Hypothesis: Possible influence of antivector immunity and SARS-CoV-2 variants on efficacy of ChAdOx1 nCoV-19 vaccine

Loris Zamai, Marco B L Rocchi, Loris Zamai, Marco B L Rocchi

Abstract

The present work provides arguments for the involvement of anti-vector immunity and of SARS-CoV-2 variants on the efficacy of ChAdOx1 nCoV-19 vaccine. First, it is suggested that anti-vector immunity takes place as homologous vaccination with ChAdOx1 nCoV-19 vaccine is applied and interferes with vaccine efficacy when the interval between prime and booster doses is less than 3 months. Second, longitudinal studies suggest that ChAdOx1 nCoV-19 vaccine provides suboptimal efficacy against SARS-CoV-2 Alpha variant, which appears to have an increased transmissibility among vaccinated people. At the moment, ChAdOx1 nCoV-19 vaccine is able to reduce the severity of symptoms and transmissibility. However, if the vaccinated individuals do not maintain physical preventive measures, they could turn into potential spreaders, thus suggesting that mass vaccination will not quickly solve the pandemic. Possible consequences of SARS-CoV-2 evolution and of repeated anti-SARS-CoV-2 vaccinations are discussed and adoption of an influenza-like vaccination strategy is suggested.

Keywords: SARS-CoV-2 variants; environmental conditions; immunity; influenza virus; physical prevention; vaccine; viral vectors.

Conflict of interest statement

The authors declare no competing interests.

© 2021 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

Figures

FIGURE 1
FIGURE 1
Relative risk of symptomatic infection and 95% CI in different groups of vaccine participants with different dose interval analysed in two different time periods (September/October vs. November/7 December 2020). SD/SD = two standard‐dose vaccine groups with shorter dose interval assessed in Brazil (median 36 days of dose interval) or United Kingdom (69 days of dose interval) during September/October (4 November cut‐off date). LD/SD = low‐dose prime plus standard‐dose boost groups with longer (median 84 days) dose interval assessed before (September/October) and after (November/7 December) 4 November. S‐D = single standard‐dose vaccine assessed between 22 and 90 days (22‐90d, corresponding to the period between September and October) or between 91 and 120 days (91‐120d, including the period between November and 7 December) after injection

References

    1. Alexander, S. P. H. , Fabbro, D. , Kelly, E. , Mathie, A. , Peters, J. A. , Veale, E. L. , Armstrong, J. F. , Faccenda, E. , Harding, S. D. , Pawson, A. J. , Sharman, J. L. , Southan, C. , Davies, J. A. , & CGTP Collaborators . (2019). The Concise Guide to PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 176, S297–S396. 10.1111/bph.14752
    1. Alexander, S. P. H. , Kelly, E. , Mathie, A. , Peters, J. A. , Veale, E. L. , Faccenda, E. , Harding, S. D. , Pawson, A. J. , Sharman, J. L. , Southan, C. , Buneman, O. P. , Cidlowski, J. A. , Christopoulos, A. , Davenport, A. P. , Fabbro, D. , Spedding, M. , Striessnig, J. , Davies, J. A. , & CGTP Collaborators . (2019). The Concise Guide to PHARMACOLOGY 2019/20: Other Protein Targets. British Journal of Pharmacology, 176, S1–S20. 10.1111/bph.14747
    1. Challen, R. , Brooks‐Pollock, E. , Read, J. M. , Dyson, L. , Tsaneva‐Atanasova, K. , & Danon, L. (2021). Risk of mortality in patients infected with SARS‐CoV‐2 variant of concern 202012/1: Matched cohort study. British Medical Journal, 372, n579. 10.1136/bmj.n579
    1. Chambers, J. (2021). Chile sees Covid surge despite vaccination success. Retrieved from
    1. Chen, R. E. , Zhang, X. , Case, J. B. , Winkler, E. S. , Liu, Y. , VanBlargan, L. A. , Liu, J. , Errico, J. M. , Xie, X. , Suryadevara, N. , Gilchuk, P. , Zost, S. J. , Tahan, S. , Droit, L. , Turner, J. S. , Kim, W. , Schmitz, A. J. , Thapa, M. , Wang, D. , … Diamond, M. S. (2021). Resistance of SARS‐CoV‐2 variants to neutralization by monoclonal and serum‐derived polyclonal antibodies. Nature Medicine, 27, 717–726. 10.1038/s41591-021-01294-w
    1. Davies, N. G. , Abbott, S. , Barnard, R. C. , Jarvis, C. I. , Kucharski, A. J. , Munday, J. D. , Pearson, C. A. B. , Russell, T. W. , Tully, D. C. , Washburne, A. D. , Wenseleers, T. , Gimma, A. , Waites, W. , Wong, K. L. M. , van Zandvoort, K. , Silverman, J. D. , CMMID COVID‐19 Working , & Edmunds, W. J. (2021). Estimated transmissibility and impact of SARS‐CoV‐2 lineage B.1.1.7 in England. Science, 372, eabg3055. 10.1126/science.abg3055
    1. Davies, N. G. , Jarvis, C. I. , Edmunds, W. J. , Jewell, N. P. , Diaz‐Ordaz, K. , & Keogh, R. H. (2021). Increased mortality in community‐tested cases of SARS‐CoV‐2 lineage B.1.1.7. Nature, 593, 270–274. 10.1038/s41586-021-03426-1
    1. Emary, K. R. W. , Golubchik, T. , Aley, P. K. , Ariani, C. V. , Angus, B. , Bibi, S. , Blane, B. , Bonsall, D. , Cicconi, P. , Charlton, S. , Clutterbuck, E. A. , Collins, A. M. , Cox, T. , Darton, T. C. , Dold, C. , Douglas, A. D. , Duncan, C. J. A. , Ewer, K. J. , Flaxman, A. L. , … Oxford COVID‐19 Vaccine Trial Group . (2021). COVID‐19 Genomics UK consortium; AMPHEUS Project; Oxford COVID‐19 Vaccine Trial Group. Efficacy of ChAdOx1 nCoV‐19 (AZD1222) vaccine against SARS‐CoV‐2 variant of concern 202012/01 (B.1.1.7): An exploratory analysis of a randomised controlled trial. Lancet, 397(10282), 1351–1362. 10.1016/S0140-6736(21)00628-0
    1. Folegatti, P. M. , Ewer, K. J. , Aley, P. K. , Angus, B. , Becker, S. , Belij‐Rammerstorfer, S. , Bellamy, D. , Bibi, S. , Bittaye, M. , Clutterbuck, E. A. , Dold, C. , Faust, S. N. , Finn, A. , Flaxman, A. L. , Hallis, B. , Heath, P. , Jenkin, D. , Lazarus, R. , Makinson, R. , … Yau, Y. (2020). Safety and immunogenicity of the ChAdOx1 nCoV‐19 vaccine against SARS‐CoV‐2: A preliminary report of a phase 1/2, single‐blind, randomised controlled trial. Lancet, 396(10249), 467–478. 10.1016/S0140-6736(20)31604-4
    1. Francis, M. E. , King, M. L. , & Kelvin, A. A. (2019). Back to the future for influenza preimmunity‐looking back at influenza virus history to infer the outcome of future infections. Viruses, 11(2), 122. 10.3390/v11020122
    1. Gonzalez, D. C. , Nassau, D. E. , Khodamoradi, K. , Ibrahim, E. , Blachman‐Braun, R. , Ory, J. , & Ramasamy, R. (2021). Sperm parameters before and after COVID‐19 mRNA vaccination. JAMA. 326(3), 273–274. 10.1001/jama.2021.9976 Advance online publication
    1. Kyriakidis, N. C. , López‐Cortés, A. , González, E. V. , Grimaldos, A. B. , & Prado, E. O. (2021). SARS‐CoV‐2 vaccines strategies: A comprehensive review of phase 3 candidates. NPJ Vaccines, 6(1), 28. 10.1038/s41541-021-00292-w
    1. Leung, K. , Shum, M. H. , Leung, G. M. , Lam, T. T. , & Wu, J. T. (2021). Early transmissibility assessment of the N501Y mutant strains of SARS‐CoV‐2 in the United Kingdom, October to November 2020. Eurosurveillance, 26(1), 2002106. 10.2807/1560-7917.ES.2020.26.1.2002106
    1. Madhi, S. A. , Baillie, V. , Cutland, C. L. , Voysey, M. , Koen, A. L. , Fairlie, L. , Padayachee, S. D. , Dheda, K. , Barnabas, S. L. , Bhorat, Q. E. , Briner, C. , Kwatra, G. , Ahmed, K. , Aley, P. , Bhikha, S. , Bhiman, J. N. , Bhorat, A. E. , du Plessis, J. , Esmail, A. , … Wits‐VIDA COVID Group . (2021). Efficacy of the ChAdOx1 nCoV‐19 Covid‐19 vaccine against the B.1.351 variant. New England Journal of Medicine, 384, 1885–1898. 10.1056/NEJMoa2102214
    1. Ramasamy, M. N. , Minassian, A. M. , Ewer, K. J. , Flaxman, A. L. , Folegatti, P. M. , Owens, D. R. , Voysey, M. , Aley, P. K. , Angus, B. , Babbage, G. , Belij‐Rammerstorfer, S. , Berry, L. , Bibi, S. , Bittaye, M. , Cathie, K. , Chappell, H. , Charlton, S. , Cicconi, P. , Clutterbuck, E. A. , … Zizi, D. (2021). Safety and immunogenicity of ChAdOx1 nCoV‐19 vaccine administered in a prime‐boost regimen in young and old adults (COV002): A single‐blind, randomised, controlled, phase 2/3 trial. Lancet, 396(10267), 1979–1993. 10.1016/S0140-6736(20)32466-1
    1. Roxby, P. (2021). Are Covid patients getting younger? Retrieved from
    1. Schraer, R. (2021). Covid Indian variant: Where is it, how does it spread and is it more infectious? Retrieved from
    1. Shen, X. , Tang, H. , McDanal, C. , Wagh, K. , Fischer, W. , Theiler, J. , Yoon, H. , Li, D. , Haynes, B. F. , Sanders, K. O. , Gnanakaran, S. , Hengartner, N. , Pajon, R. , Smith, G. , Glenn, G. M. , Korber, B. , & Montefiori, D. C. (2021). >SARS‐CoV‐2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host & Microbe, 5, S1931–S3128. 10.1016/j.chom.2021.03.002
    1. Thomson, E. C. , Rosen, L. E. , Shepherd, J. G. , Spreafico, R. , da Silva Filipe, A. , Wojcechowskyj, J. A. , Davis, C. , Piccoli, L. , Pascall, D. J. , Dillen, J. , Lytras, S. , Czudnochowski, N. , Shah, R. , Meury, M. , Jesudason, N. , de Marco, A. , Li, K. , Bassi, J. , O'Toole, A. , … Snell, G. (2021). Circulating SARS‐CoV‐2 spike N439K variants maintain fitness while evading antibody‐mediated immunity. Cell, 184(5), 1171–1187. 10.1016/j.cell.2021.01.037
    1. van Doremalen, N. , Haddock, E. , Feldmann, F. , Meade‐White, K. , Bushmaker, T. , Fischer, R. J. , Okumura, A. , Hanley, P. W. , Saturday, G. , Edwards, N. J. , Clark, M. H. A. , Lambe, T. , Gilbert, S. C. , & Munster, V. J. (2020). A single dose of ChAdOx1 MERS provides protective immunity in rhesus macaques. Science Advances, 6(24), eaba8399. 10.1126/sciadv.aba8399
    1. van Doremalen, N. , Lambe, T. , Spencer, A. , Belij‐Rammerstorfer, S. , Purushotham, J. N. , Port, J. R. , Avanzato, V. A. , Bushmaker, T. , Flaxman, A. , Ulaszewska, M. , Feldmann, F. , Allen, E. R. , Sharpe, H. , Schulz, J. , Holbrook, M. , Okumura, A. , Meade‐White, K. , Pérez‐Pérez, L. , Edwards, N. J. , … Munster, V. J. (2020). ChAdOx1 nCoV‐19 vaccine prevents SARS‐CoV‐2 pneumonia in rhesus macaques. Nature, 586(7830), 578–582. 10.1038/s41586-020-2608-y
    1. Volz, E. , Mishra, S. , Chand, M. , Barrett, J. C. , Johnson, R. , Geidelberg, L. , Hinsley, W. R. , Laydon, D. J. , Dabrera, G. , O'Toole, Á. , Amato, R. , Ragonnet‐Cronin, M. , Harrison, I. , Jackson, B. , Ariani, C. V. , Boyd, O. , Loman, N. J. , McCrone, J. T. , Gonçalves, S. , … Ferguson, N. M. (2021). Transmission of SARS‐CoV‐2 lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data. Nature, 593(7858), 266–269. 10.1038/s41586-021-03470-x
    1. Voysey, M. , Clemens, S. A. C. , Madhi, S. A. , Weckx, L. Y. , Folegatti, P. M. , Aley, P. K. , Angus, B. , Baillie, V. L. , Barnabas, S. L. , Bhorat, Q. E. , & Bibi, S. (2021a). Single‐dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV‐19 (AZD1222) vaccine: A pooled analysis of four randomised trials. Lancet, 397(10277), 881–891. 10.1016/S0140-6736(21)00432-3
    1. Voysey, M. , Clemens, S. A. C. , Madhi, S. A. , Weckx, L. Y. , Folegatti, P. M. , Aley, P. K. , Angus, B. , Baillie, V. L. , Barnabas, S. L. , Bhorat, Q. E. , Bibi, S. , Briner, C. , Cicconi, P. , Collins, A. M. , Colin‐Jones, R. , Cutland, C. L. , Darton, T. C. , Dheda, K. , Duncan, C. J. A. , … Zizi, D. (2021b). Safety and efficacy of the ChAdOx1 nCoV‐19 vaccine (AZD1222) against SARS‐CoV‐2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 397(10269), 99–111. 10.1016/S0140-6736(20)32661-1
    1. Wang, P. , Nair, M. S. , Liu, L. , Iketani, S. , Luo, Y. , Guo, Y. , Wang, M. , Yu, J. , Zhang, B. , Kwong, P. D. , Graham, B. S. , Mascola, J. R. , Chang, J. Y. , Yin, M. T. , Sobieszczyk, M. , Kyratsous, C. A. , Shapiro, L. , Sheng, Z. , Huang, Y. , & Ho, D. D. (2021). Antibody resistance of SARS‐CoV‐2 variants B.1.351 and B.1.1.7. Nature, 593, 130–135. 10.1038/s41586-021-03398-2
    1. Wibmer, C. K. , Ayres, F. , Hermanus, T. , Madzivhandila, M. , Kgagudi, P. , Oosthuysen, B. , Lambson, B. E. , de Oliveira, T. , Vermeulen, M. , van der Berg, K. , Rossouw, T. , Boswell, M. , Ueckermann, V. , Meiring, S. , von Gottberg, A. , Cohen, C. , Morris, L. , Bhiman, J. N. , & Moore, P. L. (2021). SARS‐CoV‐2 501Y.V2 escapes neutralization by South African COVID‐19 donor plasma. Nature Medicine, 27, 622–625. 10.1038/s41591-021-01285-x
    1. Wise, J. (2021). Covid‐19: The E484K mutation and the risks it poses. British Medical Journal, 372, n359. 10.1136/bmj.n359
    1. Yuan, S. , Wang, R. , Chan, J. F. , Zhang, A. J. , Cheng, T. , Chik, K. K. , Ye, Z. W. , Wang, S. , Lee, A. C. , Jin, L. , & Li, H. (2020). Metallodrug ranitidine bismuth citrate suppresses SARS‐CoV‐2 replication and relieves virus‐associated pneumonia in Syrian hamsters. Nature Microbiology, 5(11), 1439–1448. 10.1038/s41564-020-00802-x
    1. Zamai, L. (2020). The Yin and Yang of ACE/ACE2 pathways: The rationale for the use of renin‐angiotensin system inhibitors in COVID‐19 patients. Cell, 9(7), 1704. 10.3390/cells9071704
    1. Zamai, L. (2021). Upregulation of the renin‐angiotensin system pathways and SARS‐CoV‐2 infection: The rationale for the administration of zinc‐chelating agents in COVID‐19 patients. Cell, 10(3), 506. 10.3390/cells10030506
    1. Zhou, D. , Dejnirattisai, W. , Supasa, P. , Liu, C. , Mentzer, A. J. , Ginn, H. M. , Zhao, Y. , Duyvesteyn, H. M. , Tuekprakhon, A. , Nutalai, R. , & Wang, B. (2021). Evidence of escape of SARS‐CoV‐2 variant B.1.351 from natural and vaccine‐induced sera. Cell, 184(9), 2348–2361. 10.1016/j.cell.2021.02.037

Source: PubMed

3
Subscribe