Leveraging Human Microbiome Features to Diagnose and Stratify Children with Irritable Bowel Syndrome

Emily B Hollister, Numan Oezguen, Bruno P Chumpitazi, Ruth Ann Luna, Erica M Weidler, Michelle Rubio-Gonzales, Mahmoud Dahdouli, Julia L Cope, Toni-Ann Mistretta, Sabeen Raza, Ginger A Metcalf, Donna M Muzny, Richard A Gibbs, Joseph F Petrosino, Margaret Heitkemper, Tor C Savidge, Robert J Shulman, James Versalovic, Emily B Hollister, Numan Oezguen, Bruno P Chumpitazi, Ruth Ann Luna, Erica M Weidler, Michelle Rubio-Gonzales, Mahmoud Dahdouli, Julia L Cope, Toni-Ann Mistretta, Sabeen Raza, Ginger A Metcalf, Donna M Muzny, Richard A Gibbs, Joseph F Petrosino, Margaret Heitkemper, Tor C Savidge, Robert J Shulman, James Versalovic

Abstract

Accurate diagnosis and stratification of children with irritable bowel syndrome (IBS) remain challenging. Given the central role of recurrent abdominal pain in IBS, we evaluated the relationships of pediatric IBS and abdominal pain with intestinal microbes and fecal metabolites using a comprehensive clinical characterization and multiomics strategy. Using rigorous clinical phenotyping, we identified preadolescent children (aged 7 to 12 years) with Rome III IBS (n = 23) and healthy controls (n = 22) and characterized their fecal microbial communities using whole-genome shotgun metagenomics and global unbiased fecal metabolomic profiling. Correlation-based approaches and machine learning algorithms identified associations between microbes, metabolites, and abdominal pain. IBS cases differed from controls with respect to key bacterial taxa (eg, Flavonifractor plautii and Lachnospiraceae bacterium 7_1_58FAA), metagenomic functions (eg, carbohydrate metabolism and amino acid metabolism), and higher-order metabolites (eg, secondary bile acids, sterols, and steroid-like compounds). Significant associations between abdominal pain frequency and severity and intestinal microbial features were identified. A random forest classifier built on metagenomic and metabolic markers successfully distinguished IBS cases from controls (area under the curve, 0.93). Leveraging multiple lines of evidence, intestinal microbes, genes/pathways, and metabolites were associated with IBS, and these features were capable of distinguishing children with IBS from healthy children. These multi-omics features, and their links to childhood IBS coupled with nutritional interventions, may lead to new microbiome-guided diagnostic and therapeutic strategies.

Copyright © 2019 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

Figures

Figure 1
Figure 1
Study flowchart outlining subject recruitment, participation, and classification. GI, gastrointestinal.
Figure 2
Figure 2
Spearman correlations between abdominal pain–associated species and metabolites in 45 pediatric subjects. Relationships between whole-genome sequencing–based species abundances and metabolites (middle), metabolites and abdominal pain (bottom), and species and abdominal pain (right) are depicted. Each metabolite depicted herein correlates with abdominal pain frequency (PF) and/or mean abdominal pain (MP). All of the included species are significantly correlated with abdominal pain and/or abdominal pain–associated metabolites. False-discovery rate–corrected statistical significance is denoted as follows: *q < 0.05, **q < 0.01, and #q < 0.10. n = 23 pediatric subjects with IBS; n = 22 HCs. DiHome, (12Z)-9,10-dihydroxyoctadec-12-enoic acid.
Figure 3
Figure 3
A multi-omics network of bacterial species (green triangles), metagenomic pathways (yellow diamonds), and metabolite abundances (blue spheres) separates pediatric IBS cases (red squares) from HCs (cyan squares). Features (ie, species, pathways, and metabolites) were included if they had F values >7 in the comparison of IBS cases versus HCs. The edge-weighted, spring-embedded layout was used to visualize network structure. n = 23 pediatric IBS cases; n = 22 HCs. TCA, tricarboxylic acid.
Figure 4
Figure 4
Multivariate classification based on a lean set of multi-omics features correctly distinguished IBS cases from HCs with a high degree of accuracy. A: Receiver operating characteristic curve of the random forest (RF) classifier and its associated accuracy and precision rates. Classifier metrics were generated using fivefold cross validation. Random classification is represented by the dotted line. B: Principal component (PC) analysis of subjects based on the set of species, pathways, and metabolites used to train the RF classifier. Background shading indicates point density of IBS cases versus HCs.
Figure 5
Figure 5
Abundances and distributions of the metabolites (A), bacterial species (B), and functional pathways (C) on which the classifiers were trained. Boxplots depict median and first and third quartile values, whereas whiskers indicate 1.5 times the interquartile range (IQR). Species, pathway, and metabolite values were assessed in IBS cases and HCs. B: Only the bacterial species are significantly differentially abundant (false-discovery rate–corrected q = 0.02). n = 23 IBS cases (A–C); n = 22 HCs (A–C). MAD, median of the absolute deviations from the median; TCA, tricarboxylic acid.
Supplemental Figure S1
Supplemental Figure S1
Receiver operating characteristic (ROC) and calibration curves indicating the classification success and quality of the class-based (ie, IBS case versus HC) probability predictions generated by each of the classifier models considered [random forest (RF), support vector machine (SVM), and naïve Bayes (NB)]. A: ROC curves and their associated accuracy and precision metrics. Random classification is represented by the dotted line. B and C: Calibration curves for each of the classifiers are depicted relative to their ability to correctly classify HCs (B) and IBS cases (C). The calibration curve for an ideal model would plot along the 45-degree reference dashed line, whereas deviations from this line indicate tendencies to overpredict or underpredict class probabilities. For both HCs (B) and IBS cases (C), the RF and SVM models tend to be the best calibrated. AUROC, area under the ROC curve; CA, classification accuracy; LASSO, least absolute shrinkage selection operator.

References

    1. Rasquin A., Di Lorenzo C., Forbes D., Guiraldes E., Hyams J.S., Staiano A., Walker L.S. Childhood functional gastrointestinal disorders: child/adolescent. Gastroenterology. 2006;130:1527–1537.
    1. Quigley E.M., Abdel-Hamid H., Barbara G., Bhatia S.J., Boeckxstaens G., De Giorgio R., Delvaux M., Drossman D.A., Foxx-Orenstein A.E., Guarner F., Gwee K.A., Harris L.A., Hungin A.P., Hunt R.H., Kellow J.E., Khalif I.L., Kruis W., Lindberg G., Olano C., Moraes-Filho J.P., Schiller L.R., Schmulson M., Simren M., Tzeuton C. A global perspective on irritable bowel syndrome: a consensus statement of the World Gastroenterology Organisation Summit Task Force on irritable bowel syndrome. J Clin Gastroenterol. 2012;46:356–366.
    1. Cain K.C., Headstrom P., Jarrett M.E., Motzer S.A., Park H., Burr R.L., Surawicz C.M., Heitkemper M.M. Abdominal pain impacts quality of life in women with irritable bowel syndrome. Am J Gastroenterol. 2006;101:124–132.
    1. Varni J.W., Shulman R.J., Self M.M., Nurko S., Saps M., Saeed S.A., Bendo C.B., Patel A.S., Dark C.V., Zacur G.M., Pohl J.F., Pediatric Quality of Life Inventory Gastrointestinal Symptoms Module Testing Study Consortium Symptom profiles in patients with irritable bowel syndrome or functional abdominal pain compared with healthy controls. J Pediatr Gastroenterol Nutr. 2015;61:323–329.
    1. Chumpitazi B.P., Shulman R.J. Underlying molecular and cellular mechanisms in childhood irritable bowel syndrome. Mol Cell Pediatr. 2016;3:11.
    1. Chumpitazi B.P., Cope J.L., Hollister E.B., Tsai C.M., McMeans A.R., Luna R.A., Versalovic J., Shulman R.J. Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome. Aliment Pharmacol Ther. 2015;42:418–427.
    1. Salonen A., de Vos W.M., Palva A. Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology. 2010;156:3205–3215.
    1. Greenwood-Van Meerveld B., Moloney R.D., Johnson A.C., Vicario M. Mechanisms of stress-induced visceral pain: implications in irritable bowel syndrome. J Neuroendocrinol. 2016;28
    1. Saulnier D.M., Riehle K., Mistretta T.A., Diaz M.A., Mandal D., Raza S., Weidler E.M., Qin X., Coarfa C., Milosavljevic A., Petrosino J.F., Highlander S., Gibbs R., Lynch S.V., Shulman R.J., Versalovic J. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011;141:1782–1791.
    1. Simrén M., Barbara G., Flint H.J., Spiegel B.M.R., Spiller R.C., Vanner S., Verdu E.F., Whorwell P.J., Zoetendal E.G. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut. 2013;62:159–176.
    1. Pike B.L., Paden K.A., Alcala A.N., Jaep K.M., Gormley R.P., Maue A.C., Christmann B.S., Elson C.O., Riddle M.S., Porter C.K. Immunological biomarkers in postinfectious irritable bowel syndrome. J Travel Med. 2015;22:242–250.
    1. Tap J., Derrien M., Tornblom H., Brazeilles R., Cools-Portier S., Dore J., Storsrud S., Le Neve B., Ohman L., Simren M. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology. 2017;152:111–123.e118.
    1. De Palma G., Lynch M.D., Lu J., Dang V.T., Deng Y., Jury J., Umeh G., Miranda P.M., Pigrau Pastor M., Sidani S., Pinto-Sanchez M.I., Philip V., McLean P.G., Hagelsieb M.G., Surette M.G., Bergonzelli G.E., Verdu E.F., Britz-McKibbin P., Neufeld J.D., Collins S.M., Bercik P. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med. 2017;9 eaaf6397.
    1. Rajilic-Stojanovic M., Biagi E., Heilig H.G., Kajander K., Kekkonen R.A., Tims S., de Vos W.M. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011;141:1792–1801.
    1. Bajor A., Tornblom H., Rudling M., Ung K.A., Simren M. Increased colonic bile acid exposure: a relevant factor for symptoms and treatment in IBS. Gut. 2015;64:84–92.
    1. Dior M., Delagreverie H., Duboc H., Jouet P., Coffin B., Brot L., Humbert L., Trugnan G., Seksik P., Sokol H., Rainteau D., Sabate J.M. Interplay between bile acid metabolism and microbiota in irritable bowel syndrome. Neurogastroenterol Motil. 2016;28:1330–1340.
    1. Ponnusamy K., Choi J.N., Kim J., Lee S.Y., Lee C.H. Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J Med Microbiol. 2011;60:817–827.
    1. Lackner J.M., Jaccard J., Keefer L., Firth R., Carosella A.M., Sitrin M., Brenner D. Representing the IRG: the accuracy of patient-reported measures for GI symptoms: a comparison of real time and retrospective reports. Neurogastroenterol Motil. 2014;26:1802–1811.
    1. Self M.M., Williams A.E., Czyzewski D.I., Weidler E.M., Shulman R.J. Agreement between prospective diary data and retrospective questionnaire report of abdominal pain and stooling symptoms in children with irritable bowel syndrome. Neurogastroenterol Motil. 2015;27:1110–1119.
    1. Lacy B.E., Mearin F., Chang L., Chey W.D., Lembo A.J., Simren M., Spiller R. Bowel disorders. Gastroenterology. 2016;150:1393–1407.e5.
    1. Shankar V., Reo N.V., Paliy O. Simultaneous fecal microbial and metabolite profiling enables accurate classification of pediatric irritable bowel syndrome. Microbiome. 2015;3:73.
    1. Czyzewski D.I., Lane M.M., Weidler E.M., Williams A.E., Swank P.R., Shulman R.J. The interpretation of Rome III criteria and method of assessment affect the irritable bowel syndrome classification of children. Aliment Pharmacol Ther. 2011;33:403–411.
    1. Shulman R.J., Eakin M.N., Jarrett M., Czyzewski D.I., Zeltzer L.K. Characteristics of pain and stooling in children with recurrent abdominal pain. J Pediatr Gastroenterol Nutr. 2007;44:203–208.
    1. von Baeyer C.L., Spagrud L.J., McCormick J.C., Choo E., Neville K., Connelly M.A. Three new datasets supporting use of the Numerical Rating Scale (NRS-11) for children's self-reports of pain intensity. Pain. 2009;143:223–227.
    1. Weidler E.M., Self M.M., Czyzewski D.I., Shulman R.J., Chumpitazi B.P. Stooling characteristics in children with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2017;15:140–141.
    1. Hollister E.B., Riehle K., Luna R.A., Weidler E.M., Rubio-Gonzales M., Mistretta T.A., Raza S., Doddapaneni H.V., Metcalf G.A., Muzny D.M., Gibbs R.A., Petrosino J.F., Shulman R.J., Versalovic J. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3:36.
    1. Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359.
    1. Abubucker S., Segata N., Goll J., Schubert A.M., Izard J., Cantarel B.L., Rodriguez-Mueller B., Zucker J., Thiagarajan M., Henrissat B., White O., Kelley S.T., Methé B., Schloss P.D., Gevers D., Mitreva M., Huttenhower C. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8:e1002358.
    1. Truong D.T., Franzosa E.A., Tickle T.L., Scholz M., Weingart G., Pasolli E., Tett A., Huttenhower C., Segata N. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12:902–903.
    1. Buchfink B., Xie C., Huson D.H. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
    1. Suzek B.E., Huang H., McGarvey P., Mazumder R., Wu C.H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics. 2007;23:1282–1288.
    1. Caspi R., Altman T., Dreher K., Fulcher C.A., Subhraveti P., Keseler I.M., Kothari A., Krummenacker M., Latendresse M., Mueller L.A., Ong Q., Paley S., Pujar A., Shearer A.G., Travers M., Weerasinghe D., Zhang P., Karp P.D. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2012;40:D742–D753.
    1. Pollard K., Dudoit S., van der Laan M. Multiple testing procedures: the multtest package and applications to genomics. In: Gentleman R., Carey V.J., Huber W., Irizarry R.A., Dudoit S., editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor Statistics for Biology and Health. Springer; New York, NY: 2005. pp. 249–271.
    1. Team: R . RStudio, Inc.; Boston, MA: 2015. RStudio: Integrated Development of R.
    1. Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504.
    1. Demsar J., Curk T., Erjavec A. Orange: data mining toolbox in phyton. J Mach Learn Res. 2013;14:2349–2353.
    1. Gwee K.A., Ghoshal U.C. The Rome criteria divides, distorts and dilutes the prevalence of irritable bowel syndrome. Saudi J Gastroenterol. 2010;16:143–144.
    1. Moayyedi P., Ford A.C. Symptom-based diagnostic criteria for irritable bowel syndrome: the more things change, the more they stay the same. Gastroenterol Clin North Am. 2011;40:87–103.
    1. Self M.M., Czyzewski D.I., Chumpitazi B.P., Weidler E.M., Shulman R.J. Subtypes of irritable bowel syndrome in children and adolescents. Clin Gastroenterol Hepatol. 2014;12:1468–1473.
    1. Chogle A., Sztainberg M., Bass L., Youssef N.N., Miranda A., Nurko S., Hyman P., Cocjin J., Di Lorenzo C., Saps M. Accuracy of pain recall in children. J Pediatr Gastroenterol Nutr. 2012;55:288–291.
    1. Gao X., Lin H., Dong Q. A Dirichlet-multinomial Bayes classifier for disease diagnosis with microbial compositions. mSphere. 2017;2 pii: e00536-17.
    1. Liu Y., Zhang L., Wang X., Wang Z., Zhang J., Jiang R., Wang X., Wang K., Liu Z., Xia Z., Xu Z., Nie Y., Lv X., Wu X., Zhu H., Duan L. Similar fecal microbiota signatures in patients with diarrhea-predominant irritable bowel syndrome and patients with depression. Clin Gastroenterol Hepatol. 2016;14:1602–1611.e1605.
    1. Luna R.A., Oezguen N., Balderas M., Venkatachalam A., Runge J.K., Versalovic J., Veenstra-VanderWeele J., Anderson G.M., Savidge T., Williams K.C. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell Mol Gastroenterol Hepatol. 2017;3:218–230.
    1. Moco S., Martin F.P., Rezzi S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res. 2012;11:4781–4790.
    1. McIntosh K., Reed D.E., Schneider T., Dang F., Keshteli A.H., De Palma G., Madsen K., Bercik P., Vanner S. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut. 2017;66:1241–1251.
    1. Varghese N.J., Mukherjee S., Ivanova N., Konstantinidis K.T., Mavrommatis K., Kyrpides N.C., Pati A. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 2015;43:6761–6771.
    1. Schoepfer A.M., Schaffer T., Seibold-Schmid B., Muller S., Seibold F. Antibodies to flagellin indicate reactivity to bacterial antigens in IBS patients. Neurogastroenterol Motil. 2008;20:1110–1118.
    1. Edwards C.A., Brown S., Baxter A.J., Bannister J.J., Read N.W. Effect of bile acid on anorectal function in man. Gut. 1989;30:383–386.
    1. Taylor I., Basu P., Hammond P., Darby C., Flynn M. Effect of bile acid perfusion on colonic motor function in patients with the irritable colon syndrome. Gut. 1980;21:843–847.
    1. Coremans G., Tack J., Vantrappen G., Janssens J., Annese V. Is the irritable bowel really irritable? Ital J Gastroenterol. 1991;23:39–40.
    1. Bergstrand L.H., Cardenas E., Holert J., Van Hamme J.D., Mohn W.W. Delineation of steroid-degrading microorganisms through comparative genomic analysis. MBio. 2016;7:e00166.
    1. Carver C.M., Reddy D.S. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 2013;230:151–188.
    1. Moloney R.D., Johnson A.C., O'Mahony S.M., Dinan T.G., Greenwood-Van Meerveld B., Cryan J.F. Stress and the microbiota-gut-brain axis in visceral pain: relevance to irritable bowel syndrome. CNS Neurosci Ther. 2016;22:102–117.
    1. Gibbs T.T., Russek S.J., Farb D.H. Sulfated steroids as endogenous neuromodulators. Pharmacol Biochem Behav. 2006;84:555–567.
    1. Peroni R.N., Orliac M.L., Becu-Villalobos D., Huidobro-Toro J.P., Adler-Graschinsky E., Celuch S.M. Sex-linked differences in the vasorelaxant effects of anandamide in vascular mesenteric beds: role of oestrogens. Eur J Pharmacol. 2004;493:151–160.
    1. Parker K.S., Crowley J.R., Stephens-Shields A.J., van Bokhoven A., Lucia M.S., Lai H.H., Andriole G.L., Hooton T.M., Mullins C., Henderson J.P. Urinary metabolomics identifies a molecular correlate of interstitial cystitis/bladder pain syndrome in a Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network cohort. EBioMedicine. 2016;7:167–174.
    1. Cohen I.V., Cirulli E.T., Mitchell M.W., Jonsson T.J., Yu J., Shah N., Spector T.D., Guo L., Venter J.C., Telenti A. Acetaminophen (paracetamol) use modifies the sulfation of sex hormones. EBioMedicine. 2018;28:316–323.
    1. Larsen P.E., Dai Y. Metabolome of human gut microbiome is predictive of host dysbiosis. Gigascience. 2015;4:42.
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546.
    1. Nagy-Szakal D., Williams B.L., Mishra N., Che X., Lee B., Bateman L., Klimas N.G., Komaroff A.L., Levine S., Montoya J.G., Peterson D.L., Ramanan D., Jain K., Eddy M.L., Hornig M., Lipkin W.I. Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome. 2017;5:44.

Source: PubMed

3
Subscribe