ESRD-associated immune phenotype depends on dialysis modality and iron status: clinical implications

Didier Ducloux, Mathieu Legendre, Jamal Bamoulid, Jean-Michel Rebibou, Philippe Saas, Cécile Courivaud, Thomas Crepin, Didier Ducloux, Mathieu Legendre, Jamal Bamoulid, Jean-Michel Rebibou, Philippe Saas, Cécile Courivaud, Thomas Crepin

Abstract

Background: End-stage renal disease (ESRD) causes premature ageing of the immune system. However, it is not known whether hemodialysis (HD) and peritoneal dialysis (PD) similarly affect the T cell system.

Methods: The aim of our study was to analyse whether dialysis modality may mitigate ESRD-induced immune senescence. We explored a large population of patients (675 ESRD patients) and both confirmed and refined the results in a second cohort (84 patients).

Results: HD patients exhibited higher inflammatory monocytes counts (44/mm3 (1-520) vs 36/mm3 (1-161); p = 0.005). Patients on HD also had higher frequency of CD8 T cells (24% (7-61) vs 22% (8-42); p = 0.003) and reduced CD4/CD8 ratio. Such results were confirmed in the second cohort. Moreover, both CD4 + CD57 + CD28- (3.25% (0-38.2) vs 1.05% (0-28.5); p = 0.068) and CD8 + CD57 + CD28- (38.5% (3.6-76.8) vs 26.1 (2.1-46.9); p = 0.039) T cells frequencies were increased in HD patients. Telomere length did not differ according to dialysis modality, but was inversely related to ferritin levels (r = - 0.33; p = 0.003). There was a trend towards higher telomerase activity in PD patients (11 ± 13 vs 6 ± 11; p = 0.053). Thymic function was not different in PD and HD patients. Patients on PD before transplantation had a higher risk of acute rejection after kidney transplantation (HR, 1.61; 95%CI, 1.02 to 2.56; p = 0.041).

Conclusions: More pronounced inflammation with hemodialysis may induce premature aging of the immune system. This observation correlates with a lower risk of acute kidney rejection in patients previously on HD. Clinical consequences in patients maintained on dialysis should be determined.

Trial registration: Trial registration: NCT02843867, registered July 8, 2016.

Keywords: Acute rejection; Dialysis; Immune senescence; Inflammation; Iron overload.

Conflict of interest statement

ORLY-EST study: Sample collection was performed after regulatory approval by the French ministry of health (agreement number # DC-2008-713, June 11th 2009). The ethic committee of Franche-Comté study has approved the study (2008). Patients enrolled in the ORLY-EST study gave their written informed consent. IRIS study: The study was approved by the ethic committee of Franche-Comté (Approval 13/686) and registered in clinicaltrials.gov (NCT02116270). Patients enrolled in the IRIS-EST study gave their written informed consent.NAThe authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
CD8+ T cell frequency (1a), CD4 + CD45R0 T cell frequency (1b), B cell count (1c), and inflammatory monocytes count (1D) in PD and HD patients. Overall, the results suggest more pronounced inflammation (increased number of inflammatory monocytes) and nonspecific features of immune senescence and/or activation (increased number of CD8+ T cells and CD4 + CD45R0 T cells, and decreased number of B cells) in HD patients compared to PD patients
Fig. 2
Fig. 2
CD4 + CD57 + CD28- (2A) and CD8 + CD57 + CD28- (2B) T cell frequencies in PD and HD patients. Both CD4 + CD57 + CD28- and CD8 + CD57 + CD28- T cell frequencies are increased in HD patients suggesting enhanced replicative senescence
Fig. 3
Fig. 3
Telomere length according to iron status. Telomere length is reduced in patients with iron overload
Fig. 4
Fig. 4
Relationship between ferritin concentrations and telomere length. Telomere length correlates with iron status determined by ferritin levels

References

    1. Sakhuja A, Nanchal RS, Gupta S, Amer H, Kumar G, Albright RC, Kashani KB. Trends and outcomes of severe sepsis inpatients on maintenance dialysis. Am J Nephrol. 2016;43:97–103. doi: 10.1159/000444684.
    1. Stewart JH, Vajdic CM, van Leeuwen MT, Amin J, Webster AC, Chapman JR, McDonald SP, Grulich AE, McCredie MR. The pattern of excess cancer in dialysis and transplantation. Nephrol Dial Transplant. 2009;24:3225–3231. doi: 10.1093/ndt/gfp331.
    1. Soni R, Horowitz B, Unruh M. Immunization in end-stage renal disease: opportunity to improve outcomes. Semin Dial. 2013;26:416–426. doi: 10.1111/sdi.12101.
    1. Betjes MGH, Huisman M, Weimar W, Litjens NHR. Expansion of cytolytic CD4+CD28- T cells in end-stage renal disease. Kidney Int. 2008;74:760–767. doi: 10.1038/ki.2008.301.
    1. Crepin T, Legendre M, Courivaud C, Rebibou JM, Ferrand C, Laheurte C, Vauchy C, Gaiffe E, Saas P, Ducloux D, Bamoulid J. Uremia-induced immune senescence and clinical outcomes in chronic disease patients. Nephrol Dial Transplant 2018 (in press).
    1. Betjes MG, Meijers RW, Litjens NH. Loss of renal function causes premature aging of the immune system. Blood Purif. 2013;36:173–178. doi: 10.1159/000356084.
    1. Betjes MG. Immune cell dysfunction and inflammation in end-stage renal disease. Nat Rev Nephrol. 2013;9:255–265. doi: 10.1038/nrneph.2013.44.
    1. Meijers RWH, Litjens NHR, de Wit EA, Langerak AW, van der Spek A, Baan CC, Weimar W, Betjes MGH. Uremia causes premature ageing of the T-cell compartment in end-stage renal disease patients. Immun Ageing. 2012;9:19. doi: 10.1186/1742-4933-9-19.
    1. Bamoulid J, Courivaud C, Crepin T, Carron C, Gaiffe E, Roubiou C, Laheurte C, Moulin B, Frimat L, Rieu P, Mousson C, Durrbach A, Heng A-E, Rebibou JM, Saas P, Ducloux D. Pre-transplant thymic function predicts acute rejection in ATG-treated renal transplant recipients. Kidney Int. 2016;89:1136–1143. doi: 10.1016/j.kint.2015.12.044.
    1. Ducloux D, Courivaud C, Bamoulid J, Vivet B, Chabroux A, Deschamps M, Rebibou JM, Ferrand C, Chalopin JM, Tiberghien P, Saas P. Prolonged CD4 T cell lymphopenia increases morbidity and mortality after renal transplantation. J Am Soc Nephrol. 2010;21:868–875. doi: 10.1681/ASN.2009090976.
    1. Crepin T, Carron C, Roubiou C, Gaugler B, Gaiffe E, Simula-Faivre D, Ferrand C, Tiberghien P, Chalopin J-M, Moulin B, Frimat L, Rieu P, Saas P, Ducloux D, Bamoulid J. ATG-induced accelerated immune senescence: clinical implications in renal transplant recipients. Am J Transplant. 2015;15:1028–1038. doi: 10.1111/ajt.13092.
    1. Rostoker G, Griuncelli M, Loridon C, Magna T, Machado G, Drahi G, Dahan H, Janklewicz P, Cohen Y. Reassessment of iron biomarkers for prediction of dialysis iron overload: an MRI study. PLoS One. 2015:e0132006.
    1. Lambie M, Chess J, Donovan L, Kim YL, Do JY, Lee HB, Noh H, Williams PF, Williams AJ, Davison S, Dorval M, Summers A, Williams JD, Bankart J, Davies SJ, Topley N. Independent effects of systemic and peritoneal inflammation on peritoneal dialysis survival. J Am Soc Nephrol. 2013;24:2071–2080. doi: 10.1681/ASN.2013030314.
    1. Pecoits-Filho R, Carvalho MJ, Stenvinkel P, Lindholm B, Heimbürger O. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit Dial Int. 2006;26:53–63.
    1. Cho JH, Hur IK, Kim CD, Park SH, Ryu HM, Yook JM, Choi JY, Choi HJ, Choi HJ, Park JW, Do JY, Kim YL. Impact of systemic and local peritoneal inflammation on peritoneal solute transport rate in new peritoneal dialysis patients: a 1-year prospective study. Nephrol Dial Transplant. 2010;25:1964–1973. doi: 10.1093/ndt/gfp767.
    1. Oldani S, Finazzi S, Botazzi B, Garlanda C, Baldassarre E, Valaperta S, Cuccovillo I, Albino M, Child M, Montanelli A, Graziani G, Badalamenti S. Plasma pentraxin-3 as a marker of biocompatibility in hemodialysis patients. J Nephrol. 2012;25:120–126. doi: 10.5301/JN.2011.8432.
    1. Yamamoto T, Nascimento MM, Hayashi SY, Qureshi AR, Waniewski J, Brodin LA, Anderstam B, Lind B, Riella MC, Seeberger A, Lindholm B. Changes in circulating biomarkers during a single hemodialysis session. Hemodialysis Int. 2013;17:59–66. doi: 10.1111/j.1542-4758.2012.00720.x.
    1. Bitla AR, Reddy PE, Manohar SM, Vishnubhotla SV, Pemmaraju Venkata Lakshmi Narasimha SR. Effect of a single hemodialysis session on inflammatory markers. Hemodialysis Int. 2010;14:411–417. doi: 10.1111/j.1542-4758.2010.00491.x.
    1. Gollapudi P, Yoon JW, Gollapudi S, Pahl MV, Vaziri ND. Leukocyte toll-like receptor expression in end-stage kidney disease. Am J Nephrol. 2010;31:247–254. doi: 10.1159/000276764.
    1. Ando M, Shibuya A, Tsuchiya K, Akiba T, Nitta K. Reduced expression of toll-like receptor 4 contributes to impaired cytokine response of monocytes in uremic patients. Kidney Int. 2006;70:358–362. doi: 10.1038/sj.ki.5001548.
    1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039.
    1. Chiu CP, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas TE, et al. Differential expression of telomerase activity in hematopoietic progen-itors from adult human bone marrow. Stem Cells. 1996;14:239–248. doi: 10.1002/stem.140239.
    1. Engelhardt M, Kumar R, Albanell J, Pettengell R, Han W, Moore MA. Telomerase regulation, cell cycle, and telomere stability in primitive hemato-poietic cells. Blood. 1997;90:182–193.
    1. Plunkett FJ, Franzese O, Finney HM, Fletcher JM, Belaramani LL, Salmon M, et al. The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phos-phorylation. J Immunol. 2007;178:7710–7719. doi: 10.4049/jimmunol.178.12.7710.
    1. Akbar AN, Vukmanovic-Stejic M. Telomerase in T lymphocytes: use it and lose it? J Immunol. 2007;178:6689–6694. doi: 10.4049/jimmunol.178.11.6689.
    1. Xu D, Erickson S, Szeps M, Gruber A, Sangfelt O, Einhorn S, et al. Interferon alpha down-regulates telomerase reverse transcriptase and telomerase activity in human malignant and nonmalignant hematopoietic cells. Blood. 2000;96:4313–4318.
    1. Reed, J. R., M. Vukmanovic-Stejic, J. M. Fletcher, M. V. Soares, J. E. Cook, C. H. Orteu, S. E. Jackson, K. E. Birch, G. R. Foster, M. Salmon, et al. 2004. Telomere erosion in memory T cells induced by telomerase inhibition at the site of antigenic challenge in vivo. J Exp Med 2004:199; 1433–1443.
    1. Kaplan RC, Sinclair E, Landay AL, et al. T cell activation predicts carotid artery stiffness in HIV-infected women. Atherosclerosis. 2011;217:207–213. doi: 10.1016/j.atherosclerosis.2011.03.011.
    1. Betjes MG, Litjens NH, Zietse R. Seropositivity for cytomegalovirus in patients with end-stage renal disease is strongly associated with atherosclerotic disease. Nephrol Dial Transplant. 2007;22:3298–3303. doi: 10.1093/ndt/gfm348.
    1. Courivaud C, Bamoulid J, Chalopin JM, Gaiffe E, Tiberghien P, Saas P, Ducloux D. Cytomegalovirus exposure and cardiovascular disease in kidney transplant recipients. J Infect Dis. 2013;207:1569–1575. doi: 10.1093/infdis/jit064.
    1. Borthwick NJ, Lowdell M, Salmon M, Akbar AN. Loss of CD28 expression on CD8 T cells is induced by IL-2 receptor _ chain signalling cytokines and type I IFN, and increases susceptibility to activation-induced apoptosis. Int Immunol. 2000;12:1005–1013. doi: 10.1093/intimm/12.7.1005.
    1. Betjes MGH, Meijers RWJ, de Wit EA, Weimar W, Litjens NHR. Terminally differentiated CD8+ Temra cells are associated with the risk of acute kidney allograft rejection. Transplantation. 2012;94:63–69. doi: 10.1097/TP.0b013e31825306ff.
    1. Franceschi C, Bonafe M, Valensin S. Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine. 2000;18:1717–1720. doi: 10.1016/S0264-410X(99)00513-7.
    1. Tulunay A, Yavuz S, Direskenell H, Eksioglu-Demiralp E. CD8+CD28-, suppressive T cells in systemic lupus erythematosus. Lupus. 2008;17:630–637. doi: 10.1177/0961203308089400.
    1. Cortesini R, LeMaoult J, Ciubotariu R, et al. CD8+CD28j T suppressor cells and the induction of antigen-specific, antigen- presenting cellYmediated suppression of Th reactivity. Immunol Rev. 2001;182:201. doi: 10.1034/j.1600-065X.2001.1820116.x.
    1. Gerlach UA, Vogt K, Schlickeiser S, Meisel C, Streitz M, Kunkel D, Appelt C, Ahrlich S, Lachmann N, Neuhaus P, Pascher A, Sawitzki B. Elevation of CD4+ differentiated memory T cells is associated with acute cellular and antibody-mediated rejection after liver transplantation. Transplantation 2013; 27–1512–1520.
    1. Tang M, Li T, Liu H. A comparison of transplant outcomes in peritoneal and hemodialysis patients: a meta-analysis. Blood Purif. 2016;42:170–176. doi: 10.1159/000446272.
    1. Crepin T, Gaiffe E, Courivaud C, Roubiou C, Laheurte C, Moulin B, Frimat L, Rieu P, Mousson C, Durrbach A, Heng A-E, Saas P, Bamoulid J, Ducloux D. Pre-transplant end-stage renal disease-related immune risk profile in kidney transplant recipients predicts post-transplant infections. Transplant Inf Dis. 2016;18:415–422. doi: 10.1111/tid.12534.
    1. Wetmore JB, Peng Y, Monda KL, Kats AM, Kim DH, Bradbury BD, Collins AJ, Gilbertson DT. Trends in anemia management practices in patients receiving hemodialysis and peritoneal dialysis: a retrospective cohort analysis. Am J Nephrol. 2015;41:354–361. doi: 10.1159/000431335.
    1. Liakopoulos V, Roumeliotis S, Gomy X, Dounousi E, Mertens PR. Oxidative stress in hemodialysis patients : a review of literature. Oxidative Med Cell Longev 2017; 2017: 3081856.
    1. Shin C, Baik I. Transferrin saturation concentrations associated with telomeric ageing: a population-based study. Br J Nutr. 2017;117:1693–1701. doi: 10.1017/S0007114517001696.
    1. Murillo-Ortiz B, Ramirez Emiliano J, Hernandez Vazquez WI, Martinez-Garza S, Solorio-Meza S, Albarran-Tamayo F, Ramos-Rodriguez E, Benitez-Bribiesca L. Impact of oxidative stress in premature aging and iron overload in hemodialysis patients. Oxidative Med Cell Longev. 2016;2016:1578235. doi: 10.1155/2016/1578235.
    1. Kepinska M, Szyller J, Milnerowicz H. The influence of oxidative stress induced by iron on telomere length. Environ Toxicol Pharmacol. 2015;40:931–935. doi: 10.1016/j.etap.2015.10.002.
    1. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: process and function. Cell death Diff. 2016;23:369–379. doi: 10.1038/cdd.2015.158.

Source: PubMed

3
Subscribe