison C.A., Cockwell P., Reid S., Chandler K., Mead G.P., Harrison J., Hattersley J., Evans N.D., Chappell M.J., Cook M., et al. Efficient removal of immunoglobulin free light chains by hemodialysis for multiple myeloma: In vitro and in vivo studies. J. Am. Soc. Nephrol. 2007;18:886–895. doi: 10.1681/ASN.2006080821.
    1. Lepreux S., Bioulac-Sage P., Gabbiani G., Sapin V., Housset C., Rosenbaum J., Balabaud C., Desmouliere A. Cellular retinol-binding protein-1 expression in normal and fibrotic/cirrhotic human liver: Different patterns of expression in hepatic stellate cells and (myo)fibroblast subpopulations. J. Hepatol. 2004;40:774–780.
    1. Melhus H., Li Q., Nordlinder H., Farnebo L.O., Grimelius L. Expression of cellular retinol- and retinoic acid-binding proteins in normal and pathologic human parathyroid glands. Endocr. Pathol. 2001;12:423–427.
    1. Busch C., Siegenthaler G., Vahlquist A., Nordlinder H., Sundelin J., Saksena P., Eriksson U. Expression of cellular retinoid-binding proteins during normal and abnormal epidermal differentiation. J. Invest. Dermatol. 1992;99:795–802.
    1. Ong D.E., Page D.L. Cellular retinol-binding protein (type two) is abundant in human small intestine. J. Lipid Res. 1987;28:739–745.
    1. Scarpioni L., Dall’aglio P.P., Poisetti P.G., Buzio C. Retinol binding protein in serum and in urine of glomerular and tubular nephropathies. Clin. Chim. Acta. 1976;68:107–113.
    1. Bankson D.D., Rifai N., Silverman L.M. Serum retinol-binding protein and creatinine in onset of and recovery from acute renal failure. Clin. Chem. 1987;33:1942.
    1. Axelsson J., O’Byrne S.M., Blaner W.S., Carrero J.J., Bruchfeld A., Heimburger O., Barany P., Lindholm B., Stenvinkel P. Serum retinol-binding protein concentration and its association with components of the uremic metabolic syndrome in nondiabetic patients with chronic kidney disease stage 5. Am. J. Nephrol. 2008;29:447–453.
    1. DeLany J. Leptin hormone and other biochemical influences on systemic inflammation. J. Bodyw. Mov. Ther. 2008;12:121–132.
    1. Teta D. Adipokines as uremic toxins. J. Ren. Nutr. 2012;22:81–85.
    1. Kopp A., Buechler C., Neumeier M., Weigert J., Aslanidis C., Scholmerich J., Schaffler A. Innate immunity and adipocyte function: Ligand-specific activation of multiple Toll-like receptors modulates cytokine, adipokine, and chemokine secretion in adipocytes. Obesity (Silver Spring) 2009;17:648–656. doi: 10.1038/oby.2008.607.
    1. Diez J.J., Iglesias P., Fernandez-Reyes M.J., Aguilera A., Bajo M.A., Alvarez-Fidalgo P., Codoceo R., Selgas R. Serum concentrations of leptin, adiponectin and resistin, and their relationship with cardiovascular disease in patients with end-stage renal disease. Clin. Endocrinol. (Oxf.) 2005;62:242–249. doi: 10.1111/j.1365-2265.2005.02207.x.
    1. Widjaja A., Kielstein J.T., Horn R., von zur Muhlen A., Kliem V., Brabant G. Free serum leptin but not bound leptin concentrations are elevated in patients with end-stage renal disease. Nephrol. Dial. Transplant. 2000;15:846–850.
    1. Aminzadeh M.A., Pahl M.V., Barton C.H., Doctor N.S., Vaziri N.D. Human uraemic plasma stimulates release of leptin and uptake of tumour necrosis factor-alpha in visceral adipocytes. Nephrol. Dial. Transplant. 2009;24:3626–3631.
    1. Curat C.A., Wegner V., Sengenes C., Miranville A., Tonus C., Busse R., Bouloumie A. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49:744–747.
    1. Kunnari A.M., Savolainen E.R., Ukkola O.H., Kesaniemi Y.A., Jokela M.A. The expression of human resistin in different leucocyte lineages is modulated by LPS and TNFalpha. Regul. Pept. 2009;157:57–63.
    1. Axelsson J., Bergsten A., Qureshi A.R., Heimburger O., Barany P., Lonnqvist F., Lindholm B., Nordfors L., Alvestrand A., Stenvinkel P. Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int. 2006;69:596–604.
    1. Nusken K.D., Kratzsch J., Wienholz V., Stohr W., Rascher W., Dotsch J. Circulating resistin concentrations in children depend on renal function. Nephrol. Dial. Transplant. 2006;21:107–112.
    1. Palanivel R., Maida A., Liu Y., Sweeney G. Regulation of insulin signalling, glucose uptake and metabolism in rat skeletal muscle cells upon prolonged exposure to resistin. Diabetologia. 2006;49:183–190.
    1. Bostrom E.A., Tarkowski A., Bokarewa M. Resistin is stored in neutrophil granules being released upon challenge with inflammatory stimuli. Biochim. Biophys. Acta. 2009;1793:1894–1900. doi: 10.1016/j.bbamcr.2009.09.008.
    1. Walcher D., Hess K., Berger R., Aleksic M., Heinz P., Bach H., Durst R., Hausauer A., Hombach V., Marx N. Resistin: A newly identified chemokine for human CD4-positive lymphocytes. Cardiovasc. Res. 2010;85:167–174.
    1. Saemann M.D., Weichhart T., Hörl W.H., Zlabinger G.J. Tamm-Horsfall protein: A multilayered defence molecule against urinary tract infection. Eur. J. Clin. Invest. 2005;35:227–235.
    1. Prajczer S., Heidenreich U., Pfaller W., Kotanko P., Lhotta K., Jennings P. Evidence for a role of uromodulin in chronic kidney disease progression. Nephrol. Dial. Transplant. 2010;25:1896–1903.
    1. Saemann M.D., Weichhart T., Zeyda M., Staffler G., Schunn M., Stuhlmeier K.M., Sobanov Y., Stulnig T.M., Akira S., von Gabain A., et al. Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. J. Clin. Invest. 2005;115:468–475.
    1. Murphy A.J., Woollard K.J., Suhartoyo A., Stirzaker R.A., Shaw J., Sviridov D., Chin-Dusting J.P. Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A–I in in vitro and in vivo models of inflammation. Arterioscler. Thromb. Vasc. Biol. 2011;31:1333–1341. doi: 10.1161/ATVBAHA.111.226258.
    1. Murphy A.J., Woollard K.J., Hoang A., Mukhamedova N., Stirzaker R.A., McCormick S.P., Remaley A.T., Sviridov D., Chin-Dusting J. High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler. Thromb. Vasc. Biol. 2008;28:2071–2077.
    1. Liao X.L., Lou B., Ma J., Wu M.P. Neutrophils activation can be diminished by apolipoprotein A–I. Life Sci. 2005;77:325–335.
    1. Reiser K.M. Nonenzymatic glycation of collagen in aging and diabetes. Proc. Soc. Exp. Biol. Med. 1998;218:23–37.
    1. Thornalley P. The clinical significance of glycation. Clin. Lab. 1999;45:263–273.
    1. Miyata T., Maeda K., Kurokawa K., van Ypersele de Strihou C. Oxidation conspires with glycation to generate noxious advanced glycation end products in renal failure. Nephrol. Dial. Transplant. 1997;12:255–258.
    1. Makita Z., Radoff S., Rayfield E.J., Yang Z., Skolnik E., Delaney V., Friedman E.A., Cerami A., Vlassara H. Advanced glycosylation end products in patients with diabetic nephropathy. N. Engl. J. Med. 1991;325:836–842.
    1. Capeillere-Blandin C., Gausson V., Nguyen A.T., Descamps-Latscha B., Drueke T., Witko-Sarsat V. Respective role of uraemic toxins and myeloperoxidase in the uraemic state. Nephrol. Dial. Transplant. 2006;21:1555–1563.
    1. Kormoczi G.F., Wolfel U.M., Rosenkranz A.R., Hörl W.H., Oberbauer R., Zlabinger G.J. Serum proteins modified by neutrophil-derived oxidants as mediators of neutrophil stimulation. J. Immunol. 2001;167:451–460.
    1. Donadio C., Tognotti D., Donadio E. Albumin modification and fragmentation in renal disease. Clin. Chim. Acta. 2012;413:391–395.
    1. Mera K., Anraku M., Kitamura K., Nakajou K., Maruyama T., Tomita K., Otagiri M. Oxidation and carboxy methyl lysine-modification of albumin: Possible involvement in the progression of oxidative stress in hemodialysis patients. Hypertens. Res. 2005;28:973–980.
    1. Kraus L.M., Kraus A.P., Jr. Carbamoylation of amino acids and proteins in uremia. Kidney Int. 2001;78:S102–S107.
    1. Kraus L.M., Elberger A.J., Handorf C.R., Pabst M.J., Kraus A.P., Jr. Urea-derived cyanate forms epsilon-amino-carbamoyl-lysine (homocitrulline) in leukocyte proteins in patients with end-stage renal disease on peritoneal dialysis. J. Lab. Clin. Med. 1994;123:882–891.
    1. Pavone B., Sirolli V., Giardinelli A., Bucci S., Forli F., Di Cesare M., Sacchetta P., Di Pietro N., Pandolfi A., Urbani A., et al. Plasma protein carbonylation in chronic uremia. J. Nephrol. 2011;24:453–464. doi: 10.5301/JN.2011.8342.
    1. Verkade M.A., van Druningen C.J., Vaessen L.M., Hesselink D.A., Weimar W., Betjes M.G. Functional impairment of monocyte-derived dendritic cells in patients with severe chronic kidney disease. Nephrol. Dial. Transplant. 2007;22:128–138.
    1. Lim W.H., Kireta S., Leedham E., Russ G.R., Coates P.T. Uremia impairs monocyte and monocyte-derived dendritic cell function in hemodialysis patients. Kidney Int. 2007;72:1138–1148.
    1. Panzer U., Kurts C. T cell cross-talk with kidney dendritic cells in glomerulonephritis. J. Mol. Med. 2010;88:19–26.
    1. Zeyda M., Kirsch B.M., Geyeregger R., Stuhlmeier K.M., Zlabinger G.J., Hörl W.H., Saemann M.D., Stulnig T.M. Inhibition of human dendritic cell maturation and function by the novel immunosuppressant FK778. Transplantation. 2005;80:1105–1111. doi: 10.1097/01.tp.0000178301.19732.a1.
    1. Zeyda M., Geyeregger R., Poglitsch M., Weichhart T., Zlabinger G.J., Koyasu S., Hörl W.H., Stulnig T.M., Watschinger B., Saemann M.D. Impairment of T cell interactions with antigen-presenting cells by immunosuppressive drugs reveals involvement of calcineurin and NF-kappaB in immunological synapse formation. J. Leukoc. Biol. 2007;81:319–327.
    1. Stenvinkel P., Ekstrom T.J. Does the uremic milieu affect the epigenotype? J. Ren. Nutr. 2009;19:82–85. doi: 10.1053/j.jrn.2008.10.022.
    1. Chmielewski M., Lindholm B., Stenvinkel P., Ekstrom J.T. The role of epigenetics in kidney diseases. Prilozi. 2011;32:45–54.
    1. Jimenez R., Carracedo J., Santamaria R., Soriano S., Madueno J.A., Ramirez R., Rodriguez M., Martin-Malo A., Aljama P. Replicative senescence in patients with chronic kidney failure. Kidney Int. 2005;99:S11–S15.
    1. Stoyanova E., Sandoval S.B., Zuniga L.A., El-Yamani N., Coll E., Pastor S., Reyes J., Andres E., Ballarin J., Xamena N., et al. Oxidative DNA damage in chronic renal failure patients. Nephrol. Dial. Transplant. 2010;25:879–885.
    1. Buemi M., Floccari F., Costa C., Caccamo C., Belghity N., Campo S., Pernice F., Bonvissuto G., Coppolino G., Barilla A., et al. Dialysis-related genotoxicity: Sister chromatid exchanges and DNA lesions in T and B lymphocytes of uremic patients. Genomic damage in patients on hemodiafiltration. Blood Purif. 2006;24:569–574. doi: 10.1159/000097080.
    1. Sebekova K., Wagner Z., Schupp N., Boor P. Genomic damage and malignancy in end-stage renal failure: Do advanced glycation end products contribute? Kidney Blood Press. Res. 2007;30:56–66. doi: 10.1159/000099029.
    1. Stenvinkel P., Ekstrom T.J. Epigenetics and the uremic phenotype: A matter of balance. Contrib. Nephrol. 2008;161:55–62.
    1. Fink K., Brink A., Vienken J., Heidland A., Stopper H. Homocysteine exerts genotoxic and antioxidative effects in vitro. Toxicol In Vitro. 2007;21:1402–1408. doi: 10.1016/j.tiv.2007.05.005.
    1. Andreini B., Panichi V., Cirami C., Migliori M., De Pietro S., Taccola D., Aloisi M., Antonelli A., Giusti R., Rindi P., et al. ANCA in dialysis patients: A role for bioincompatibility? Int. J. Artif. Organs. 2000;23:97–103.
    1. Schreiber A., Xiao H., Jennette J.C., Schneider W., Luft F.C., Kettritz R. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 2009;20:289–298. doi: 10.1681/ASN.2008050497.
    1. Schreiber A., Rolle S., Peripelittchenko L., Rademann J., Schneider W., Luft F.C., Kettritz R. Phosphoinositol 3-kinase-gamma mediates antineutrophil cytoplasmic autoantibody-induced glomerulonephritis. Kidney Int. 2010;77:118–128.
    1. Harper L., Cockwell P., Adu D., Savage C.O. Neutrophil priming and apoptosis in anti-neutrophil cytoplasmic autoantibody-associated vasculitis. Kidney Int. 2001;59:1729–1738. doi: 10.1046/j.1523-1755.2001.0590051729.x.

Source: PubMed

3
Subscribe