When Aging Reaches CD4+ T-Cells: Phenotypic and Functional Changes

Marco Antonio Moro-García, Rebeca Alonso-Arias, Carlos López-Larrea, Marco Antonio Moro-García, Rebeca Alonso-Arias, Carlos López-Larrea

Abstract

Beyond midlife, the immune system shows aging features and its defensive capability becomes impaired, by a process known as immunosenescence that involves many changes in the innate and adaptive responses. Innate immunity seems to be better preserved globally, while the adaptive immune response exhibits profound age-dependent modifications. Elderly people display a decline in numbers of naïve T-cells in peripheral blood and lymphoid tissues, while, in contrast, their proportion of highly differentiated effector and memory T-cells, such as the CD28(null) T-cells, increases markedly. Naïve and memory CD4+ T-cells constitute a highly dynamic system with constant homeostatic and antigen-driven proliferation, influx, and loss of T-cells. Thymic activity dwindles with age and essentially ceases in the later decades of life, severely constraining the generation of new T-cells. Homeostatic control mechanisms are very effective at maintaining a large and diverse subset of naïve CD4+ T-cells throughout life, but although later than in CD8 + T-cell compartment, these mechanisms ultimately fail with age.

Keywords: CMV; IL-15; NKRs; T-cells; immunosenescence; inflammation.

Figures

Figure 1
Figure 1
Distribution of CD4+ T-cells into naïve, central memory, effector memory (EM), and effector memory RA (EMRA). (A) Schematic model of the T-cells differentiation subsets accordingly to CD4 + 5RA and CCR7 expression. (B) Dot-plots representatives of the naïve, CM, EM, and EMRA subsets in young people and elderly subjects into the CD4+ T-cells. Whole blood was stained with anti-CD45RA-FICT, anti-CD8-PE, anti-CD4-PerCP, and anti-CCR7-APC, and 105 cells were acquired in each experiment.
Figure 2
Figure 2
Distribution of EM and EMRA in CD4+ T-cells into subsets defined by CD28 and CD27 expression. (A) Schematic model of the EM and EMRA CD4+ T-cells differentiation subsets accordingly to CD27 and CD28 expression. EM T-cells can be divided into EM1 (CD27 + CD28 +), EM2 (CD27 + CD28null, only in CD8 +  T-cells), EM3 (CD27nullCD28null), and EM4 (CD27nullCD28 +). Similarly, EMRA can be divided into pE1 (CD27 + CD28+) and pE2 (CD27 + CD28null, only in CD8 T-cells) and E (CD27nullCD28null). (B) Dot-plots representatives of the EM and EMRA subsets in young people and elderly subjects into the CD4+ T-cells.
Figure 3
Figure 3
Older people present a different receptor repertoire from that of young individuals. Despite the decline of thymic function and the low TCR diversity, the elderly CD4+ T-cells present novel functions attributed to their acquisition of NK-related receptors (NKRs) such as KIR, CD94, CD16, CD56, NKG2, and KLRG1. CD4+ T-cells undergo senescence due to lifetime exposure to persistent pathogens and to homeostatic proliferation. With advancing age, the T-cell repertoire becomes populated with highly oligoclonal, long-lived T-cells, most of which have lost the ability to express CD28. Such CD28null T-cells have limited proliferative capacity, but are functionally active. They are generally long-lived and functionally active.
Figure 4
Figure 4
Effect of IL-15 homeostatic cytokine on CD4+ T-cells. (A) It is widely accepted that IL-7 signaling through the IL-7 receptor is essential for prolonged survival of naïve and memory T-cells. Naïve T-cells rely on survival signals through contact with self-peptide-loaded major histocompatibility complex (MHC) molecules plus interleukin IL-7. (B) Antigen-experienced (memory) T-cells are typically MHC-independent. They survive and undergo periodic homeostatic proliferation through contact with both IL-7 and IL-15. (C) IL-15 promotes the proliferation of late-memory CD4+ T-cells and enhances the proliferative response of CD28null cells with respect to CD28+ CD4+ T-cells. IL-15 increases the cytolytic properties of CD4 + CD28null T-cells and enhances their antigen-specific responses.

References

    1. Abedin S., Michel J. J., Lemster B., Vallejo A. N. (2005). Diversity of NKR expression in aging T cells and in T cells of the aged: the new frontier into the exploration of protective immunity in the elderly. Exp. Gerontol. 40, 537–54810.1016/j.exger.2005.04.012
    1. Aiello A. E., Haan M., Blythe L., Moore K., Gonzalez J. M., Jagust W. (2006). The influence of latent viral infection on rate of cognitive decline over 4 years. J. Am. Geriatr. Soc. 54, 1046–105410.1111/j.1532-5415.2006.00796.x
    1. Alcami A., Koszinowski U. H. (2000). Viral mechanisms of immune evasion. Immunol. Today 21, 447–45510.1016/S0167-5699(00)01699-6
    1. Almanzar G., Schwaiger S., Jenewein B., Keller M., Herndler-Brandstetter D., Wurzner R., et al. (2005). Long-term Cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J. Virol. 79, 3675–368310.1128/JVI.79.6.3675-3683.2005
    1. Almeida A. R., Legrand N., Papiernik M., Freitas A. A. (2002). Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J. Immunol. 169, 4850–4860
    1. Alonso-Arias R., Lopez-Vazquez A., Diaz-Pena R., Sampere A., Tricas L., Asensi V., et al. (2009). CD8dim and NKG2D expression defines related subsets of CD4+ T cells in HIV-infected patients with worse prognostic factors. J. Acquir. Immune Defic. Syndr. 51, 390–39810.1097/FTD.0b013e3181679015
    1. Alonso-Arias R., Moro-Garcia M. A., Lopez-Vazquez A., Rodrigo L., Baltar J., Garcia F. M., et al. (2011a). NKG2D expression in CD4+ T lymphocytes as a marker of senescence in the aged immune system. Age (Dordr.) 33, 591–60510.1007/s11357-010-9200-6
    1. Alonso-Arias R., Moro-Garcia M. A., Vidal-Castineira J. R., Solano-Jaurrieta J. J., Suarez-Garcia F. M., Coto E., et al. (2011b). IL-15 preferentially enhances functional properties and antigen-specific responses of CD4+CD28(null) compared to CD4+CD28+ T cells. Aging Cell 10, 844–85210.1111/j.1474-9726.2011.00725.x
    1. Alonso-Arias R., Moro-Garcia M. A., Echeverria A., Solano-Jaurrieta J. J., Suarez-Garcia F. M., Lopez-Larrea C. (2013). Intensity of the humoral response to Cytomegalovirus is associated with the phenotypic and functional status of the immune system. J. Virol. 87, 4486–449510.1128/JVI.02425-12
    1. Amyes E., Hatton C., Montamat-Sicotte D., Gudgeon N., Rickinson A. B., McMichael A. J., et al. (2003). Characterization of the CD4+ T cell response to Epstein-Barr virus during primary and persistent infection. J. Exp. Med. 198, 903–91110.1084/jem.20022058
    1. Andrews N. P., Fujii H., Goronzy J. J., Weyand C. M. (2010). Telomeres and immunological diseases of aging. Gerontology 56, 390–40310.1159/000268620
    1. Appay V., Dunbar P. R., Callan M., Klenerman P., Gillespie G. M., Papagno L., et al. (2002a). Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8, 379–38510.1038/nm0402-379
    1. Appay V., Zaunders J. J., Papagno L., Sutton J., Jaramillo A., Waters A., et al. (2002b). Characterization of CD4(+) CTLs ex vivo. J. Immunol. 168, 5954–5958
    1. Appay V., van Lier R. A., Sallusto F., Roederer M. (2008). Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 73, 975–983
    1. Aronson M. (1991). Hypothesis: involution of the thymus with aging – programmed and beneficial. Thymus 18, 7–13
    1. Aspinall R. (1997). Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J. Immunol. 158, 3037–3045
    1. Bazdar D. A., Kalinowska M., Sieg S. F. (2009). Interleukin-7 receptor signaling is deficient in CD4+ T cells from HIV-infected persons and is inversely associated with aging. J. Infect. Dis. 199, 1019–102810.1086/597210
    1. Bosque A., Famiglietti M., Weyrich A. S., Goulston C., Planelles V. (2011). Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells. PLoS Pathog. 7:e1002288.10.1371/journal.ppat.1002288
    1. Boyman O., Krieg C., Homann D., Sprent J. (2012). Homeostatic maintenance of T cells and natural killer cells. Cell. Mol. Life Sci. 69, 1597–160810.1007/s00018-012-0968-7
    1. Bradley B. A. (2002). Rejection and recipient age. Transpl. Immunol. 10, 125–13210.1016/S0966-3274(02)00058-8
    1. Brocker T. (1997). Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J. Exp. Med. 186, 1223–123210.1084/jem.186.8.1223
    1. Brown D. M., Lee S., Garcia-Hernandez M. D., Swain S. L. (2012). Multi-functional CD4 cells expressing IFN-gamma and perforin mediate protection against lethal influenza infection. J. Virol. 86, 6792–680310.1128/JVI.07172-11
    1. Bryl E., Witkowski J. M. (2004). Decreased proliferative capability of CD4(+) cells of elderly people is associated with faster loss of activation-related antigens and accumulation of regulatory T cells. Exp. Gerontol. 39, 587–59510.1016/j.exger.2003.10.029
    1. Campbell J. J., Bowman E. P., Murphy K., Youngman K. R., Siani M. A., Thompson D. A., et al. (1998). 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3beta receptor CCR7. J. Cell Biol. 141, 1053–105910.1083/jcb.141.4.1053
    1. Campbell J. J., Murphy K. E., Kunkel E. J., Brightling C. E., Soler D., Shen Z., et al. (2001). CCR7 expression and memory T cell diversity in humans. J. Immunol. 166, 877–884
    1. Caruso C., Candore G., Cigna D., DiLorenzo G., Sireci G., Dieli F., et al. (1996). Cytokine production pathway in the elderly. Immunol. Res. 15, 84–9010.1007/BF02918286
    1. Chiu W. K., Fann M., Weng N. P. (2006). Generation and growth of CD28nullCD8+ memory T cells mediated by IL-15 and its induced cytokines. J. Immunol. 177, 7802–7810
    1. Choi J., Fauce S. R., Effros R. B. (2008). Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 22, 600–60510.1016/j.bbi.2007.12.004
    1. Czesnikiewicz-Guzik M., Lee W. W., Cui D., Hiruma Y., Lamar D. L., Yang Z. Z., et al. (2008). T cell subset-specific susceptibility to aging. Clin. Immunol. 127, 107–11810.1016/j.clim.2008.03.302
    1. Dace D. S., Apte R. S. (2008). Effect of senescence on macrophage polarization and angiogenesis. Rejuvenation Res. 11, 177–18510.1089/rej.2007.0614
    1. Dagarag M., Evazyan T., Rao N., Effros R. B. (2004). Genetic manipulation of telomerase in HIV-specific CD8+ T cells: enhanced antiviral functions accompany the increased proliferative potential and telomere length stabilization. J. Immunol. 173, 6303–6311
    1. De Martinis M., Franceschi C., Monti D., Ginaldi L. (2006). Inflammation markers predicting frailty and mortality in the elderly. Exp. Mol. Pathol. 80, 219–22710.1016/j.yexmp.2005.11.004
    1. De Rosa S. C., Herzenberg L. A., Herzenberg L. A., Roederer M. (2001). 11-Color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat. Med. 7, 245–24810.1038/84701
    1. DelaRosa O., Pawelec G., Peralbo E., Wikby A., Mariani E., Mocchegiani E., et al. (2006). Immunological biomarkers of ageing in man: changes in both innate and adaptive immunity are associated with health and longevity. Biogerontology 7, 471–48110.1007/s10522-006-9062-6
    1. den Braber I., Mugwagwa T., Vrisekoop N., Westera L., Mogling R., de Boer A. B., et al. (2012). Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36, 288–29710.1016/j.immuni.2012.02.006
    1. Deng Y., Jing Y., Campbell A. E., Gravenstein S. (2004). Age-related impaired type 1 T cell responses to influenza: reduced activation ex vivo, decreased expansion in CTL culture in vitro, and blunted response to influenza vaccination in vivo in the elderly. J. Immunol. 172, 3437–3446
    1. Derhovanessian E., Larbi A., Pawelec G. (2009). Biomarkers of human immunosenescence: impact of Cytomegalovirus infection. Curr. Opin. Immunol. 21, 440–44510.1016/j.coi.2009.05.012
    1. Di Mitri D., Azevedo R. I., Henson S. M., Libri V., Riddell N. E., Macaulay R., et al. (2011). Reversible senescence in human CD4+CD45RA+CD27- memory T cells. J. Immunol. 187, 2093–210010.4049/jimmunol.1100978
    1. Dorshkind K., Montecino-Rodriguez E., Signer R. A. (2009). The ageing immune system: is it ever too old to become young again? Nat. Rev. Immunol. 9, 57–6210.1038/nri2471
    1. Dowling M. R., Hodgkin P. D. (2009). Why does the thymus involute? A selection-based hypothesis. Trends Immunol. 30, 295–30010.1016/j.it.2009.04.006
    1. Dumitriu I. E., Araguas E. T., Baboonian C., Kaski J. C. (2009). CD4+ CD28 null T cells in coronary artery disease: when helpers become killers. Cardiovasc. Res. 81, 11–1910.1093/cvr/cvn248
    1. Ferrucci L., Corsi A., Lauretani F., Bandinelli S., Bartali B., Taub D. D., et al. (2005). The origins of age-related proinflammatory state. Blood 105, 2294–229910.1182/blood-2004-07-2599
    1. Fletcher J. M., Vukmanovic-Stejic M., Dunne P. J., Birch K. E., Cook J. E., Jackson S. E., et al. (2005). Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. J. Immunol. 175, 8218–8225
    1. Forsey R. J., Thompson J. M., Ernerudh J., Hurst T. L., Strindhall J., Johansson B., et al. (2003). Plasma cytokine profiles in elderly humans. Mech. Ageing Dev. 124, 487–49310.1016/S0047-6374(03)00025-3
    1. Forster R., Schubel A., Breitfeld D., Kremmer E., Renner-Muller I., Wolf E., et al. (1999). CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–3310.1016/S0092-8674(00)80059-8
    1. Franceschi C., Capri M., Monti D., Giunta S., Olivieri F., Sevini F., et al. (2007). Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–10510.1016/j.mad.2006.11.016
    1. Franceschi C., Valensin S., Bonafe M., Paolisso G., Yashin A. I., Monti D., et al. (2000). The network and the remodeling theories of aging: historical background and new perspectives. Exp. Gerontol. 35, 879–89610.1016/S0531-5565(00)00172-8
    1. Fritsch R. D., Shen X., Sims G. P., Hathcock K. S., Hodes R. J., Lipsky P. E. (2005). Stepwise differentiation of CD4 memory T cells defined by expression of CCR7 and CD27. J. Immunol. 175, 6489–6497
    1. Gamadia L. E., Remmerswaal E. B., Weel J. F., Bemelman F., van Lier R. A., Ten Berge I. J. (2003). Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101, 2686–269210.1182/blood-2002-08-2502
    1. Geginat J., Sallusto F., Lanzavecchia A. (2001). Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J. Exp. Med. 194, 1711–171910.1084/jem.194.12.1711
    1. Giubilato S., Liuzzo G., Brugaletta S., Pitocco D., Graziani F., Smaldone C., et al. (2011). Expansion of CD4+CD28null T-lymphocytes in diabetic patients: exploring new pathogenetic mechanisms of increased cardiovascular risk in diabetes mellitus. Eur. Heart J. 32, 1214–122610.1093/eurheartj/ehq499
    1. Giunta B., Fernandez F., Nikolic W. V., Obregon D., Rrapo E., Town T., et al. (2008). Inflammaging as a prodrome to Alzheimer’s disease. J. Neuroinflammation 5, 51.10.1186/1742-2094-5-51
    1. Godlove J., Chiu W. K., Weng N. P. (2007). Gene expression and generation of CD28-CD8 T cells mediated by interleukin 15. Exp. Gerontol. 42, 412–41510.1016/j.exger.2006.11.015
    1. Goronzy J. J., Lee W. W., Weyand C. M. (2007). Aging and T-cell diversity. Exp. Gerontol. 42, 400–40610.1016/j.exger.2006.11.016
    1. Griffin W. S. (2006). Inflammation and neurodegenerative diseases. Am. J. Clin. Nutr. 83, 470S–474S
    1. Grundemann C., Bauer M., Schweier O., von Oppen N., Lassing U., Saudan P., et al. (2006). Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor G1. J. Immunol. 176, 1311–1315
    1. Hadrup S. R., Strindhall J., Kollgaard T., Seremet T., Johansson B., Pawelec G., et al. (2006). Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional Cytomegalovirus-specific T cells in the very elderly. J. Immunol. 176, 2645–2653
    1. Hambrecht R., Wolf A., Gielen S., Linke A., Hofer J., Erbs S., et al. (2000). Effect of exercise on coronary endothelial function in patients with coronary artery disease. N. Engl. J. Med. 342, 454–46010.1056/NEJM200002173420702
    1. Harari A., Vallelian F., Meylan P. R., Pantaleo G. (2005). Functional heterogeneity of memory CD4 T cell responses in different conditions of antigen exposure and persistence. J. Immunol. 174, 1037–1045
    1. Harkins L., Volk A. L., Samanta M., Mikolaenko I., Britt W. J., Bland K. I., et al. (2002). Specific localisation of human Cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 360, 1557–156310.1016/S0140-6736(02)11524-8
    1. Hayhoe R. P., Henson S. M., Akbar A. N., Palmer D. B. (2010). Variation of human natural killer cell phenotypes with age: identification of a unique KLRG1-negative subset. Hum. Immunol. 71, 676–68110.1016/j.humimm.2010.03.014
    1. Haynes L., Maue A. C. (2009). Effects of aging on T cell function. Curr. Opin. Immunol. 21, 414–41710.1016/j.coi.2009.05.009
    1. Henson S. M., Franzese O., Macaulay R., Libri V., Azevedo R. I., Kiani-Alikhan S., et al. (2009). KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood 113, 6619–662810.1182/blood-2009-01-199588
    1. Hodes R. J., Hathcock K. S., Weng N. P. (2002). Telomeres in T and B cells. Nat. Rev. Immunol. 2, 699–70610.1038/nri890
    1. Johnston J. A., Bacon C. M., Riedy M. C., O’Shea J. J. (1996). Signaling by IL-2 and related cytokines: JAKs, STATs, and relationship to immunodeficiency. J. Leukoc. Biol. 60, 441–452
    1. Kimmig S., Przybylski G. K., Schmidt C. A., Laurisch K., Mowes B., Radbruch A., et al. (2002). Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J. Exp. Med. 195, 789–79410.1084/jem.20011756
    1. King D. E., Carek P., Mainous A. G., III, Pearson W. S. (2003). Inflammatory markers and exercise: differences related to exercise type. Med. Sci. Sports Exerc. 35, 575–58110.1249/
    1. Klapper W., Qian W., Schulte C., Parwaresch R. (2003). DNA damage transiently increases TRF2 mRNA expression and telomerase activity. Leukemia 17, 2007–201510.1038/sj.leu.2403086
    1. Koch S., Larbi A., Derhovanessian E., Ozcelik D., Naumova E., Pawelec G. (2008). Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun. Ageing 5, 6.10.1186/1742-4933-5-6
    1. Kutza A. S., Muhl E., Hackstein H., Kirchner H., Bein G. (1998). High incidence of active Cytomegalovirus infection among septic patients. Clin. Infect. Dis. 26, 1076–108210.1086/520307
    1. Lacorazza H. D., Guevara Patino J. A., Weksler M. E., Radu D., Nikolic-Zugic J. (1999). Failure of rearranged TCR transgenes to prevent age-associated thymic involution. J. Immunol. 163, 4262–4268
    1. Lautenschlager N. T., Cox K., Cyarto E. V. (2011). The influence of exercise on brain ageing and dementia. Biochim. Biophys. Acta. 1822, 474–481
    1. Le Garff-Tavernier M., Beziat V., Decocq J., Siguret V., Gandjbakhch F., Pautas E., et al. (2010). Human NK cells display major phenotypic and functional changes over the life span. Aging Cell 9, 527–53510.1111/j.1474-9726.2010.00584.x
    1. Lenz D. C., Kurz S. K., Lemmens E., Schoenberger S. P., Sprent J., Oldstone M. B., et al. (2004). IL-7 regulates basal homeostatic proliferation of antiviral CD4+T cell memory. Proc. Natl. Acad. Sci. U.S.A. 101, 9357–936210.1073/pnas.0400640101
    1. Libby P., Ridker P. M., Maseri A. (2002). Inflammation and atherosclerosis. Circulation 105, 1135–114310.1161/hc0902.104353
    1. Lio D., Candore G., Crivello A., Scola L., Colonna-Romano G., Cavallone L., et al. (2004). Opposite effects of interleukin 10 common gene polymorphisms in cardiovascular diseases and in successful ageing: genetic background of male centenarians is protective against coronary heart disease. J. Med. Genet. 41, 790–79410.1136/jmg.2004.019885
    1. Liu Y., Kuick R., Hanash S., Richardson B. (2009). DNA methylation inhibition increases T cell KIR expression through effects on both promoter methylation and transcription factors. Clin. Immunol. 130, 213–22410.1016/j.clim.2008.08.026
    1. Lu Q., Wu A., Ray D., Deng C., Attwood J., Hanash S., et al. (2003). DNA methylation and chromatin structure regulate T cell perforin gene expression. J. Immunol. 170, 5124–5132
    1. Lynch H. E., Goldberg G. L., Chidgey A., Van den Brink M. R., Boyd R., Sempowski G. D. (2009). Thymic involution and immune reconstitution. Trends Immunol. 30, 366–37310.1016/j.it.2009.04.003
    1. Macallan D. C., Wallace D., Zhang Y., De Lara C., Worth A. T., Ghattas H., et al. (2004). Rapid turnover of effector-memory CD4(+) T cells in healthy humans. J. Exp. Med. 200, 255–26010.1084/jem.20040341
    1. Mari D., Mannucci P. M., Coppola R., Bottasso B., Bauer K. A., Rosenberg R. D. (1995). Hypercoagulability in centenarians: the paradox of successful aging. Blood 85, 3144–3149
    1. Melzer K., Kayser B., Pichard C. (2004). Physical activity: the health benefits outweigh the risks. Curr. Opin. Clin. Nutr. Metab. Care 7, 641–64710.1097/00075197-200411000-00009
    1. Moro-Garcia M. A., Alonso-Arias R., Lopez-Vazquez A., Suarez-Garcia F. M., Solano-Jaurrieta J. J., Baltar J., et al. (2012). Relationship between functional ability in older people, immune system status, and intensity of response to CMV. Age (Dordr.) 34, 479–49510.1007/s11357-011-9240-6
    1. Naylor K., Li G., Vallejo A. N., Lee W. W., Koetz K., Bryl E., et al. (2005). The influence of age on T cell generation and TCR diversity. J. Immunol. 174, 7446–7452
    1. Nikolich-Zugich J. (2005). T cell aging: naive but not young. J. Exp. Med. 201, 837–84010.1084/jem.20050341
    1. Nikolich-Zugich J. (2008). Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat. Rev. Immunol. 8, 512–52210.1038/nri2318
    1. O’Leary J. J., Hallgren H. M. (1991). Aging and lymphocyte function: a model for testing gerontologic hypotheses of aging in man. Arch. Gerontol. Geriatr. 12, 199–21810.1016/0167-4943(91)90028-O
    1. Olsson J., Wikby A., Johansson B., Lofgren S., Nilsson B. O., Ferguson F. G. (2000). Age-related change in peripheral blood T-lymphocyte subpopulations and Cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech. Ageing Dev. 121, 187–20110.1016/S0047-6374(00)00210-4
    1. Pawelec G., Derhovanessian E. (2010). Role of CMV in immune senescence. Virus Res. 157, 175–17910.1016/j.virusres.2010.09.010
    1. Pedersen B. K., Saltin B. (2006). Evidence for prescribing exercise as therapy in chronic disease. Scand. J. Med. Sci. Sports 16(Suppl. 1), 3–6310.1111/j.1600-0838.2006.00520.x
    1. Pellicano M., Larbi A., Goldeck D., Colonna-Romano G., Buffa S., Bulati M., et al. (2012). Immune profiling of Alzheimer patients. J. Neuroimmunol. 242, 52–5910.1016/j.jneuroim.2011.11.005
    1. Perillo N. L., Walford R. L., Newman M. A., Effros R. B. (1989). Human T lymphocytes possess a limited in vitro life span. Exp. Gerontol. 24, 177–18710.1016/0531-5565(89)90009-0
    1. Posnett D. N., Sinha R., Kabak S., Russo C. (1994). Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy”. J. Exp. Med. 179, 609–61810.1084/jem.179.2.609
    1. Pradhan A. D., Manson J. E., Rifai N., Buring J. E., Ridker P. M. (2001). C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286, 327–33410.1001/jama.286.3.327
    1. Prelog M. (2006). Aging of the immune system: a risk factor for autoimmunity? Autoimmun. Rev. 5, 136–13910.1016/j.autrev.2005.09.008
    1. Prlic M., Jameson S. C. (2002). Homeostatic expansion versus antigen-driven proliferation: common ends by different means? Microbes Infect. 4, 531–53710.1016/S1286-4579(02)01569-1
    1. Prosch S., Wendt C. E., Reinke P., Priemer C., Oppert M., Kruger D. H., et al. (2000). A novel link between stress and human Cytomegalovirus (HCMV) infection: sympathetic hyperactivity stimulates HCMV activation. Virology 272, 357–36510.1006/viro.2000.0367
    1. Purton J. F., Tan J. T., Rubinstein M. P., Kim D. M., Sprent J., Surh C. D. (2007). Antiviral CD4+ memory T cells are IL-15 dependent. J. Exp. Med. 204, 951–96110.1084/jem.20061805
    1. Raison C. L., Capuron L., Miller A. H. (2006). Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 27, 24–3110.1016/j.it.2005.11.006
    1. Rizzello V., Liuzzo G., Brugaletta S., Rebuzzi A., Biasucci L. M., Crea F. (2006). Modulation of CD4(+)CD28null T lymphocytes by tumor necrosis factor-alpha blockade in patients with unstable angina. Circulation 113, 2272–227710.1161/CIRCULATIONAHA.105.588533
    1. Sallusto F., Lenig D., Forster R., Lipp M., Lanzavecchia A. (1999). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–71210.1038/44385
    1. Sauce D., Larsen M., Fastenackels S., Duperrier A., Keller M., Grubeck-Loebenstein B., et al. (2009). Evidence of premature immune aging in patients thymectomized during early childhood. J. Clin. Invest. 119, 3070–307810.1172/JCI39269
    1. Saurwein-Teissl M., Lung T. L., Marx F., Gschosser C., Asch E., Blasko I., et al. (2002). Lack of antibody production following immunization in old age: association with CD8(+)CD28(-) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J. Immunol. 168, 5893–5899
    1. Seder R. A., Darrah P. A., Roederer M. (2008). T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol. 8, 247–25810.1038/nri2274
    1. Simanek A. M., Dowd J. B., Aiello A. E. (2009). Persistent pathogens linking socioeconomic position and cardiovascular disease in the US. Int. J. Epidemiol. 38, 775–78710.1093/ije/dyn273
    1. Smeltz R. B. (2007). Profound enhancement of the IL-12/IL-18 pathway of IFN-gamma secretion in human CD8+ memory T cell subsets via IL-15. J. Immunol. 178, 4786–4792
    1. Speelman A. D., van de Warrenburg B. P., van Nimwegen M., Petzinger G. M., Munneke M., Bloem B. R. (2011). How might physical activity benefit patients with Parkinson disease? Nat. Rev. Neurol. 7, 528–53410.1038/nrneurol.2011.107
    1. Stowe R. P., Kozlova E. V., Yetman D. L., Walling D. M., Goodwin J. S., Glaser R. (2007). Chronic herpesvirus reactivation occurs in aging. Exp. Gerontol. 42, 563–57010.1016/j.exger.2007.01.005
    1. Strindhall J., Skog M., Ernerudh J., Bengner M., Lofgren S., Matussek A., et al. (2012). The inverted CD4/CD8 ratio and associated parameters in 66-year-old individuals: the Swedish HEXA immune study. Age (Dordr.) 35, 985–99110.1007/s11357-012-9400-3
    1. Surh C. D., Sprent J. (2008). Homeostasis of naive and memory T cells. Immunity 29, 848–86210.1016/j.immuni.2008.11.002
    1. Swainson L., Verhoeyen E., Cosset F. L., Taylor N. (2006). IL-7R alpha gene expression is inversely correlated with cell cycle progression in IL-7-stimulated T lymphocytes. J. Immunol. 176, 6702–6708
    1. Swigut T., Shohdy N., Skowronski J. (2001). Mechanism for down-regulation of CD28 by Nef. EMBO J. 20, 1593–160410.1093/emboj/20.7.1593
    1. Tan J. T., Dudl E., LeRoy E., Murray R., Sprent J., Weinberg K. I., et al. (2001). IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl. Acad. Sci. U.S.A. 98, 8732–873710.1073/pnas.161126098
    1. Tarazona R., DelaRosa O., Alonso C., Ostos B., Espejo J., Pena J., et al. (2000). Increased expression of NK cell markers on T lymphocytes in aging and chronic activation of the immune system reflects the accumulation of effector/senescent T cells. Mech. Ageing Dev. 121, 77–8810.1016/S0047-6374(00)00199-8
    1. Taylor J. J., Jenkins M. K. (2011). CD4+ memory T cell survival. Curr. Opin. Immunol. 23, 319–32310.1016/j.coi.2011.03.010
    1. Thewissen M., Somers V., Hellings N., Fraussen J., Damoiseaux J., Stinissen P. (2007). CD4+CD28null T cells in autoimmune disease: pathogenic features and decreased susceptibility to immunoregulation. J. Immunol. 179, 6514–6523
    1. Tripathi P., Kurtulus S., Wojciechowski S., Sholl A., Hoebe K., Morris S. C., et al. (2010). STAT5 is critical to maintain effector CD8+ T cell responses. J. Immunol. 185, 2116–212410.4049/jimmunol.1000842
    1. Trzonkowski P., Debska-Slizien A., Jankowska M., Wardowska A., Carvalho-Gaspar M., Hak L., et al. (2010). Immunosenescence increases the rate of acceptance of kidney allotransplants in elderly recipients through exhaustion of CD4+ T-cells. Mech. Ageing Dev. 131, 96–10410.1016/j.mad.2009.12.006
    1. Valenzuela H. F., Effros R. B. (2002). Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin. Immunol. 105, 117–12510.1006/clim.2002.5271
    1. Vallejo A. N. (2007). Immune remodeling: lessons from repertoire alterations during chronological aging and in immune-mediated disease. Trends Mol. Med. 13, 94–10210.1016/j.molmed.2007.01.005
    1. Vallejo A. N., Schirmer M., Weyand C. M., Goronzy J. J. (2000). Clonality and longevity of CD4+CD28null T cells are associated with defects in apoptotic pathways. J. Immunol. 165, 6301–6307
    1. van Bergen J., Kooy-Winkelaar E. M., van Dongen H., van Gaalen F. A., Thompson A., Huizinga T. W., et al. (2009). Functional killer Ig-like receptors on human memory CD4+ T cells specific for Cytomegalovirus. J. Immunol. 182, 4175–418210.4049/jimmunol.0804042
    1. van Leeuwen E. M., Remmerswaal E. B., Vossen M. T., Rowshani A. T., Wertheim-van Dillen P. M., van Lier R. A., et al. (2004). Emergence of a CD4+CD28- granzyme B+, Cytomegalovirus-specific T cell subset after recovery of primary Cytomegalovirus infection. J. Immunol. 173, 1834–1841
    1. Vasto S., Colonna-Romano G., Larbi A., Wikby A., Caruso C., Pawelec G. (2007). Role of persistent CMV infection in configuring T cell immunity in the elderly. Immun. Ageing 4, 2.10.1186/1742-4933-4-2
    1. Vely F., Peyrat M., Couedel C., Morcet J., Halary F., Davodeau F., et al. (2001). Regulation of inhibitory and activating killer-cell Ig-like receptor expression occurs in T cells after termination of TCR rearrangements. J. Immunol. 166, 2487–2494
    1. Vescovini R., Telera A., Fagnoni F. F., Biasini C., Medici M. C., Valcavi P., et al. (2004). Different contribution of EBV and CMV infections in very long-term carriers to age-related alterations of CD8+ T cells. Exp. Gerontol. 39, 1233–124310.1016/j.exger.2004.04.004
    1. Walsh N. P., Gleeson M., Shephard R. J., Woods J. A., Bishop N. C., Fleshner M., et al. (2011). Position statement. Part one: immune function and exercise. Exerc. Immunol. Rev. 17, 6–63
    1. Wang E., Lee M. J., Pandey S. (1994). Control of fibroblast senescence and activation of programmed cell death. J. Cell. Biochem. 54, 432–43910.1002/jcb.240540410
    1. Wannamethee S. G., Lowe G. D., Whincup P. H., Rumley A., Walker M., Lennon L. (2002). Physical activity and hemostatic and inflammatory variables in elderly men. Circulation 105, 1785–179010.1161/hc1502.107117
    1. Warren T. Y., Barry V., Hooker S. P., Sui X., Church T. S., Blair S. N. (2011). Sedentary behaviors increase risk of cardiovascular disease mortality in men. Med. Sci. Sports Exerc. 42, 879–885
    1. Warrington K. J., Vallejo A. N., Weyand C. M., Goronzy J. J. (2003). CD28 loss in senescent CD4+ T cells: reversal by interleukin-12 stimulation. Blood 101, 3543–354910.1182/blood-2002-08-2574
    1. Weinberger B., Lazuardi L., Weiskirchner I., Keller M., Neuner C., Fischer K. H., et al. (2007). Healthy aging and latent infection with CMV lead to distinct changes in CD8+ and CD4+ T-cell subsets in the elderly. Hum. Immunol. 68, 86–9010.1016/j.humimm.2007.08.163
    1. Weyand C. M., Brandes J. C., Schmidt D., Fulbright J. W., Goronzy J. J. (1998). Functional properties of CD4+ CD28- T cells in the aging immune system. Mech. Ageing Dev. 102, 131–14710.1016/S0047-6374(97)00161-9
    1. Wikby A., Nilsson B. O., Forsey R., Thompson J., Strindhall J., Lofgren S., et al. (2006). The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech. Ageing Dev. 127, 695–70410.1016/j.mad.2006.04.003
    1. Xu J., Vallejo A. N., Jiang Y., Weyand C. M., Goronzy J. J. (2005). Distinct transcriptional control mechanisms of killer immunoglobulin-like receptors in natural killer (NK) and in T cells. J. Biol. Chem. 280, 24277–2428510.1074/jbc.M506569200
    1. Yue F. Y., Kovacs C. M., Dimayuga R. C., Parks P., Ostrowski M. A. (2004). HIV-1-specific memory CD4+ T cells are phenotypically less mature than Cytomegalovirus-specific memory CD4+ T cells. J. Immunol. 172, 2476–2486
    1. Yung R., Powers D., Johnson K., Amento E., Carr D., Laing T., et al. (1996). Mechanisms of drug-induced lupus. II. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupuslike disease in syngeneic mice. J. Clin. Invest. 97, 2866–287110.1172/JCI118743
    1. Zal B., Kaski J. C., Akiyu J. P., Cole D., Arno G., Poloniecki J., et al. (2008). Differential pathways govern CD4+ CD28- T cell proinflammatory and effector responses in patients with coronary artery disease. J. Immunol. 181, 5233–5241
    1. Zanni F., Vescovini R., Biasini C., Fagnoni F., Zanlari L., Telera A., et al. (2003). Marked increase with age of type 1 cytokines within memory and effector/cytotoxic CD8+ T cells in humans: a contribution to understand the relationship between inflammation and immunosenescence. Exp. Gerontol. 38, 981–98710.1016/S0531-5565(03)00160-8
    1. Zlamy M., Prelog M. (2009). Thymectomy in early childhood: a model for premature T cell immunosenescence? Rejuvenation Res. 12, 249–25810.1089/rej.2009.0864
    1. Zoller A. L., Schnell F. J., Kersh G. J. (2007). Murine pregnancy leads to reduced proliferation of maternal thymocytes and decreased thymic emigration. Immunology 121, 207–21510.1111/j.1365-2567.2006.02559.x

Source: PubMed

3
Subscribe